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General finite difference approximation
to the Cauchy problem
for non-linear parabolic differential-functional equations

by HENRYK LEeszczyNski (Gdansk)

Abstract. An explicit finite difference scheme is used to approximate the solution of the initial
value problem for parabolic non-linear differential-functional equations. General difference
operators used in this scheme satisfy assumptions which imply stability and convergence of this
scheme.

1. Introduction. The convergence theorems for the finite difference ap-
proximation to initial boundary problems for partial differential equations
were proved by many authors with the help of recurrence inequalities methods:
in [9], [10] for first order partial differential equations and in [2], [3], [6], [7]
for the Dirichlet problem for parabolic equations using the methods of [4].

It is easy to see that one can use the methods of these papers to the
Cauchy problem for parabolic equations when we consider the class of
bounded functions only. In [1] the convergence theorem for the Cauchy
problem was established under the assumption that the approximated solution
is allowed to grow like exp(K|y|?). In [8] the result of [1] was generalized to
the class of differential-functional equations with right-hand sides which satisfy
the Volterra condition. In [1] and [8] typical discrete operators were used.

We give some conditions for general discrete operators and general
difference scheme, and we prove the convergence theorem for parabolic
differential-functional equations using simple recurrence inequalities and es-
timation theorems. The method used in this paper is a generalization of the
method applied by Besala in [1] and by Malec in {8]. The main result is
formulated in Theorem 1.

2. Some notation and two lemmas. For arbitrary sets X,, X, let
F(X,, X,) denote the class of all functions from X, taking values in X,.
Assume that X is a fixed non-empty set. For all integers i, j, i < j, we define

Zi.j= {i, l+1, ...,j}.

Let n, >0, n* > 1 be fixed integers. Denote by % a linear, partially
ordered subspace of #(Z_-,, % X, R). Moreover, let (see [5])

F* ={weF| w0}
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LeMMA 1. Suppose that:

(@) F: Zop-1xF — F is non-decreasing with respect to the functional
variable and satisfies the Volterra condition, i.e.

(W, WeF, i€Zopw-y; w(j,*)=w(j,") for jeZ_,,;) = F(i, w) = F(i, W),
B) w, ze F satisfy
wi+1, ) SFG,w) (), (G, 0eZopm_yxX,
(7+1 t) = F(i, z)(¢), (i, )eZop—1 X X,
z(i, t) =2 w(i, t), (i, )eZ_p0oxX. :
Then
z(i, ) 2w, t), (@ teZ_,,»xX.

The proof of Lemma 1 can be found in [3] or [5§]. Lemma 2 below is
a simple consequence of Lemma 1. The estimate given in Lemma 2 arises from

(3], [5] or [6].
LEMMA 2. Suppose that:
(@) F: Zyyw—y X F - F satisfies the Volterra condition,
(b) Q: Zow—y X F T — FT is non-decreasing with respect to the functional

variable and satisfies the Volterra condition,
() for w, weF and (i, t)yeZy,»—1 XX we have

(1) \F(, w+w) (1) — F(, w) (@) < G, wh (@),

where |W|(i, t) = [W(i, t)| for (i, NEZ _pom X X,
(d)' u,ve F satisfy

(2) lu@+1; )—F@, wy@)| <y, 1) (i, 0)eZypw-y %X,
where ye %, and
(3) v(i+1,8)=FG, 0)1), (i, t)eZop—1 X X,
(e) there is ze F* such that
4) z(i, t) = |v(i, t)—u(i, 1), (G, 0)eZ_,0xX,
(5) 2(i+1,0) 2 Q@ 2)(O)+y(, 1), (i, 0)eZgp-1 XX,
Then
(6) z(i, £) = @i, D—ul, ), (@, )eZ_pymxX.

