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The Mellin analytic functionals
and the Laplace-Beltrami- operator
on the Minkowski half-plane

by

MARIA E. PLIS (Krakdw)

Abstract. In this paper the theory of Fourier analytic functionals is developed. These
functionals are generalizations of some Fourier hyperfunctions. Then the Mellin analytic
functionals theory is developed and Paley-Wiener type theorems for Fourier and Mellin analytic
lunctionals are proved. The Mellin transform for Mellin analytic functionals is defined. These
notions are applied to solve the Laplace-Beltrami equation and to study its selution in the space of
Mellin apalytic functionals.

0. Introduction. In this paper we introduce the notion of a Mellin analytic
functional and we develop a theory of such functionals with a view to
applications in the analysis of singular differential operators such as, for
instance, the Laplace-Belttami operator on a hyperbolic space.

In Section 2 we define the space of Fourier analytic functionals which are
related with some equivalence classes of holomorphic functions of exponential
type. These functionals are generalizations of Fourier hyperfunctions whose
defining functions are of infraexponential type (Kaneko [1], Kawai [2],
Zharinov [6]). More general analytic functionals with noncompact carrier were
considered in Zharinov [6], Sargos~Morimoto [5] and Park-Morimoto [3].

It is shown in Section 3 that the Fourier transformation and the inverse
Fourier transformation operate on Fourier analytic functionals. We prove
Paley-Wiener type theorems for the Fourter transform of Fourier analytic
functionals in Section 4.

In Section 5 we introduce the spaces of Mellin analytic functionals by using
the substitution w=e %= (e"%, ..., ™"} in some Fourier analytic func-
tionals. Mellin analytic functionals cotresponding to Fourier hyperfunctions
are called Mellin hyperfunctions.

Section 6 contains the definitions of the Mellin transform of Mellin analytic
functionals by evaluating the functional on the functions ¢ (w) = wo L We
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264 M. E. Pli§

prove Paley-Wiener type theorems for the Mellin transform of Mellin analytic
functionals. - '

The next section is devoted to the Laplace—Beltrami operator P = x}(92/6x}
+@*/8x3)+c and we consider the equation

(1) Pu=f

with f being a Mellin hyperfunction. We solve this equation by applying the
Mellin transform and a successive approximation method. The Mellin hyper-
function f is assumed to have Mellin transform with a sufficiently large domain
of holomorphy, and after a limit process we obtain a function which is the
Mellin transform of a Mellin analytic functional. That functional is the solution
of equation (1). ‘ '

Section 8 contains some characterization of the Mellin hyperfunctions
whose supports reduce to {0} x [0, £]. We prove that if f is so then the solution
of (1} is a Mellin hyperfunction with support in {0} x [0, 1.

1. Notation and preliminary definitions. Throughout the paper we use the
foliowing notation: if weC", aeR”, then w = (w,, ..., w,), a = (a,, ..., a, and
wi=wi wp If b=1(b,,...,bh)eR" then a < b (resp. a < b) denotes that
a;<b; (resp. a;< b)) for j=1,...,n, [a, b] = [a,, b;]1x ... x[a,, b,]. For
w,zeC", wz=wz,+...+w,z,. If acR” and weR" (or C") we use the
notation %W = gftIwti+ .- tanlwnl

For teR we write J, = (0, t] = (0, t,1x ... x(0, t,]. If there is no danger
of misunderstanding, weedrop the subscript t. '

D" will stand for the compactification of R", D" = R"u §%" !, in other words
D" is R with added points at infinity in all directions.

If V is an open set, V< C", let O(F) denote the space of holomorphic
functions on V. . ' -

We shall use the maps p())=e* and p¥'(w)= —low, where e~¢
={e”%, ..., e™%), —lnw=(~Inw,, ..., —lnw,). Here j is a diffeomorphism
from {{eCIm{|<n/2,j=1,...,n} to {weC"; Rew,; >0, j=1,...,n}.

For o=(0y,...
I', = {xeR" ox > 0}. We shall frequently consider the cone I' ., it is I', with

o;=+ forallj=1, ..., n. We define sgne to be + 1 if the number of “—" in -

g is even and —1 otherwise.

