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Finding integers k for which a given Diophantine equation
has no solution in kth powers of integers

by

Andrew Granville* (Princeton, N.J.)

1. Introduction. For a given polynomial f(X1, X2, . . . , Xn) ∈
Z[X1, X2, . . . , Xn] we shall investigate the set T (f) of exponents k for which
the Diophantine equation

(1) f(xk
1 , xk

2 , . . . , xk
n) = 0

has solutions in non-zero integers x1, x2, . . . , xn. For homogeneous diagonal
f of degree one, Davenport and Lewis [DL] showed that k ∈ T (f) whenever
(n − 1)1/2 ≥ k ≥ 18; however, Ankeny and Erdős [AE] showed that T (f)
has zero density in the set of all positive integers provided that all distinct
subsets of the set of coefficients of f have different sums. For general poly-
nomials f , Ribenboim [Ri] showed that certain values of k cannot belong to
T (f), and the result of Ankeny and Erdős shows that T (f) has zero den-
sity, under the same conditions on its coefficients as above (this may be
seen by replacing the jth monomial in f by a new variable Yj to get a new
homogeneous polynomial of degree 1).

In the next section we shall introduce a technical condition on poly-
nomials that we call admissibility. All polynomials with distinct coeffi-
cient sums (as above) are admissible, as well as many others—for example,
f(X, Y, Z) = X + 2Y 2 + 3Z2. We shall prove

Theorem 1. Suppose that f(X1, . . . , Xn) ∈ Z[X1, . . . , Xn] is an admis-
sible polynomial. The Diophantine equation f(xk

1 , . . . , xk
n) = 0 has solutions

in non-zero integers x1, . . . , xn for o(x) exponents k ≤ x.

R e m a r k. The bound o(x), in Theorem 1, may be improved to
O(x/ logc x) for some fixed c > 0.

The proof is based on that of Ankeny and Erdős, though its roots lie in
much earlier work of Sophie Germain. There are a number of innovations
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here: In particular, we use a result of Conway and Jones [CJ] to obtain all
sets ζ1, ζ2, . . . , ζn of roots of unity, such that

(2) f(ζ1, ζ2, . . . , ζn) = 0 .

In the special case that f is homogeneous in three variables, Faltings’
Theorem [Fa] tells us that (1) has only finitely many non-trivial, coprime
solutions, for all sufficiently large k. Then we can prove that T (f) has zero
density by using the arguments of [G3] or [HB].

In [AHB], Adleman and Heath-Brown showed how to obtain results (in
a related example) for prime exponents k. Their method gives

Theorem 2. If f is an admissible, homogeneous polynomial in three
variables then the Diophantine equation f(xp

1, x
p
2, x

p
3) = 0 has no solution in

non-zero integers x1, x2, x3 for � x2/3 primes p ≤ x.

It is possible to extend our results to arbitrary number fields; the neces-
sary modifications in the proofs are straightforward. In the ring of polyno-
mials, much better results have been obtained: First note that a ‘non-trivial’
solution of (1) with each xj ∈ C[t] generates a ‘non-trivial’ solution of

zk
1 + zk

2 + . . . + zk
r = 0

with each zj ∈ C[t], where r is the number of monomials of f . Newman
and Slater [NS] showed that this equation has no ‘non-trivial’ solutions for
k ≥ 8r2; and this may be improved to k ≥ (r − 1)2, by an immediate
application of the main result of [BM]. On the other hand, ‘non-trivial’
solutions can be constructed whenever k ≤ (r2 − r)/4. We are thus close
to determining precisely for which values of k and r this equation has a
non-trivial solution.

Acknowledgments. The main ideas of this paper were part of the
author’s doctoral thesis, completed under the supervision of Dr. Paulo
Ribenboim at Queen’s University in the summer of 1987. I would also like
to thank Professor Bombieri for a few suggestions.

2. Notation and definitions. Throughout we shall assume that the
polynomial f is written in the form

f(X1, X2, . . . , Xn) =
r∑

i=1

aifi(X1, X2, . . . , Xn)

where each ai is a non-zero integer (or a complex number in Section 6), and
each fi takes the form

fi(X1, X2, . . . , Xn) = X
ei,1
1 X

ei,2
2 . . . Xei,n

n ,
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with each ei,j a non-negative integer. For any subset I of {1, 2, . . . , r} define

fI(X1, X2, . . . , Xn) :=
∑
i∈I

aifi(X1, X2, . . . , Xn) .