Proof. The proofis by induction onie Z .., . ForieZ_, . (6) is just (4).
Assume that (6) holds for (i, t)e Zg s ;; we shall prove it for i+ 1. We get from
2), (3)

G+1, )—u(i+1, ) < |F(, U)(f)—F(‘i. wWOl+v6, 1), (G Ne€Zomw-1 %X,
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and by (1) and the inductive assumption it follows that
[U(i+1, t)"u(i+ lst)l < Q(ls Z)(t)+'}’(l, t) < z(i+ 1:_ t)a (is t)ezo.n*—l'
Using (5) we obtain (6) for i:= i+ 1. This completes the proof of Lemma 2.

3. Formulation of a parabolic differential-functional problem, some
assumptions and further notation. Now we consider the parabolic differential-
functional problem

D w(x, y) = f(x, y, wx, y), w, D,w(x, y), D,,w(x, y)),
) (x, y)€E = (0, a] x R,

w(x, y)=@(x,y), (x,y)eEy=[—1,, 0]JxR",

where 7,20, a > 0.

We assume that (7) has a solution u(x, y) which is of class C? on E, has
continuous third order derivatives with respect to the variables y, i=1,..., n)
in E, and satisfies the growth condition

®)  lu(x, Y, IDu(x, Y, IDaxti(x, ), 1Dy u(x, Y, 1Dy, ulx, )

S H(y, M, K):=M ¥ exp[Ky?]
v=1
for all (x, y)eE, i, j, t=1,..., n and some constants M, K > 0.
We also assume that the function f'(x, y, p, w, g, r) is continuous for (x, y, p,
w, g, r)eZ:= ExRx C(E,UE)x R**" and of class C* with respect to p, g, r.
Moreover, we assume that D, f =D, f for i, j=1,...,n (i #j), and

(9) lf(x,,0,0,0,00 < H(y, M, K), (x,y)€E,
and that there exist constants L,, L,, L,, L, such that
(10) ID,fl< Loy, Dy fISLy, Dy, fI<Ly
on E for i, j=1,...,n, and

(11) |f(x, y, p, w+W,q, ) —f(x, y, p, w, q,7)| < LyH(y, M, N)||W| (x),

where

(12) Iwle) = sup  |W(%, P H™'(F, Me>*, N),

—to € X< x,JeRN

N> K and § >0 are fixed constants.
The parabolicity of (7) is meant in the following sense:

D,.f— Y D, f1>0fa¥en E for i=1,...,n).
J=1,7%*1i UW

2 — Annales Polonici Math, 53.1
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Now we define a mesh. For constants g, G, h, such that0 < g < G, h, >0
we introduce a set of discretization parameters by

Idisc = {(k: h)ER2| k/hz = g(h)s 0< h ‘<- ho}’

where §: R* - R* is such that g < g(h) < G for 0 < h < h,.
Next, for (k, h)ely,. we define a set of multiindices by

My={m=(t,m)eZ'*™ teZ_,pm, m =(mg,...,m)}.
If (k, h)e Iy, there exist natural numbers n,, n* such that
nk<a<n*+1)k, nk<t<ny+1)k.
For m = (t, m')e #, let x“"‘) = tk, y™ = (mh, ..., m,h). Moreover, let
ME={m=(,med,) 1€Zyp_,},
My = {m=(r, m)e M| x™, y™)eE},
Mop={m={1,meM,| t€Z,,0),
Er ={(x, y)eR'*"| x=xMy=y™ for some me A}},
E,={(x, y)eR**"| x=x™, y = y™ for some me.#,},
Eop = {(x, p)eR**"| x =x", y = y™ for some me.H,,},
Assume 1 2>1 is a fixed natural number. Define
S;={s=(5;,...,8)€Z" |s]| <A, i=1,...,n}

For we C(E,VE, R) we denote by w,e % (E;,VE,, R) the function such that
Wi = w, (x™, y™):= w(x™, y™) and for w,e# (EoyUE,, R) we denote by
{w,], a fixed function which is an extension of w, on E UE.