We assume that M is the closure in D" of a cone I' | +u for u = —InteR™ If
aeR" and 0 < a < /2 we set M° = M+i[—a, a] and J? = J¥ = u(M") (the
image of M“). Here p(S7;") = {0}. %" will stand for the family of complex sets
containing J* defined in the following way: Ue % iff there exists a bounded

neighbourhood ¥ of J* in C" and some numbers ap Bielay, nf2)forj=1,...,n
such that

U=Vor{{—o <Argw,<B}w{0]); j=1, ..., n}.

.6, 6€{+, =}, we put ox=(ox;,...,0,x,) and
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2. Fourier amalytic functionals

preiTioN 1. IEV < D"+-iR” is an open set, then @ @ (V) (the space of
exponentially increasing functions) iff pe@(V nC") and for every >0 and
every compact set K < V (K is compact in D"+iR")

sup{le(z)e™ 9" ze K~ C"} < oo.

In the case a =0 we obtain the space J(V) = @O(V)' of infraexponential
functions, the so-called space of slowly increasing functions.

DEFINITION 2. @& §3(V)ilf pe ¢(V nC", ¢ is continuous on ¥ n C" and
lel; = sup{lp()|e“ "M, ze ¥ n C"} < oo,

@ (V) is a Banach space with norm || ‘

For a compact set K in D"+iR", let {V,},.n be a fundamental system of
neighbourhoods of K satislying V,, 3 V.41, 1€ V4 has a compact neighbour-
hood in ¥, with respect to the topology of D" 4iR"

Now we put ‘

¢(K) = lim g2V,
ey
and it is a DFS-space.

More general spaces than ¢°(K) were defined in Zharinov [6], Sargos—
Morimoto [5] and Park—Motimoto [3] as the spaces of test functions for some
analytic functionals with noncompact carrier. For our purpose it is sufficient to
consider this special case.

If K is a compact set in D", the space O(K) (for a = 0) is the space of rapidly
decreasing functions which are test functions for Fourder hyperfunctions with
support in K. Such spaces are considered in [1], [2] and {6].

Let K=K, x...xK, be a compact set in D", and aeR%. We set
Kf=K;+i[~a; 4], and K* = Kix ... x K& = K+i[—a, a]. Then it is ob-
vious that ¢"(K") = ¢°(X) = ¢(K).

We shall be concerned with the space dual to @%(K").

DEFNITION 3. Analytic functionals in [ ¢*(K“}] are called Fourier analytic
functionals with carrier K°.

The space [¢{K)]' is the space of Fourier hyperfunctions with support K.
Since [ @(K))' = [ ¢“(K"] il foliows that the Fourier analytic functionals are
a generalization of the Fourier hyperfunctions.

Let ¥ = ¥, x ... x ¥, where ¥} is an open neighbourhood of Kj. We have
a natural generalization to Fourier analytic functionals of the thecrem on
characterization of compactly supported hyperfunctions and of Fourier hyper-
functions:

TarOREM 1.
2) [ KN ~ O*(V# K 3, F=(V# ;K.
J=1

& — Studia Wathematica 99,3



266 M. E. Plis

Here V#K® = (VAKS) X ... x(VAKS), and V #,K* = (V\KD)* ... x Vyx ...
LXK, = .

Proof (outline). The isomorphism is given in the following way: let
Fe@(V # K% and let {F]* be its equivalence class in the quotient space on the
right side of (2). We can assign to [F]* the functional f e[ 0*(K*)]’ defined by
the following formula: for e O°(U) (U =U,; x ... xU,, U;> Kj)

flel=[Fa)o(s)dz

where y = v, X ... x7,, ;s an arbitrary curve contained in ¥;n U, encircling
K% once in the counterclockwise direction.

It can be proved that the quotient space (2) is independent of the choice of
the neighbourhood V.

‘DerINITION 4. Let oe{+, —}", Fe@*(V#K" and F=0 on (V #K"
nD"+il) for all 7s# 0. Then the Fourier analytic fonctional [
assigned to F by the isomorphism (2} is called the monomial Fourier analytic
Junctional with defining function F and denoted by f = j& (F).

