ANNALES
POLONICI MATHEMATICI
LIIL3 (1991)

Further results on the univalent functions
with the monotonic modulus property
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Abstract. We give some analytic and geometric characterizations of univalent functions with
the monotonic modulus property. We show that their logarithms are convex in the direction of the
imaginary axis.

1. Introduction. Let S be the set of all functions f that are analytic and
univalent in D = {zeC: |z| < 1}, and have the normalization f(0)= 0 and
S'(0) = 1. Given Be[0, 2n) and ae[B, f+2n), we denote by S(a, f) the set of
all functions f in § such that the modulus |f(e"®)] is nonincreasing in (8, «), and
nondecreasing in («, f+ 2n). The classes S(e, ) were first introduced in [1]. In
this paper, we show that functions f in S(x, ff) are closely related to close to
convex functions that are convex in the direction of the imaginary axis.
Particularly, we prove that log(f(z)/z) is convex in the direction of the
imaginary axis for each feS(x, ). This result, in turn, implies that, among
other functions, log(f(z)/z) and f(z)/z are univalent for each feS(x, f).
Moreover, we show that log(f(z)/z) and f(z)/z can be embedded in explicit
Loéwner chains.

2. Analytic and geometric characterizations of S(a, f). Since
Az) = — i(eialz _ e—falzz)/(eip/z ey 2)

maps the unit disc D onto the right half plane, w = log A(z) maps the unit disc
D onto the strip —n/2 < Imw < =/2. Define

J.={zeD: ArgA(z) =1} and I,={zeD: feS(a, B), |f(2)/z = €*}.
Let I be the length of the image of I, under the function log(f(z)/z).

THEOREM 1. The following are equivalent:

(1) fe5(a, ).
(ii) f is univalent and log(f (z)/z) is convex in the direction of the imaginary
axis.
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(iii) f is univalent and the function

log(f (z)/z) —log(f ({)/0)
log A(z)—log A({)

has nonnegative real part in D x D.
(iv) log|f(z)/z| and ArgA(z) are monotonic functions on J, and I, respect-
ively, and

22) 0 < Arg f(€®)—Arg f(€*) < o—0—1, < o0,
for every Oe(B, «) and ge(a, B+2m) satisfying |f(e®) = |/ (9| = €~

Proof. (i) = (ii). Suppose that feS(a, f). It follows from Lemma 1 in [1]
that ¢(z) defined by

@.1) H, () =

dlog(f (z)/z) /dlog A2)

@23) 6 = 5 =

has nonnegative real part in D. Hence, log(f (z)/z) is close to convex. If we
define z: DD by A(z(w)) = (1 +w)/(1—w), then

—w? d
platw) =52 L 10g! gfv‘;’»

This shows that log(f(z)/z) is convex in the direction of the imaginary axis (see,
for example, Hengartner and Schober [3]).

(i) = (il). Define F(w) on {w: —m/2 <Imw < 7/2} by log(f(2)/z)
=F(logA(z)). Then F'(w) = ¢(z) has nonnegative real part by (ii). Since

1
H(z, {) = [F {(1—1)log A({)+tlog A(2)} dt,

(iii) follows.

(iii) = (iv). Let z, { e J, be such that [A(z)| > [A({)]. Since Re H(z, {) = 0, we
obtain log| f(z)/z] = log|f ({)/{|. This shows that log| f (z)/z| is monotonic on J,.
A similar argument establishes the monotonicity of ArgA(z) on I,. To prove
(2.2), we first observe that [, > 0 and

I, < o—0—{Arg f(e9)—Arg f (¢°)}

since log(f(2)/z) is univalent for each f# z. On the other hand {Argf(e')
—Arg f(€”)} is nonnegative and is less than 2rn by the univalency of f. This
shows that (iii) implies (iv).

(iv) = (i). Since ¢ — @ < 2m, the inequalities (2.2) imply that f is univalent.
The monotonicity of log| f(2)/z| on J, shows that f has the monotonic modulus
property. Therefore fe(a, f).

COROLLARY 1.log(f(2)/z) and f(z)/z are univalent for each f € S(«, B) which
is different from the identity function.
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Proof. log(f(2)/z) is univalent because ReH(z, {) >0 on DxD. The
inequalities (2.2) imply that 0 < I < 2n. Therefore e is univalent over the
image of log(f(z)/z). Hence, f(z)/z is univalent. m

Hengartner and Schober [2] were the first to show the univalency on D of
log(f(z)/z) and f(z)/z for the extreme points of S. The corollary above
generalizes this result considerably (see also Kirwan and Pell [5]).

Part (iv) of Theorem 1 is remarkable in that the monotonicity of
log|f(2)/z| on Jy, and J_,, implies the monotonicity of log|f (z)/z| on J, for
every t€(—mn/2, n/2). From this we obtain the following:

COROLLARY 2. Define w,, .,: D—D by
;{'{Wthtz(z)} = ¢t +'2)’2A(z)('1‘tz)lﬂ

where A(2) as in Theorem 1. Then for all t,, 1, satisfying —n/2 <1, <1, < 7/2
the function

gr:.rz(z) = zf(wfl'fz(z))wl'l-l‘z(O)/wtl.tz(z)f(th.tz(o))
belongs to S(a, f) whenever it is univalent.

3. Lowner chains. Let p, g, t be positive constants, let r be any real
constant and let A and ¢ be defined as in Section 2. For a given feS(x, f8), we
define

F(z, t) = plog(f (2)/2) + (g + ir)log(A(2)/2(0)) + tzA' (2)/ A(2),
H(z,t)=exp{F(z,t)} and Gz, t)=zH(z,1).

Then y(z) defined by

(3.1)

Ww(z) = F'(z, t)/dlosj(z) = qu(z)+q+ir+z{1 +z

(log 4)°
(log 4Y

has nonnegative real part on D since log4 is convex, and ¢ has nonnegative
real part on D. This shows that F(z, t) is close to convex (actually convex in the
direction of the imaginary axis) in D. Note also that y(z) = zF'/F where
F = dF/dt. Thus, F(z, t) is a Lowner chain except for the easily adjusted
normalization (see, for example, Pommerenke [6], Th. 6.2). From these and
similar considerations we obtain:

THEOREM 2. Let feS(a, B) and define F(z, t), H(z, t) and G(z, t) as above.
Then

(i) F(z,t) and H(z, t) are Lowner chains except the usual normalizations.
(ii) F(z, t) and H(z, t) are univalent in D for each set of parameters p, q, r
and t.
(i) G(z, t)e S(«, B) whenever it is univalent.

We remark that Corollary 1 to Theorem 1 also follows from this theorem.
We also note that G(z, t) converges to f(z) as p—1 and g, r, t > 0. Therefore,
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G(z, t) can be compared with f(z). This suggests the possibility of using
variational methods in some extremal problems over S(«, f). A similar remark
applies to the function g,, .,(z) defined in Corollary 2 of Theorem 1.
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