Now we define discrete operators A, B, C, D. For (k, h)ely;.,
w,eF (EoqyUE,, R), m= (1, m)e M} we define

Awglm)= Z s(m) (tm +s)’ Bw(m) z b (rm +s)

seS, seSa

1) Cw”= T L cmwe ),

seS.a

(m) _ (iJ) (r.m’ +3)
DUW}.M = Z hzd ( ) .m S,

LAY

where a,(m), b (m),c?(m),d(m)eR for seS,, me #¥, i, j=1,...,n
Let

C= (C1a crey Cn)’ D = [Dij]i.j=1.....na
2, = Ef xRx %y s(EonVE,, R)x R"*™,
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where’
F ys(EonVEy, R) = {2,€ F (Eo 4V E}, R)| |2,(x™, y™)
< H(y™, M, Ne¥™), me #, for some M > 0}.
Moreover, let &,6 #(Z,, R), 5,6 # (Eo.,, R), with
(14) |5Lm)| '}’hH(J’(m) M, N), med,,,
where 7,eR™.

4. Formulation of a difference scheme and Assumptions H,, H,. For
problem (7) we consider the following explicit difference scheme:

wiEt ) Aw("')+kd) L) (x™, ytm, Bw{™, w,, Cw{™, Dwi™),
(15) m= (1, m)eHy,
(p(m) + 5(",) me '/”O,h'

We give sufficient conditions for convergence of the solution of scheme
(15) to the solution of problem (7).
We introduce first the following:

AssumMPTION H,. Suppose that:

(i) &, F(Z,, R) satisfies the Volterra condition,
_ (i) ®,(x"™, y™, p, w,, g, r) is differentiable with respect to (p, g, r), and
|Dp @yl < Lo, |Dg®yl < Ly, |D,,, Pyl <L, on 2y,
(iii) D”JQ" = Dr“¢h on Eh’
(iv) the constant L, is such that
(16)  194(x™, Y™, p, wy+Wy, g, )= B, (x™, y™, p, wy, g, 7)]
< LSH(y(M): My N) “ [wh]h" (X(M))

fO!' (x(M)s y("')s p: wh» Q! r), (x(M): y("‘)s p’ wh+wh’ Q’ r)eE,,,
(v) @, satisfies the following growth condition:
(17) |8, (x™, y™, 0,0,0,0]<HY™, M, K), meH},

(vi) for (k, )& Igi5c, m = (v, M)e M}, seS,, P,, = (x™, y™ p, w,, q,1)€Z,
we have

(18) a(m)+kb (m)D,®,(P,)+ Z C”’(m)D WP

+ z (i’j)(m)Dl'u¢h(Pm) > 0
,j= 1

Remark. &, is usually defined from f. In [1], ¢, = f. Using the Taylor
expansion of f and some extension operators [-], we can obtain &, # f too.
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Conditions (i}v) of Assumption H, often follow from (9)~(12). Without loss of
generality we can assume that the constants L,, L, L,, L, are the same as in
(9)12). Using (8), (16)—(18) one can verify that a solution of problem (15)
belongs to #ys(Eo s E,, R). '

Now we define F,: Zg - X Fys(EopVE,, R) = Fys(EqnuE,, R) by

(19)  Fy(z, w)(m) = AW +kd,(x™, y™, Bwi™, w,, Cwi™, Dw™)

for m=(r, me A} and w,e Fys(EosVE,, R). (Cf. F in Lemma 2.)
We search for a function

0, Zo;n*—i X Fys(EopV Eyy RY) = Fy s(Eon W E,, RT)
which estimates the difference ’
AF = |Fy(t, w,+W,) (M) —Fy(z, w,) (m)|
for m=(t, me A} and w,, W, e Fys(EosVE,, R).
From the definition of AF{™ we have
(200  AFY < |AWP +k[®,(x™, y™, Blw, + W)™, w, +W,, C(w,+W,)™,
D(w, +W,)™) — &, (x™, y™, Bwi™, wy+W,, Cwi™, Dwi™)]|
+k|®,(x™, y™, Bw,, w,+W,, Cw,, Dw,)
_@h(x(m) ™) Bwfm Wi, Cw("') (m))l