Like general hyperfunctions and Fourier hyperfunctions, a Fourier analytic
functional f has the representation

f=Ysgnojt,(F,)
where F,e&*(V #K*) and F,=0 outside D"4il',.

3. Fourier transformation of Fourier amalytic functionals. Let K, be a
closed subcone of I',+u, for some ucR™ It is easy to see that ** e 04(K%) for
{ with Im{e I, Im{}| > a; for j=1, ..., n. Now, we can extend the Fourier
transformation from [O(K,)]' to [(¢(K3] in the following manner: if
Fe[ 0K then G(0) = f[e” %] is a holomorphic function for ¢ such that
Im{ e —T,, lm{] >a; for j=1,...,n, and Ged*(D"+i{oIm{+a < 0}).

DermnimionN 5. The Fourier analytic functional #f = j% (G} is called the
Fourier transform of the Fourier analytic functional fe[@*(K%)]. '

We shall abbreviate the term “Fourier analytic functional” to “Fourier a.f”.
For f being a monomial Fourier af, f = jf (F), we define the Fourier
transform by means of an “exponential partition of unity”: we set

e(Za'l'l)z‘ 1
a2 T e —— —
X+(Z)_1+e(2a+1)z’ X‘I—(Z)—W

and for v =(1,..., T;.)E{‘F_a __.}"

2@ = X(ars o, 20 = 2 (z,) . 120z,
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The set of functions {y%}, has the following properties:

@) Y@ =1,

(b) ¢% is a meromorphic function with poles at {+i(2k+1)n/(2a;+1)} and
¥ is of infraexponential type outside the poles.

(©) |x4(2)] < Ce~ @+ ikezl for jImz) < n/(2a;+ 1) and Rez¢ ', with some
constant C.

Every collection of functions {y%}, satisfying (a)—(c) is called an exponential
partition of unity. :

DexNiTION 6. The Fourier transform of a Fourier af. f = j§ (F) for a such

that @ < m/{(2a-+1) is the Fourier af Ff =3 sgntj%r(G,), where the func-
tions G, are defined by

(B) G =sgnt [ F@)yiz)e *dz

Iz =yo

with a fixed y,el’, and a; < |yo) < ®/(2a;+1).

for Im{e —TI', Im{} > a;

Remark. The restriction a < n/(2a+ 1) is not necessary for the definition
of the Fourier transform of a Fourier a.f,, for example we can use the dual of
the Fourier image of the fundamental space (as in Sargos-Morimoto [5]). But
for our purposes of defining the Mellin transform of a Mellin a.f. and applying
it to the Laplace-Beltrami equation it is sufficient to use this method.

Now, similarly to Fourier hyperfunctions, from properties (a)—(c) it folqus
that the integral in (3) is well defined and Ge&*(U n(D"—il,) for U being
some neighbourhood of D" in D"+iR"

DermiTioN 7. We define the inverse Fourier transform ' in the fol-
lowing way: if f €[ 0*(K%)] then & ~*f = j} (G) with G({) = 2m)™"f [¢%7], and
if £ = o (F) then #~1f = ¥, sgnj%.(6) with G,(0) = 2m) " G.(—0), where G,
is defined by (3).

It can be proved, just as for Fourier hyperfunctions, that if f is a Fourier af.
then F ' Ff = f=FF _ '
Now, we shall prove Paley-Wiener type theorems for Fourier af.

4, Characterization of Fourier analytic functionals

THEOREM 2. Assume that M is the closure in D" of a cone ', +u = R" for
some ueR", and g is a Fourier a.f, ge[§"(M"))'. Then g[e™] is a holomorphic
function on R" +i(I" . -+ d), and for every M' € I' . +a and every ¢ > 0 there exists
some constant C, such that

(4) g%} < C, @t iResl +Hkealm)  for zeR"+iM’

where Hig (y) = sup{ ~xy +(a+8)lx]; x-+eeM}.
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Proof. It is a slight modification of the proof of this theorem in the case
a=20, i.e. the case of a Fourier hyperfunction (see Kaneko [1], Th. 857, or
Kawai [2], Th. 3.3.1).

