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Relative entropy and stability of stochastic semigroups

by KrzyszToF LoskOT and RyszarD RuDNICK1 (Katowice)

Abstract. For any convex function n and densities /" and g the n-entropy of f relative to g is
defined by H,(flg) = {gn(f/g)dp. 1t is proved that H,(f,lg,)—n(1) implies f, —g,—0 in L'. This
theorem is applied to stochastic semigroups generated by partial differential equations. A sufficient
condition for convergence of densities to the Maxwellian is also given.

Introduction. The main object in the statistical description of a dynamical
system is a probabilistic measure defined on the phase space. Such a measure
may be interpreted as a state of the system. In the present paper we consider
the case when the phase space is a o-finite measure space (X, %, u) and states
are absolutely continuous with respect to u. Each state A can be identified with
its density, i.e., the Radon—Nikodym derivative f = d4/du. In statistical physics
the functional -

(0.1) Ho(flg) = [(fInf—fIng)du

measures how easy it is to distinguish two states given by the densities f and g.
This functional is called the Kullback—Leibler entropy (or information) of
f relative to g [8].

In this paper we use the notion of the relative entropy (also called the
statistical distance [10]) introduced by Csiszar [4], [5]. For every continuous
convex function #: [0, c0) > R we define the n-entropy of f relative to g by

(0.2) H,(f1g) = [ gn(f/g)dn.

The Kullback-Leibler entropy is a special case of the n-entropy for
n(u) = ulnu. The main goal of this paper is to investigate connections between
the n-entropy and stochastic operators.

The organization of the paper is as follows. The precise definition of the
n-entropy is given in Section 1. Section 2 contains an elementary proof of the
Csiszar inequality

0.3) H,(Uf|Ug) < H,(f|g)
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for every stochastic operator U. Voigt [13] rediscovered this inequality in the
special case of the Kullback-Leibler entropy. In his proof he used methods of
Gelfand—Naimark representation theory. In the special case when U is
a double-stochastic operator and g = 1 inequality (0.3) appears in the paper of
Misra and Prigogine [11]. In Section 3 the convergence of H 2(falg,) to n(1) is
proved to imply strong L*-convergence of the difference f,—g, to 0. Using the
functional (0.2) to examine convergence of Markov chains to equilibrium was
proposed by Rényi [12]. Developing the idea of Rényi, Fritz [6] applied the
Kullback-Leibler entropy to limit theorems for reversible Markov processes.
The idea of using conditional entropy to examine ergodic properties of
dynamical systems was exploited by Lasota and Mackey [9]. Section 3 also
contains a simple proof of Elmroth’s theorem [3] on convergence to the
Maxwellian. In Section 4 we show an application of our theorem to stochastic
semigroups generated by the heat equation and the Dirichlet problem on the
half space. Our proofs are based on simple geometrical properties of convex
functions [1].

1. The n-entropy. Let (X, %, u) be a measure space and let I!(y) denote
the space of all real p-integrable functions on X. By LY (1) we denote the
positive come in L'(y), ie, LN(uw)={fel'(): f>0 ae}, and let
D(u) = {feL! (u): [fdu =1} be the set of all densities. Let #: [0, 0)— R be
a continuous convex function. In order to give the precise definition of the
n-entropy we introduce an auxiliary function g¢: [0, 00) x [0, c0)— Ru {0} by
setting

v(u/v), ©v>0, ux0,
(1.1) pu, v)=< 0, v=0 u=0,
un'(o0), v=0, u>0,
whgre
(1.2) n'(0) = llm n'w) = (v)/v

Further, we shall need some properties of . It is well known that for
a given convex function » there exist sequences (a,) and (b ) of real numbers
such that

(1.3) n(u) = sup{a,+b,u: neN}.
From (1.3) it follows immediately that
(1.9 @(u, v) = sup{a,v+b,u: neN}.

In particular, the last formula implies that ¢ is a positively homogeneous
convex function.

Now for f, geL' (u) we define the #- entropy of f relative to g by
(1.5) H,(flg) = [o(f, g)dpu.
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The definition is correct: Indeed, from (1.4) it follows that ¢(f, g) > a,g+b,/,
which implies that the integral (1.5) exists and — oo < H,(f|g) < . From the
convexity of "¢ it follows that H (f]g) is convex w1th respect to (f, g).
Moreover, it is a positively homogeneous functional on L% (u)x LY (4). The
n-entropy distinguishes two densities f and g. In fact, using Jensen’s inequality
we obtain

(1.6) H,(fl1g9) 2 n(fggdu) =n([ fdu) = n(1).