Using the mean value theorem and Assumption H, we obtain from (20)

1) AR < Y pwie™ 9 (a,(m)+ kb,(m)D,®,(P,,)

SESA

+ Z c‘s"(m)Dmcb P,)+ Z :zd‘”)(m » (Pm)>

11 ih,j=1

+ kL3H(y(M)s Ms N) " [wh]h” (x(M)),

where P, = (x™, y™, p, w,4+W,, g, r) is an intermediate point.

We define Q,(t, [w,|) (m') as the right-hand side of formula (21). Condition
(18) implies that Q, is non-decreasing with respect to the functional variable.
Obviously Q, satisfies the Volterra condition.

Now we formulate some conditions which imply the consistency of scheme
(15) with problem (7). We shall need the following:

AssumpPTION H,. Suppose that:

(i) |D,(x™, y™, Bwi™, w,, Cwi™, Dwi™)~f (x™, y™ Bw™ w,, Cw™,
("'))|<y,,H( ""’ ,M,N) for me.#} and for we C(E,wE,R) such that
WhEﬁN.g(Eo,hUEh,R), and hm),_.o Y = 0
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(ii) the operators 4, B defined by (13) satisfy
Y a,m) =3 b,(m) =1,

(22) seSa SeSA
2 am)s; = ), a(m)s;s;= Y, am)s;s;s;= ), by(m)s; =0
seS seSa seS, 5684

for i, j, I=1,...,n meA}¥,
(iii) the operators C, D satisfy

(23) Y, cm)y= 3 cPm)s;s; = Y, dfP(m) = Y dM(m)s,
seSa

seSa seSa 588,

= Z dg"’)(m)sils"-s' = 0

seS,

fori, j, L i,j=1,...,n

(24) Y, cm)s; =06, fori j=1,...,n,
seSy
810}y i+#],
25 A4 (m)s,s, = { =g Y
) sga (m)s 251151v= 1=],

fori,j, L, v=1,...,n me A},
(iv) there is a constant c, > 0 (independent of (k, h)el4, and me HA})
such that

(26) lagm)l, 1bs(m)], e (m)], |d§-P(m)| < ¢,
for seS,, me.#}, i,'j=‘1, cey By
(v) the interpolatibn' operator [+], satisfies
IEwely—wll(x) < y¥Iwli(x), and y§—0 as h -0,
for we C(E, U E, R) such that w,e %y 5(Eo,VE,, R).

5. Lemmas on the order of approximation, on consistency and on in-
equalities. We can now give a lemma on the order of approximation of
a function and its derivatives by the discrete operators A4, B, C, D.

LEMMA 3. Suppose that the solution u of problem (7) satisfies condition (8),
and Assumption H, is satisfied. Then for m=(t, me #¥, |, j=1,...,n, we
have

lug "1™ — Au” — kD, uy”)|

k* R NK
27,) < [—+—A3n3ex (——/12112) |as(m)|:|H(y‘"", M, N),
t 276 P\N"K ;

2

K
|Bu§."°—u}.""|<"—zzn2exp(NN_ KW) S b, HG™, M, N),

2 SGS‘,_Q
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2
7, |Cu” —D,u"| < %-2.3 n3 exp (N—Ai-K? Azhz) Y. | (m) H(y™, M, N),

seSa,0

m m h NK ‘m
|D juf. ) D, | < 3 A*n’ exp (ﬁ12h2> Y, ¢ m) H(Y™, M, N),
seSa,0

where S, , = S;\{0}.

Proof. The estimates in (27) are easily obtained from Assumption H,
using the Taylor theorem.

The above lemma is similar to Lemma 2 from [1].
Let u be a solution of problem (7) which satisfies (8). Now we prove
a lemma on consistency.