TueoREM 3. If the function F satisfies the condition (4) then there exists
a unique Fourier analytic functional ge [ 0*(M®)) such that F(z) = gle'].

Proof In the case a = O the proof can be found in Kaneko [[1], Cor. 8.5.8,

or Kawai [2], Th. 33.2. For 0 < g; < n/(24;+ 1) we modify the proof from []']
as follows:

Let f be the monomial Fourier af. assigned to F, f = f+ (F). Its Fourier
transform is #f =) ,sgnaj%r,(G,) with G, defined by (3). It suffices to show
that g = 2m)* #f belongs to [ ¢*(M)]. To this'end we deform-the integration
path in (3) inside R"+i(I", +a). '

We set for any 0 =(0,,...,8,)e[0, n/2)"

R, = {z;€R+i(a;, 0); z; =iP;+r,e™, r;eR, ),

Ry, = {z;€R+i(a;, w0); z;=if;—r;e™™, reR,},

Rf =Rix..xR§f and R,=RJUR;,

UY ={{;=¢;+in;€C: (a9 )Ree® —(u,— ¢ )Ime'? < 0},
US=Ulix ... xUhr.

We show that G, defined by (3) can be defined as an integral over R,:
5y 3noG () = [ F@xi(e ™ dz for Le(US AU x ... x (U~ Us).

Rep

L

Indeed, note that the integral in (3) is defined for { in

U9 = {Jim{) > a;} n{Imle —I',} = {{ = &+in; a+an < 0}
We have

» .
[ F(x+ i) xd(x + i) e =% gy
[H]
,
_ J‘F(ixeiiﬂ_l_iﬁ)xz(i_xeim+iﬁ)e—i(ix¢“°+i}'v)(,‘e:tiﬂdx
(1]

0
= [ F{re= 4 ip) yi( Lret!* £if)eCEre bty gy
L]
Then, for {eUS A UY and for every &> 0, it follows from 4) that
. .
f F{£retty iﬁ)xﬁ(ire*'“+iﬁ)e‘“*”“”‘”}‘rdﬂ
a
[}

io -ty
< C,;_[ e(a+2e)rRee +le+ei rImgm)(u_g,,g)e,.med" e U’“Im"‘“)‘frdoc
o

[}
= Cge-';":je[(a"‘zﬂ"“ﬂﬂ)lle e‘“—(u-—g—f)[maia],rda.
0
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Choosing ¢ > 0 sufficiently small we see that the Il'ast integrand converges to
0 as r-»co, uniformly with respect to o, therefore the last integral also
converges to zero. This proves (5). Now one can easily see that the function G,
can be extended holomorphically to the domain

U,=U, x...xU, = JUsx.. x| Uk,
0y (1

and G,e @ (U).

Suppose 0, 16 {+, —}" and o, = 7; for j # k, ke{l, ..., n} fixed. Then for
{eU_nU_ and for @ sufficiently close to m/2 we have

sgna{G, () —G0) = RI Phi@e s+ | F(2)i(z)e " dz

fi

j- F(Z)xﬁ‘, (21) ces x";’_‘(zk) .. xg:(z")ehizcdz
Reo

+ I F(2)xsi(z,y)- .. X3z} X‘;’;(z,,)e_‘z‘:dz :
Re

§ F@)as(2)e™ " dz

Re

Where 6 = (0, .. ) Gkm1, Ohits cos On)s 2 =(Z4, ..oy Zkm15 Zx+1s - -5 Z,). Hence
it follows for {e U, U, that if §, —n/2, the last integral converges to zero.
Therefore G,{) = G,({) on U, nU,. We can fix k arbitrarily, so there exists
a function G such that G = G, on U, and Ge #*(C" # M*) = 0*(| ), U,). This
proves that #f = Y, sgnoj®r, (G,) belongs to [ &“(M")]". The proof of Theo-
rem 3 is thus complete. '

5. Mellin analytic functionals. First of all we will define the spaces M (T

of test functions for Mellin analytic functionals. Suppose that M = [ —Int,, 0]
X ... x[—Int,, oc], teR%. Then we have

DEFINITION 8. @& 4, (T iff (W g)ope @°(M?). Here b = (b, ..., b,)
eRfand 1=(1,..., 1).