We define f to be admissible if the largest power of t that divides
the polynomial f(x1, . . . , xn) equals the minimum of the degrees of the
fi(x1, . . . , xn), whenever each xj equals ± a non-negative power of the vari-
able t. The admissibility of a given f can be determined as follows:

We start by defining R(f) to be the set of subsets I of {1, 2, . . . , r} for
which there exist non-negative integers d1, d2, . . . , dn such that

(3)
n∑

j=1

ei,jdj = d (if i ∈ I) , > d (otherwise) .

In the 1820s Fourier outlined a method that allows one to compute whether
a solution to such a system exists (see p. 241 of [Ch]). A more efficient
(and modern) method would be to re-express (3) as a linear programming
problem and then apply the simplex algorithm to the associated auxiliary
problem ([Ch], p. 39) to determine whether feasible values of dj exist. Thus
the set R(f) may be constructed.

From here we simply need to test whether fI(x1, . . . , xn) = 0 for some
I ∈ R(f) and some choice of the xi’s as −1 or 1; as there are only 2n possible
choices for the xi’s and R(f) is already determined, we thus have a finite
algorithm to determine admissibility.

Finally, we define A(f) :=
∑r

i=1 |ai|, and N(f) := n− 1 if f is homoge-
neous, n otherwise.

3. The main results. The main result that we shall prove is

Proposition 1. For any polynomial f with integer coefficients, there
exists a finite set of integers B(f) with the following property : If m is a
positive integer that is not divisible by any element of B(f), then the Dio-
phantine equation f(xk

1 , . . . , xk
n) = 0 has no solutions in non-zero integers

x1, . . . , xn, whenever q := mk + 1 is a sufficiently large prime.

R e m a r k. The exceptional primes q in Proposition 1 all belong to a set,
Q(f,m), which we obtain explicitly in the proof.

Proposition 1 improves results from [AE] and [Ri] (it holds for more
polynomials than the analogous result in [AE]; and for more values of m
than the analogous result in [Ri]). It is based on the following, famous
result of Sophie Germain:

If m is a positive integer not divisible by 3, then there are no solutions in
integers x, y, z to xk + yk = zk with gcd(k, xyz) = 1, whenever q := mk + 1
is a sufficiently large prime.
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Again the exceptional primes q may be obtained explicitly—they are the
set of prime divisors of norms of sums of three mth roots of unity—compare
this with the definition of Q(f,m) below.

It seems likely that for any admissible f , (1) has no non-zero solutions
for all sufficiently large k. This is equivalent to (1) having no non-zero
solutions for all sufficiently large prime powers k. By a method similar to
Proposition 1 we can obtain

Theorem 3. For any polynomial f with integer coefficients, there exists
a finite set of integers B(f) with the following property : If p is a prime
that does not divide a1a2 . . . ar and such that p − 1 is not divisible by any
element of B(f), then (1) has no solutions in non-zero integers x1, x2, . . . , xn

for k = pt, whenever t ≥ log A(f)φ(p− 1)/ log p.

R e m a r k. The set B(f), of the two results above, is constructed below.
It turns out that f is admissible if and only if neither 1 nor 2 belong to
B(f)—thus Proposition 1 and Theorem 3 are both uninteresting for inad-
missible polynomials.

The proofs of both of these results rely on the following proposition,
which we shall prove in Section 5:

Proposition 2. For any polynomial f with integer coefficients, there
exists a finite set of integers β(f) with the following property : There exist
m-th roots of unity ζ1, ζ2, . . . , ζn satisfying f(ζ1, ζ2, . . . , ζn) = 0 if and only
if m is divisible by some element of β(f).

Moreover , we can explicitly compute the set β(f).

From this we can present the

P r o o f o f P r o p o s i t i o n 1. Let B(f) be the union of the β(fI), taken
over all I ∈ R(f). For each positive integer m, let Q(f,m) be the set of
prime divisors of a1a2 . . . ar together with the set of prime power divisors of
the norms (over Q(ζm)|Q) of all algebraic numbers of the form

(4) fI(ζ1, ζ2, . . . , ζn)

where ζ1, ζ2, . . . , ζn are mth roots of unity, and I ∈ R(f).
We see that Q(f,m) can be determined from computing a finite list of

norms, and so is finite if and only if each such norm is non-zero. However, a
norm is zero only when some fI(ζ1, ζ2, . . . , ζn) equals zero, and this happens
only for m ∈ B(f) by Proposition 2.