LeMMA 4. Suppose that Assumptions H,, H, are satisfied. Then there is y,
such that lim,.oy, =0 and

(28)  |ui "M —Fy(x, ) () < ky, HO™, M, N), m=(c, m)eH}.
Proof. Take m = (t, m)e #}. We have
Juiy "1™ — Fye, ) (m)]

L U™ — Ay™ — k f (x™, y("" Bul™ u, Cu{™, Duf™)
—k[D, " —f (<™, y™, 1, u, Dy, Dy, uy™)]|
+k|f (x™, y™. Buf™, u, Cuf™, Duf™)

.y (x(m) y(m) Bu("'), u,, Cu(m) Du(m))l
< fup "™ — A — kD ™) + kLo |Bug” —up”|

+kL, Z ICuy™ — D, ui™|+ kL, Z IDyuf™— D, uf™|
i= L,j=1

+kth(y(M)a Ms N)
This by Lemma 3 implies (28) with y, given by

ko NK ., , An h
(29) = 2+hl n exp(N_K,l n se:;“ 6g|as(m)l+2Lo |by(m)|

+hL in z | (m)| + 3L, An Z ¢ f’(m)|)+y;.,

6 i,j=1
and the proof of Lemma 4 is complete,
Now we define ZhEyN s(Eo hUEha R+) by
(30) z" = wHYy™, M, N), me.H,,,
(31) " = u M Z exp[Nh*m2e* + Lkt], m=(z, m)e.#,,

v=1
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where L > 0 is some constant, u, = max{y,, §,}, v, is defined by (29) and 7,
satisfies (14). The constants M, N, S are fixed-from Section 3 on.
We shall give conditions which imply that z, satisfies

(32 TN 2 Q4 ) ) +ky HO™, M, N),  m = (z, m)eHF,
(33) z" 2|6, meoy.

Compare (32) and (33) with (4) and (5).

LEMMA 5. Suppose that:

(A) Assumptions H,, H, are satisfied and z, is defined by (30)+31) where 7,
satisfies (14), and lim,.,9, =0, |
(B) the constants a, S, L, N satisfy for (k, h)ely,. the conditions

(34) NSz max{1+¢,, 1+./L,, In(t+&+3 exp D), In(¢ +3(D +Hexp D),
In(§(2 +4)(2 +3)exp D), 12% + 35 (2 +4) (2 + 3)},
(35) L > max{4¢3 +¢&,, 3(,+3P2, ({,+ P93},

where

2 4
@‘=iNes"; P=max{}(;,Y4,}; t=Y & (=Y ¢
\/5 i=0 i=0

o =Lo+Ly+2L,Ne%; & =2L Nes; &, =4L,N?e?,

2

o= %exp [Ne*hy] {Nz g5 (d+$L,_ M) +2LobNe> +hy AL, ACN? >
+ h%AZ[4N3e33"(d+$L2 M) + 4L05N2e23°] +h3 A28 L, AEN3 35
+hoA* %N‘*e‘*s"(d +$-LZM)} ;
{, = 4L, AEN?e*5° + 2h A [4N3 e3se (a +§L2 /lft’) +4L,bN? ezsa:l
+3h3A*§L, ACN? €%+ 4h3 13§ N* 454 (a+é L, ,1;{);
{, = 4N3 ¢35 <d+%L2 /IJ) +4L,bN?e25% 4 3h, AR L, AEN? &35
+6h3A23N* e‘s°(a+-:;1,2 za) ;

{3 =3§L,AEN3e357 4 4h JEN* e*5e (5+3L2M); (4= %N“e‘s"(d+-;—L2/w);
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a=sup ), fa(m); b=sup ) lb(m);

’" seSa,0 m seSa,0
n ) n
=sup Y, Y |Pm); d=sup ) Y |di(m).
m seSaoi=1 M seSaoij=1

Then z, satisfies (32) and (33).

Remark. Notice that (34), (35) are satisfied when a is sufficiently small. 4, b,
¢, d exist by (26).