We can rewrite this definition in the following equivalent form:

DerNITION 8. o€ Hh(J) if and only if ¢ & O(U # {0}) for some Ue%,
and for every compact K < U there exists § > 0 such that sup{|w*** “ima g (w);
we K # {0}} < 0.

The map ¢ - (W * @) o pis an isomorphism between ~.‘,‘[,,(.Tf"‘_) and @°(M*),
50 4% (J%) equipped with the topology induced from ¢"(M") is a complete

space. Similarly to the case of the space My (J) of test functions for Mellin
distributions we see that if b < ¢ then .#% (") < #0,(9).

DermaTioN 9. Meliin an;zlytic functionals (in short Mellin a.f} are elements
of the dual space [#a(T0] = A50T). |
Immediately from Definitions 8 and 9 we have the following
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LemMa 1. fe 4% (J% if and only if €*(f opye [ *(M)]'. If ¢ < b, then also
e4(f o) e [ O]

In the case a = 0, we use the notation #§(J°) = #(J). A functional
fe My(T) is a hyperfunction which we will call a Mellin hyperfunction.
Obviously, / is a Mellin hyperfunction, fe .#5,(7), if and only if e*(f op) is
a Fourier hyperfunction, e (f ou)e[@(M)].

If g is a Fourier a.l, ge[¢*(M*)], then f = (e"*g)ou~" is a Mellin af,
fe M5(T%. Since to every Fourier af. we can assign a class (_)f defining
functions, we can do the same with a Mellin af. Let fe 4% J". If G is
a defining function for the Fourier a.f g = &®(fop), then GeO*(U # M*) for
some U = U, x ... x U, where U, is a complex neighbourhood of M§. Now,
define a function F by

F(w) = (¢"%G)(—Inw) = wG(~Inw).
Then F is holomorphic in the set ¥V # J%, for some ¥, a complex neighbourhood
of J%, Ve & Moreover, F satisfies-the condition resulting from the exponen-
tial property of G: for every & > 0 and for every compact K — ¥ # J% there
exists a constant C, x such that
(6) IF(w)| < CoxeIW®™*7".

DErFINITION 10. Assume that F satisfies (6) on (¥ # J) n (R"+iI',), and
F = 0 outside this set. The Mellin analytic functional f assigned to the function
F is called a monomial Mellin a.f and denoted by f = j§M(F).

6. The Mellin transform of Mellin analytic functionals. First we note that
the function' ¢_(w)=w"*"! belongs to Me(JY) iff Rez < b—a. Indeed,
(W lg)ou = e ® 7% and e ™2 g Ce @ MRel for some & > 0 if and only
if Rez < b—a. Hence every Mellin a.f. can be evaluated on the test function ¢,.
Now we can define the Mellin transform of a Mellin af.

DeriniTionN 11, If f is a Mellin af, fe J#§(J%), the Mellin transform of
f is the function .#f defined by

Mf (2) = f[w™*1]

and every holox_l_lorphic extension of this function, The operation .# assigning to
each fe 4#5,(J" its Mellin transform .#f is called the Meliin transformation.

Similarly to the Mellin transformation in the class of Mellin distributions,
the transformation defined above has the following operational properties:

MOENZ) = Mf (z—P)  for Rez < b—a+Ref,

J(E%f)(‘?) = (zj+1)ﬂf(z+(1)j) for Rez <b—a—(1),,

for Rez < b—a,

xf(? (x %) f)(z) ~ P (2,
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where P is a polynomial in z,, ..., , and P(xJ/@x) is the aperdtor P{x,8/0x,, ...
..., x,8/0x,). Here z-+(1); denotes the vector z translated by 1 along the
Rez-axis, ie. | .
z+-(1); ={zq, .oy Zj-1s Zi+1, Zjaty oo z,).
If f is a Mellin af, x*f denotes the functional
Xf [] = f[w' o]

and (3/éx) f acts as (@/0x)f (6] = [[-@/w)e]. |
For the Mellin transform of a Mellin a.f. the following Paley—Wiener type
theorems hold. |
THEOREM 4. Assume that e M5 (J?). Then for every ¢> 0 there exists
a constant C, such that
(7) !-/”f (Z)| < Cae(a+e)|lmz|(ter.)——kcz
Proof. This follows from Theorem 2 for the Fourier af in the case of
M=M,x..xM,=[—Int, ©}x..x[-Int, cc], since .we have for
z=b—p+if (with y > a)