If in addition # is a strictly convex function, then inequality (1.6) is strict for
f # g. Therefore the difference H,(f]g)—n(1) may be regarded as a measure of
the similarity between the dcnsmes f and g.

Now we give two examples of n-entropies different frorn the Kullback—~
Leibler entropy.

(i) The norm ||| in L' (u) is an n-entropy. Indeed, if we put ,(u) = |1 —u]
then H, (flg) = |f—4l.
(i) Another interesting and useful example is

(1.7) H(f19) = —/*g" ~*dn,

where a€(0, 1). Here H,= H, for na(u)
Inequality (1.6) for the H -entropy is just the Minkowski inequality. The
H _-entropy with ¢ =4 will be used in Section 4.

2. Stochastic operators and decreasing of entropy. Let (X, %, u),i=1, 2,
be o-finite measure spaces and let U: L'(u,) = L* (u,) be a linear operator. The
operator U is called positive if U(LY(y,) = L% (u,). If additionally
{Ufdu, = [ fdy, for feL'(u,), then U is called stochastic. It is well known [4]
that each positive operator U can be extended to the space of all measurable
functions f: X, —» R for which f~elL!(u,), where f~ =max(0, —f). This
extension is given by Uf =sup{Ug: geL'(y,), g <f}. The operator
U preserves monotonicity, ie., for f < g we have Uf < Ug. Moreover, if
f~eL'(y,) then (Uf)” eI*(u,). IT U is stochastic then U also preserves the
integral.

As in Section 1 we shall assume that 5: [0, c0)— R is a continuous convex
function and ¢ is given by (1.1).

THEOREM 2.1. Let U: L'(u,)— L'(u,) be a stochastic operator. Then
(2.1) H,(flg) = H,(Uf|Ug) for all f, geL' (u,).

In order to prove this theorem we need the following generalization of
Jensen’s inequality.

PROPOSITION 2.2. Let U: L'(u,)— L} (u,) be a positive linear operator. Then
(22) Uo(f, 9) = o(Uf, Ug)  for all f, ge L’ (u,).
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Proof of Proposition 22. From (14) it follows that ¢(f, g)
> a,9+b,f. Monotonicity of U implies

Uo(f, 9) 2 Ula,g+b,f) = a,Ug+b,Uf.
Using once more (1.4) we obtain (2.2). =

Proof of Theorem 2.1 follows immediately from inequality (2.2) and
stochasticity of U. m

3. The n-entropy and ['-convergence. Let (X, #, u) be a fixed measure
space and let D denote the set of all densities on X. A convex function #:
[0, c0)— R will be called strictly convex for u = 1 if there exists c e R such that

(3.1) nw) > n(1)+c(l—u) foru<l,
(32 nw) = n(l)tec(l—w) foruz1.

If, for example, n has a second derivative at u =1 and 7"(1) # 0, then 7 is
strictly convex for u = 1.

TreoREM 3.1. Let n: [O, ) — R be a continuous convex function, strictly
convex for u= 1. Let (f) and (g,) be sequences of densities on X such that
H,(f,|g,) converges to n(1). Then f,—g, converges to 0 in L'-norm.

Proof. Let c be a real number such that (3.1) and (3.2) hold. Define a new
function 7 by #(u) = n(¥)—n(1)—c(1 —u). Then 7 is nonnegative and

(3.3) nu) >0 for u<l.

Moreover, 77 is convex and we can define the #-entropy. We have
H;(f,19,) = H,(f,19,)—n(1), which implies
(34) lim Hx(f,lg,) = 0.

Now, fix re(0, 1) and define
A, ={xeX: f(x) <g,(x)}, Bon={xeX: f,(x)<rg,(x)}, C,n=AN\B,,.

From (3.3) it follows that there exists A, > 0 such that 7(u) > A,.(1—u) for
ue(0, r). Since f, and g, are densities, this implies that

“gnﬁj;llll.l(#) =2 I (gn "fn)d#

=2 [ (1~f/9)9,d1+2 { (g,—f,)du

Brn Cr.n

< 27 Hy(fl g)+2(1-7).
Now from (3.4) it follows that
(3.5) limsup |lg,—f, . <2-2r.