Proof of Lemma 5. By the definition of y,, u, = 7,. Hence
2 2 HHO™, M, N) = 15",

and we see that (33) is satisfied.
Next, we prove (32). Let m =(r, m')e #}. First we prove that

(36)  exp[k(NSY*+L)] = L+k((o+ &, y+EpD)+3K2 Lo+ ... + L% exp(2y)

for (k, hel, and 0 y
Let 0 <y < 1/./k. Then from (34), (35) it follows that

(NES2=L )yt =Gy +@NSL-0)y* =Ly + L2 - §,
> y*—4Py*+6P*y2—4P3y+P* > 0,

where [, = {,exp2, i=0,...,4, and we obtain

(37 (NSy?*+ L) Eo"‘ +C'4.V
(34) and (35) also imply
(38) NSy*+ Lz &+ &, y+ &%

Indeed, it is sufﬁment to verify that for T(y) = (NS—¢,)y*— &, y+L—¢,
the coefficient of y? is positive and the discriminant is non- positive.

Applying (37), (38) and the inequality exp(kx) = 1+ ks +33? for x > 0 we
obtain

(39)  exp[A(NSY*+L)] > 1 +k(Eo+ & y+E,y)+32 o+ + L y?).

For 0<y < l/ﬁ, (36) follows easily from (39). Now, let l/ﬁ <y or
ni= ﬁy =2 1. One can prove that the function

S(n):=exp(NSn)—1~n*{ =¥ n*exp(@n), n=>1,
satisfies (by (34), (395))
M=0, ¥¥mM=0 forn=1,
which implies 3(n) > 0 for n > 1, and (36) holds for every y = 0.



(40)

(41)

(42)

(43)
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Now let
= (v, m)e My, P,=x", )™, p,w,q, e,
Y.,=h(m,J)+4) forv=1,...,n
By Taylor’s formula and Assumptions H,, H, it is easy to see that

Y. exp[Nh%(m,+s,)* e ]a,(m) < exp[Nh*m2e™]

seS,

+ k2 %— %Y laym) exp[NY? ,e%]4NeS[3+ 12N Y2,

5652,0

+ 4N2 eZSkt Y:l.\'] ,
z Cxp [Nh2 (mv + Sv)2eSkt] bs(m) Dp ¢h (Pm) S LO exp [Nh2 m3 eSh]

SES A

1
+kLoA* = 3. |b(m)lexp[NY7 ,e¥]2Ne** [1+ 2N Y2 ],

seSa,0

saS, ,1

< 6;, L exp[Nh*m? e ]2NeSk* him. |

1
+kL1 113 -

5o T I0(mlexpIN YA, W AN [3Y, 4+ 2N V2, ],

SES 2

S, zexp [NKmie1d8-)m)D,, 0, (P,)

S€Sa

< 0,,0;,Loexp[Nh*m; e]12Ne** [1 +2Ne** h*m3]

1

4y A (m) exp[NY2, 514N [3 + 12N Y2

s6Sa,0

+ 4Nyt ]

for i, j, v=1,...,n

(44)

Combining ( 0)-(43) with (36), where y = hm,, Y = |y|+ hA, we get

exp[Nh*m} eV Lk(t+1)] 2 ) exp[Nh*(m,+s,)?e*] (as(m)

seS
=k k
+ kbs(m)Dp ¢h(P Z Z Dq| ¢h m + 2 hz d(l j)(m) Dru(ph(Pm))
i=1 i,j=1

+kexp [Nh2m2] + kL, exp[Nh*m2 + Lkz]

forv=1,...,n m=(t, med}, P, =", y", p, w,, q, 1)
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Adding (44) for v=1, ..., n and multiplying by u,M we check at once
that (32) holds, and this completes the proof of Lemma 5.

6. Main result. Now, we can formulate our main result.

THEOREM 1. Suppose that:

(i) the assumptions of Lemma 5 are satisfied,
(1) u is a solution of problem (7) satisfying (8),
(iii) v, is a solution of scheme (15).