M (2) = [ (w7 = (Lo [T,

Jor Rez < b—a—s.

therefore

T ()| = e (f o[ < Cﬂe(ﬂ+enﬂ|+ﬂg{,n(7).
For the cone M as above, Hj (y) has the form ‘
Hiy.{y) = sup{(a+8)x|—yx; x+eeM} = (a+¢)nt +6—y(—Int—e),
hence
|Jgf(z)| < Cae(a+_e)lme(a+s)llm+nlw(~lnr—e)

- C;e(a+5)|ﬂ[e—'¥(—1m—ﬂ) - C;’e(ﬂ"'ﬂ)lﬂ'(te“)'.'“

for u € b—a—e.
The following converse theorem corresponds to Theorem 3.

THEOREM 5. Assume the function F in the variables z = o+if is holomorphic
on a set {a < b—a}, and satisfies condition (7). Then there exists a unigue M ellin
af fe Mh(T?) such that Hf (z) = F(z) for a < b—a. Moreover, the functional
f can be represented as f = Zasgnaj?f(H,), with. H,, defined by the formula

(®) H,(w) = | Fo—y-+ifyxs(B-+ipw® 7 #dp
Re .

for w such that 4 < cArgw <a+#4 for some neR%. The integral (8) is
independent of a fixed v, a <y < w/(2a+1).
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Proof It follows from {7) that if we consider F as a function of the
variables f§ + iy (with z = b—y+if), setting F,(6+iv) = F(b—y+iff) we see that
. F, satisfies the assumptions of Theorem 3. Hence there exists a unique Fourier
af g,e[0(M"] such that F,(f+iy) =g,[e#T™]. Then the functional
f=("g)ou™ ! is a Mellin af such that 4f (z) = F(z), fe Mi(JT.
Now, we shall prove formula (8). Denote by f, the Fourier af. j§ (F,). We
see that g, is the Fourier transform of f,, therefore g, = Zf,
=3 sgnajir (G2), where G} is defined by (3) with F, in place of F. The
functional g, is independent of the choice of an exponential partition of unity
{x3}, Thus if we write 73(8+iy) = x2(B+i(y—7)), then the set of functions
{f3}, is again an exponcnt:al partition of unity for y;~1] < n/(2a;,+1), and
Oy = 3.,88N0j% r.,(G ), where

GO = | Fy(B+in) 2 (B+iy)e “A+ap  for gIm{ < —-a
R"
and for fixed y, |y;—1t| < n/(2a;+1).
So, we conclude that the Mellin a.f. f =(e"%g,)or™ ! can be represented as
f=73,sgncj+™(H,), where H {w)= w’Gi(—Inw), and we obtain (8).

7. The Mellin transform of a Laplace—Beltrami equation. In this section we
consider the Laplace-Beltrami partial differential operator on the hyperbolic
hal{-plane:

P"le a—2~|-—i +35(I—y)
T\ T ax2 5

with some complex s, and the equation
1) : : Pu=f.