We will suppose that m and q are chosen as in the hypothesis so that m
is not divisible by any element of B(f), and q (:= mk + 1) is a prime not in
the set Q(f,m).

Now assume that there exists a solution of (1) in non-negative integers
x1, x2, . . . , xn.
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Let qd be the largest power of q dividing every fi(x1, . . . , xn), and let I
be the set of values of i for which fi(x1, . . . , xn) is divisible by qd but not
qd+1. By writing each xj in the form qdj zj , where q does not divide zj , we
see that I ∈ R(f) (from (3)). Moreover, as q does not divide a1a2 . . . ar,
and as fi(xk

1 , . . . , xk
n) = fi(x1, . . . , xn)k for each i, we see that

qdkfI(zk
1 , zk

2 , . . . , zk
n) = fI(xk

1 , xk
2 , . . . , xk

n)

≡ f(xk
1 , xk

2 , . . . , xk
n) = 0 (mod qdk+1) ,

and so

(5) q divides fI(zk
1 , zk

2 , . . . , zk
n) but not z1, z2, . . . , zn .

Let ζ be a primitive mth root of unity, and let g be an integer that has
order m modulo q. By Fermat’s little theorem we know that each zk

j is
an mth root of 1 (mod q), and so there exist integers l1, . . . , ln such that
zk
j ≡ glj (mod q) for each j. But then, by (5),

fI(ζl1 , . . . , ζln) ≡ fI(gl1 , . . . , gln)

≡ fI(zk
1 , . . . , zk

n) ≡ 0 (mod (q, g − ζ)) ,

where (q, g−ζ) is the ideal of Q(ζ) generated by q and g−ζ. Thus the norm
of fI(ζl1 , . . . , ζln) (which we will denote by N) belongs to the ideal (q, g−ζ).
However, N is an integer and so must also belong to each conjugate of the
ideal (q, g − ζ). It is easily seen that any two such conjugate ideals are
coprime, and so N must belong to their product, (q, φm(g)) (where φm(g)
is the mth cyclotomic polynomial). However, q evidently divides φm(g) (by
the definition of g), and so q divides N . Therefore q must belong to the set
Q(f,m) (by definition), which gives a contradiction.

A s k e t c h o f t h e p r o o f o f T h e o r e m 3. Suppose that there
is a solution of (1) in non-zero integers x1, . . . , xn for k = pt, with t ≥
log A(f)φ(p− 1)/ log p. As in the proof above we can show that

fI(z
pt

1 , zpt

2 , . . . , zpt

n ) ≡ 0 (mod q) ,

for some I ∈ R(f), where q = pt+1 and each zj is the largest divisor of xj

that is not divisible by p. Then, as each zpt

j is a (p−1)th root of 1 (mod q) by
Euler’s generalization of Fermat’s little theorem, we can show that q belongs
to the set Q(f, p− 1) (as in the proof above). Now Q(f, p− 1) is finite (as
p−1 is not divisible by any element of B(f)), and its elements either divide
one of a1, . . . , ar (and so are certainly less than A(f)) or divide some norm
of an algebraic number of the form (4). However, an algebraic number of the
form (4) has magnitude ≤ A(fI) ≤ A(f) (as each monomial fi(ζ1, . . . , ζn)
has absolute value 1); thus its norm has magnitude ≤ A(f)φ(p−1), as the
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norm is the product of φ(p−1) algebraic numbers of the form (4). But then

t < log q/ log p ≤ log A(f)φ(p− 1)/ log p

contradicting the hypothesis.

The argument at the end of the proof of Theorem 3 may be extended
to any non-zero norm of an algebraic number of the form (4); thus any
such norm is of magnitude ≤ A(f)φ(m). Moreover, if we multiply together
all algebraic numbers of the form (4) then we get an integer (by Newton’s
Law of Symmetric Polynomials) that is ≤ A(f)mn

, and so Q(f,m) contains
�f mn elements. If f is homogeneous then the elements of Q(f,m) each
divide the product of all algebraic numbers of the form (4) with ζ1 fixed
to be 1: this follows as the norm of fI(ζ1, ζ2, . . . , ζn) equals the norm of
fI(1, ζ2ζ

−1
1 , . . . , ζnζ−1

1 ). Therefore Q(f,m) contains �f mn−1 elements. To
summarize we have proved

Lemma 1. For any given polynomial f and integer m not divisible by
any element of B(f), the set Q(f,m) has �f mN(f) elements, and each of
these elements is ≤ A(f)φ(m).