Then
(45) Iu}:") - ULM)I S Z;IM) ] me '//lh (h € Idisc)s

and z{” tends to O almost uniformly as h — 0.

Proof. Lemmas 4 and 5 imply that the assumptions of Lemma 2 are
satisfied if we replace F by F,, Q by Q,, z by z, etc. (where z, is defined by
(30)31)). By Lemma 2 we have (495).

The almost uniform convergence follows from the obvious fact that g, — 0
as h— 0. The proof of Theorem 1 is complete.

Remark. The above result can be easily extended to the Cauchy problerh
for a weakly coupled system of the form

D.w,(x, y) = f,(x, ¥, w(x, y), w, D,w,(x, y), D,,w,(x, y)),
(x,y)€E, v=1,...,1,
W(x, .V) = 4’(-’5, .V): (x, y)EEOn

where w = (wy, ..., W), @ = (04, ..., @).

7. Examples. Now we shall give two examples illustrating the method
applied in this paper.

ExAMPLE 1. Consider the Cauchy problem
D,w(x, y) = —w(x, y)+D,w(x, y)+D, w(x, y), (x,y)eE=(0, a]xR,
w0, y) = 00, y), yeR,
and the corresponding difference scheme
wi I = Awl™ — kBW™ + kAW™ + kDW™,  m = (1, m')e ME,

w,(0, y™) = 0(0, y™)+6;",

where
63" < hexp[NR2m'?],  |0(0, y)| < exp[y*],
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and
Aw(m) 4W(m) 2[w(tm +1)+w(t —1)]+_L[w(tm +2)+w(t.m 2)]’

f . L , ’ 1 : -
Bl = P AT L, ) = e,

Dw(m) {_}&_wg'm)_l_ﬁ[ws:'m’+l)+w£t,m'-l)]_%[wglt.m'+2)+w;'t.m""2)]

+_3%[W$|t.m'+3)+w;'t.rrl’—3)]}.

Suppose that k/h* =1, h < 4% for (k, h)ely,. Then (18) holds and the
operators A, B, C =4 and D satisfy (22)(25).

ExampLE 2. To illustrate the generality of our method we shall find
a difference scheme for the following simple non-linear problem:

Dxu(x) y) = 2Dy1y1u(x’ y)+2D}‘2y2u(xv y)+SinDy1yzu(x! y):
(x’ y)EE = [0’ a] Xst
ux, y)= o), yekR?,

where ¢ is such that a solution of this problem satisfies the assumptions given
in the paper. The following scheme was applied in [1], [8] and other papers:

ot 1) = o 4 (24D + 240 + sin AZ ],
(r, m) = (v, my, m))e A},
" = e(y™), m=(0, m)e Moy,
where
AP o = h"[v},‘_""—_Zvﬁ."')-ll-v,,'“""], i=1,2, med},
1m)=(z,m;, my), —1m)=(r,m—1,m), 2(m)=(tr,my,my+1),
—2m=(t,m;,my,—1), m=(1, my,m,),
and 4% is one of two operators approximating a mixed derivative of second
order (see [1], {7], [8]). This usual scheme does not converge because it is not
stable when D,,, f = cosr,, is not always positive or always negative. But there
is a convergent scheme, namely
o U™ = Ao 4 k24 0™ + 243 0™ +sin Dy ,0{™],
(r, m) = (zr, my, m))e A},
o = (y™), m=(0, m)eMop,
where
Avi™ = Jofm — F[0E0™ 4 p 1M . p2(m) 4y~ 2(m)]
+ e [DAEmM) 4 = 1(=20m) 4= 1020m) 4 L(~20m)]

D1z”£m)—ih 2[v1(2(m))+v-1( 2(m))h____v -1(2(m))h_v1( 2(m))]

for me 4} .
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A solution of this scheme converges to a solution of the differential

problem if we assume that kh~? = #. This follows easily from Theorem 1.
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