Assume that f is a Mellin hyperfunction such that its Mellin transform .#f
is a holomorphic function on Q= {(z,, z,); Re(z; +z,) <0, Rez, < 0}. In
other words, we assume condition (7) with a = 0, for ze Q, and f & My (J) for

every be(l
: We shall compute the Mellin transform of both sides of equation (1). The
operator P can be written as P = R4 where

R-x"‘w—i+s(1-s)—~ x oy 4 1- o
- 1ax§ - Iaxl xla +S( ) Q“‘"xlaxg
It follows from the operational properties of the Mellin transformation that

M (Pu)(z} = A (Ru)(z)+ 4 (Qu)(z)
= Riz;) Mu(z)+(z, + 1}z, +2) Mu(z, -2, 2, + 2)
where R{z,) =z —z,+5(1 —s). Thus we have the equality

R(z,)#Hu(z) = —(22+ (zy +2) Mu(z, —2, z, -+ 2+ Hf (7).
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We shall find and study a solution u of equation (1) by finding and studying its
Mellin transform .#u, so we restrict our attention to the solutions of the
functional equation

©) R{z)F(2) = —(z,+ Dz, + 2 Flz,—2, 2, + 2+ Af (2)-
Note that the polynomlal R is zero at s and 1-—s. Suppose, for simplicity,
that, 0 < Res < Re(l —s); then on Q equation {9) is equivalent to
Hf (2)
R(z,)

(D)

PO =3

F(Zl—-z, ZZ+2)+

We solve this equation by a successive approximation method, putting

M (2)
Rizy)’

for j=1,2,...

{z,+1)(z,+2)

R(z) —2, 2, +2)+Fyl2)

Fol2) = Filz) = —

F_i—1(z1

1t follows from the definition that

_ ¢ (Za 4 1)z, 42) .- . (2, +2k)
Fyz)= k; (— l)kR(zl)R(zl——2)...R(zl —2k)

Hf (z)
R(z;)’

Fix an & > 0. We easily see ([4]) that there exists some constant B, such that
[R(z)l = B,,  |R(z;—2)...R(z,—2k}| = 2%*(kV)?, for z=(2,2,) in
{Rez, € —¢}. From the assumption on f it follows that

|-/l{f(zl""2k, Zz+2k)l S_ Caeeﬂmzl(tlea)—]{nzl+2k(tzee)—Rczz—2k

= Cneallmzl(tee)HRe z(tl/tz)Zk-

M (2, 2k, z,+28) +

We shall use the identity

I'(—z,)

(@, +1)(z,+2)... m

(2, +2K) = (—zy—1)...(—2,—2K) =

for Rez, <0, where I' is the Buler gamma fuoction. We shall also apply the
following asymptiotic property of I':

lim |r(m+iﬂ)leﬂ|ﬂ|/2|ﬁl]/2«.u - 21.;‘
[ ]~ o0

It means that if z = «-+iff, then

Jim V(=2 (=2 =201 Bl = 1

so for sufficiently large |§,] we have

2+ Dz +2). . (22 +20] < 2181,
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In view of all the above remarks we obtain the following estimate: for every
¢ > 0 there exists some constant 4, such that

BB fpt) — 2 ] 1 1 ka k41
IFy(zh < 4, (e LEW 3t 2l

< Aaeaiﬁl(tez)w(kzo k‘(lﬁz )k)z

=A ezlﬁl(tea)"me(hlrz)lﬁzl for o€ —&.

Hence we conclude that the sequence {F,} is convergent locally uniformly to
a function F holomorphic on @ = {Rez < 0}, and satisfying the condition

|F(2)] < A, elPrleruialfal(rey=®  for a € —e.

It follows from the definition of F; and the last estimate that F is a solutlon
of equation (9) on the domain Q= {Rez, <0, Rez, < ~2}, and fulfills
condition (7) with a = d = (0, t,/t,). According to Theorem 5 there exists
a Mellin af ue #%,(F for every b, b—deQ”, and its Mellin transform .#u(z)
equals F(z) on 2. Since .#u is a solution of (9) it follows that u is a solution
of (1).

Moreover, the functional u can be written as u = ) ,sgnajf;

sgnaU, (W) = | Fb—y+ifxa(B+iy)w' ™" 0df
Rr2

M(U ), where

for fixed y, p, > 0, v, > t,/t,.