4. Analytic results. The proofs of Theorems 1 and 2

A s k e t c h o f t h e p r o o f o f T h e o r e m 1. Given any constant
c > 0 and any finite set of integers B, each ≥ 3, define K to be the set of
integers k, free of prime factors ≤ log log k, for which there exists a prime
q ≡ 1 (mod k), with q ≤ ck log k and (q − 1)/k not divisible by any element
of B. In the proof of Theorem 2 in [AE] it is shown that, for B = {4}, the
set of multiples of elements of K has density one in the set of integers; a
proof of this result for an arbitrary set B presents no additional difficulties.

Now, for a given admissible polynomial f , let c = 2/ log A(f) and B =
B(f). For any given k ∈ K, define m = (q − 1)/k, where q is as in the
paragraph above. By Lemma 1 we see that the hypothesis of Proposition 1
is satisfied and so (1) has no non-zero solutions for exponent k, nor for any
exponent which is an integer multiple of k. Theorem 1 then follows from
the result quoted in the paragraph above.

A s k e t c h o f t h e p r o o f o f T h e o r e m 2. In [G2] (Theorem 5(ii))
we proved the following generalization of the main result of [AHB]:

Lemma 2. Suppose that the polynomial f is given. Suppose further that
there exists a value of θ in the range 1 − 1/(N(f) + 1) < θ < 1 for which
there are � π(x) prime pairs p, q with q ≡ 1 (mod p), xθ < p < q ≤ x and
with q−1 not divisible by any element of B(f). Then there are � xθ primes
k ≤ x for which (1) has no non-zero integer solutions.
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In [Fo], Fouvry established such an estimate for θ = 0.6687 and B = {3},
which allowed Adleman and Heath-Brown [AHB] to prove that the first case
of Fermat’s Last Theorem is true for infinitely many prime exponents. The
proof in [Fo] should allow us to establish such an estimate for θ = 0.6687
and all finite sets B that do not contain either 1 or 2. Theorem 2 then
follows from Lemma 2.

5. Solving Diophantine equations using only roots of unity.
Define e(x) := e2iπx and, for any given polynomial f , let R be the product
of the primes ≤ r. By using a result in [CJ] we shall indicate how to find
all solutions of (2) in roots of unity; Proposition 2 then follows easily.

Proposition 3. Given f(X1, . . . , Xn) ∈ Z[X1, . . . , Xn] we may con-
struct all solutions of (2) in roots of unity ζ1, . . . , ζn. More precisely , every
solution of (2) is part of a parametric family of the form

(6) ζi = e(bi + Li(p1, p2, . . . , pr, t1, t2, . . . , tn)), i = 1, 2, . . . , n ,

where all possibilities for the rationals b1, . . . , bn and the linear functions
L1, . . . , Ln may be computed , and p1, . . . , pr are arbitrary integer parame-
ters, t1, . . . , tn are arbitrary rational parameters.

P r o o f. In [CJ] Theorem 3 it is shown that any solution of

(7) a1e(θ1) + a2e(θ2) + . . . + are(θr) = 0 ,

with each θj rational, is contained in one of the parametric families

(8) θi = pi + qu(i) + v(i)/R , i = 1, 2, . . . , r ,

where p1, . . . , pr are arbitrary integer parameters, q1, . . . , qr are arbitrary
rational parameters and u and v are a pair of functions satisfying

u : {1, 2, . . . , r} → {1, 2, . . . , r} , v : {1, 2, . . . , r} → {0, 1, 2, . . . , R− 1} .

Moreover, for each k = 1, 2, . . . , r,∑
u(i)=k

aie(v(i)/R) = 0 .

Such a condition is easily verified computationally, so that all possible pairs
u, v may be determined.

Now suppose that ζ1, ζ2, . . . , ζn satisfy (2) where each ζj = e(φj) for
some rational φj . Then

θi =
n∑

j=1

ei,jφj , i = 1, 2, . . . , r ,

provides a solution of (7) and, by substituting this into any one of the
possibilities for (8) and then solving the resulting system of linear equations,
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we find that either there are no solutions or

φj = bj + Kj(p1, . . . , pr, q1, . . . , qr, s1, . . . , sn)

for each j, where the Kj are some computable linear forms with s1, . . . , sn

some arbitrary rational parameters. Finally, note that the rational param-
eters may certainly be re-parametrized in terms of ≤ n rational parameters
as there are only n forms, and so we obtain (6).