Since this holds for every re(0, 1), we finally obtain lim,. ||g,—f,| =0. =
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Now using Theorem 3.1 we prove the following result by Elmroth [3].

COROLLARY 3.2, Let X = R? and let dx be the Lebesgue measure on R®. Let
E(x) be the Maxwellian on X, i.e., E(x) = exp(a|x|>*+b'x+c), a< 0, beR?,
ceR, and let (f)) be a sequence of densities. Assume that

(3.6) éag(x)f,.(x)dx = ‘Lg(x)E(x)dx

Jor g(x) =1, xy, X5, X3, %1% If H(f,) = {pa f,(x)Inf,(x)dx converges to H(E),
then f, converges to E in L'-norm.

Proof. Using (3.6) we calculate the Kullback-Leibler entropy H,(f,| E):
Ho(f)| E) = [ (/9 10 £,0) ~f,(9)(@lxl? +b-x + ) dx
= H(f,)— [ E(x)(alx]*+b-x+¢)dx = H(f,)— H(E).
Thus H,(f,| E)—0 and consequently f,—E in L'. =

4. Applications to stochastic semigroups. Let (X, #, u) be a measure
space. A family {U'};»o of stochastic operators on L'(y) will be called
a continuous stochastic semigroup if it satisfies the following conditions:

(i) U° =1d (Id = identity),
(i) U'**=U'U* for t, s = 0,
(i) for every fe L*(u) the function t— U’ f is continuous.

We shall consider two examples of stochastic semigroups. In both cases
X =R and u is the Lebesgue measure on R‘

ExaMPLE 4.1. Consider the heat equation
4.1) Ou/ot = Au(t,x), t=0, xeR’,
with the initial condition
4.2) u(0, x) = v(x), xeR?,

where 4 = )9, 0%/0x} is the d-dimensional Laplacian. It is known that
problem (4.1), (4.2) generates a continuous stochastic semigroup {U'},>0 on
L} (R given by

1o(x) = ut, x) = ‘{dv(y)Kl(t, X, y)dy,

where
K, (t, x, y) = (4nt)~2exp(— [x—y*/(41)).
ExampLE 4.2. Consider the Dirichlet problem on the half space (cf. [2])
(4.3) 0%u/ot? = —Au(t, x), t=>0, xeR?,
4.4 u(0, x) = v(x), xeR%.
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This problem generates a continuous semigroup {U%}»o on L'(R%) given by
Ubo(x) = u(t, x) = [ v0)K,(t, x, y)dy,

Rd
where

2t

Kalt 2 ) = wg+1 [+ ]x—y

|2](d+ 1)/2

and w,, is the surface area of the unit sphere in RY*!,

The functions K, (t, 0, x) and K,(t, 0, x) are the fundamental solutions of
the corresponding problems. For every t > 0 we have K, (¢, 0, *)e D(R% and
K,(t, 0, )e D(R?). The functions K(t, x, y) may be written in the form

(4.5) Ki(t, x, y) = £k, (t " (x—y)),

where k;(x) = K;(1, 0, x) is a continuous function and a =i/2 for i =1, 2.
Moreover, for every t > 0 we have

(4.6) (Uik)(x) = K;(t+1, 0, x).
THEOREM 4.3. For every veD(R?) and i =1, 2, we have
4.7) lim |Ujp—K(¢, 0, )] =0
| Eud: o]

Proof. The proof in both cases i = 1, 2 is the same and we shall omit the
index i. Set w = U'v. According to Theorem 3.1 and (4.6) it is sufficient to

verify that for n(u) = —./u we have
(4.8) lim H,(U'w|U*k) = n(1) = —

Since the n-entropy is convex and w, keD(R"), we have
H, (U'w|U'k) = H(fwO)K(t, -, y)dy|[k(2)K(t, -, z) dz)
< [[w)k z)H,,(K(t, LS NIKL(L, -, 2))dydz.
Using (4.5), (1.7) we obtain
H, (U'w|U'k) < — [ [ fwi)k(2)(k(x—t*p)k(x—t*2))'* dx dy dz.

In this inequality the integrand is nonnegative and becomes w(y)k(z)k(x) as
t—oo. This implies, according to the Fatou lemma,

limsup H,(U'w|U'k) < — [ [ [ w)k(2)k(x)dxdydz = —1 = p(1).

This and (1.6) give (4.8). =
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