8. Mellin hyperfunctions with support in an (n— k)-dimensional space. In this
section we intend to establish some characterization for Mellin hyperfunctions
with support in an (n—k)-dimensional space. Suppose that f is a nontrivial
Mellin hyperfunction, f& g (7) and supp f = {0} x [0, t], £ = (tx+1,---

,t). If we set z = (2, 2"), 2 =(zy, ..., &) 2" = (Zxs-1, .-+, Zy)» WE COnclude
that for every t' = (t;, ..., t}, ' > 0, supp f < [0, t'] x [0, t"]. It follows from
Theorem 4 that for every ¢ > 0 and ¢’ > 0 there exists a constant C, ;. such that

AT (2)] € Cy et Imel(r &) ~Re% 2 for Rez < b—e¢.

This condition is equivalent to the following: for every & > 0 and § > 0, there
exists a comstant C,; such that

1) - A<

Therefore it follows from Theorem 5 that if a function F is holomorphic on
{Rez < b} and fulfills (10), then for every ¢ there exists a Mellin hyperfunction
fv€ Myy(Je ) with supp f,, < [0, '] x [0, t] such that #f,.(z) = F(z). In view
of the uniqueness of the Mellin transformation we obtain '

nlee)— Rez”

C,pe?™e g Re=" (") "Rex"  for Rez < b—e.-
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TuEOREM 6. A Mellin hyperfunction fe M, (J) has support contained in
{0Y %[0, t"] if and only if its Mellin transform fulfills (10).

Now, we return to the Laplace—Beltrami operator and to equation (I).
Suppose that f on the right-hand side of (1) is a Mellin hyperfunction with
supp [ = {0} x[0, t,], and f is holomorphic on 2. Repeating the argoment
from Section 7 we conclude that the limit function F satisfies the following
condition: for every & > 0, 1; >0, there exists A4,, such that

|F(2)} < 4, tieﬂlﬂxle(nillz tellBal(get) =
This means that for every 6> 0, >0
iF(z)] < B, ,e'67% (t,e")"®  for

and for some constant B, . In other words, F satisfies (10). It follows from
Theorems 5 and 6 that the functional u for which #u(z) == F(z) is a Mellin
hyperfunction with support in {0} x [0, t,].

We conclude that in the case of f with support in {0} x [0, ,] equation (1)
has a solution which is a Mellin hyperfunction with support in {0} x [0, ¢,].

ExampLes. Set K = {(£,, &,); 0 < &, < £,}. Suppose that g is a Fourier
hyperfunction, g e [ ¢(K)J, where K is the closure of K in D2 Then it follows
from Kawai [2] that g[¢*] is a holomorphic function for Imz e K° (dual cone)’
and satisfies (4) with a = 0 and M = K, for every cone M' € K°. Therefore, if
we take f=gou~!, then fe #o(J), suppf = L= {(x,, x;); 0<x, <x,
<1}, and #f ()= Mf(—y+if) = g[?*"], holomorphic for y; >0,
7;+79, > 0. Hence #f is holomorphic for Rezy <0, Rez,+Rez, <0 and
satisfies (7) there.

Now, let M, = [-Int,, o]x[— lntz, 0] and A=[}1]. Set K,
= A(M), ie.

for o« < —s.

oK —&

:= {(flw ‘fz); Aml(‘gl’ éz)EMr}
= {(&y, L) &y =&y > —Inty, £, > —lnt,} = K.

We can see that g & O(M) iff poA™ " e O(K)), therefore it is easy to see that
if g is a Fourier hyperfunction with suppg = M,, then go A~ can be deﬁned by
goA Y] = g[¥od] (here detd = 1), and god ™ e[ G(K)], ie. goAd~
a Fourier hyperfunction with supp(god™") < K,.

Let 2, be a one-dimensional Fourier hyperfunctlon with supph, = {0}, let
h, be a one-dimensional Fourier hyperfunction with supph, < [—Inz,, ],
and let A(x,, x;) = 1(x1)h (x,). Then g = hoA™" is a Fourier hyperfunction
with support included in the cone K, for every ¢, < 1. Since K, = K, g[e'™] is
a function holomorphic for Im zeK" dand satisfies (4), so for f = gou™*, S is
a function holomorphic on {Rez, < 0, Re(z, +z,) < 0}, satisfies (7) for every
t, and supp f < {0} x [0, t,].
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