T h e p r o o f o f P r o p o s i t i o n 2. Define T to be the least common
multiple of the denominators of all the bi and of all the coefficients of Li

over every possibility in (6): This may be computed by Proposition 3. We
shall obtain, from any solution of (2) in mth roots of unity, a solution of
(2) in gth roots of unity where g = gcd(m,T ). Thus, by observing that any
bth root of unity is also an mth root of unity if b divides m, we see that
one can take β(f) to be simply the set of divisors b of T for which (2) has a
solution in bth roots of unity. This set can be found explicitly, for instance,
by simply trying out all sets of T th roots of unity ζ1, ζ2, . . . , ζn in (2).

So suppose that we have a solution of (2) with ζi = e(ci/m) where each
ci is an integer. Let m = gd where g = gcd(m,T ) and so, by Proposition 3,

Tbi + TLi(p1, . . . , pr, t1, . . . , tn) =
T

g

ci

d
for i = 1, 2, . . . , n

for certain choices of integers p1, . . . , pr and rationals t1, . . . , tn. We now
select an integer y such that y ≡ 0 (mod d) and y ≡ 1 (modT/g). (This
is possible, by the Chinese Remainder Theorem, as (d, T/g) = 1.) Then
taking qi = ypi and uj = ytj for each i and j we have another choice of
parameters, giving

Tbi + TLi(q1, . . . , qr, u1, . . . , un) = Tbi + yTLi(p1, . . . , pr, t1, . . . , tn)
= ki(T/g)

where ki is the integer ci(y/d)− Tbi((y − 1)/(T/g)). But by Proposition 3
this provides a solution to (2) (where ζi = e(ki/g) for each i) in gth roots
of unity.

R e m a r k. A rather more pedestrian proof of Proposition 2 appeared in
my thesis [G1]. We also gave there a different, non-constructive proof:

Let M (= M(f)) be the set of integers m for which there exist mth
roots of unity ζ1, ζ2, . . . , ζn satisfying (2). Call B ⊂ M a basis for M if
every element of M is divisible by an element of B. Again, by noting that
any bth root of unity is an mth root of unity whenever b divides m, we see
that M is precisely the set of multiples of elements of B.

Our proof comes in two steps. First we use elementary facts about roots
of unity (see, for instance, (2.2) and (2.3) of [L] or Corollary 1.1 of [M]) to
observe that if a1, a2, . . . , ar are integers and ζ1, ζ2, . . . , ζr are roots of unity
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such that

a1ζ1 + a2ζ2 + . . . + arζr = 0 ,

then

a1ζ
p
1 + a2ζ

p
2 + . . . + arζ

p
r = 0

for each prime p > r. Therefore if ζ1, ζ2, . . . , ζn are mth roots of unity
satisfying (2) then ζ

m/b
1 , ζ

m/b
2 , . . . , ζ

m/b
n are bth roots of unity satisfying (2),

where b is the largest divisor of m that is free of prime factors > r. Thus
C, the subset of integers in M that have only prime factors that are ≤ r,
forms a basis for M . We now use an old result of Mann [M] to show that
C, and so M , has a finite basis:

If C does not have a finite basis then it contains an infinite sequence of in-
tegers c1, c2, . . . such that ci does not divide cj whenever i 6= j. We construct
a vector vi from each ci, the jth component of which is the exact power of
pj dividing ci, where pj is the jth smallest prime (note that the number of
components of vi is just k, the number of primes ≤ r). We thus obtain an
infinite sequence v1, v2, . . . of k-dimensional vectors of non-negative integers,
such that some component of vi is larger than the corresponding component
of vj , and some other component of vi in less than the corresponding com-
ponent of vj , whenever i 6= j. However, Mann ([M], Theorem 2) showed
that this is impossible.

6. Concluding remarks. In a further paper, [G2], we investigate the
consequences, for Fermat’s Last Theorem, of assuming a variety of plausible
conjectures in analytic number theory. The key tool is the aforementioned
theorem of Sophie Germain. We also indicate there that our methods ap-
ply equally well to all admissible polynomials, by using Proposition 1 (from
here) in place of Sophie Germain’s theorem. For instance, we prove that if
the least prime in all arithmetic progressions a (mod d) with (a, d) = 1 is
� φ(d) log3 d, then T (f) contains � log10 x elements ≤ x. Also if a certain
uniform quantitative version of the prime k-tuplets conjecture holds (anal-
ogous to the Siegel–Walfisz Theorem), then T (f) contains o(π(x)) primes
≤ x. Further, we prove results corresponding to each of those in [AHB] (one
of which appears as Lemma 2 above).
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