Squarefree values of polynomials

by
Michael Filaseta* (Columbia, S.C.)

1. Introduction. The purpose of this paper is to present some results related to squarefree values of polynomials. For $f(x) \in \mathbb{Z}[x]$ with $f(x) \not \equiv 0$, we define $N_{f}=\operatorname{gcd}(f(m), m \in \mathbb{Z})$. For computational reasons it is worth noting that

$$
N_{f}=\operatorname{gcd}(f(m), m \in\{0,1, \ldots, n\})
$$

where n denotes the degree of $f(x)$. This observation is due to Hensel (cf. [1, p. 334]) and follows in a fairly direct manner after using Lagrange's interpolation formula to deduce that

$$
f(m)=\sum_{j=0}^{n}(-1)^{n-j}\binom{m}{j}\binom{m-j-1}{n-j} f(j)
$$

where m is any integer $>n$. We will be interested in estimating the number of polynomials $f(x)$ for which there exists an integer m such that $f(m)$ is squarefree. This property should hold for all polynomials $f(x)$ for which N_{f} is squarefree. However, this seems to be very difficult to establish. Nagel [8] showed that if $f(x) \in \mathbb{Z}[x]$ is an irreducible quadratic and N_{f} is squarefree, then $f(m)$ is squarefree for infinitely many integers m. Erdős [2] proved the analogous result for irreducible cubics. Nair [9] has shown that in the case of an irreducible polynomial $f(x)$ of degree n, one may obtain a similar theorem for k-free values of $f(x)$ provided that $k \geq\left(\sqrt{2}-\frac{1}{2}\right) n$. Of related interest are the papers of Hooley [5], Nair [10], and Huxley and Nair [6]. The problem of determining whether there exists a polynomial $f(x) \in \mathbb{Z}[x]$ of degree ≥ 4 for which there are infinitely many integers m such that $f(m)$ is squarefree is open.

Our interest is in the simpler problem of showing that many polynomials take on at least one squarefree value. If one can show that (i) every polynomial $f(x) \in \mathbb{Z}[x]$ with N_{f} squarefree is such that $f(m)$ is squarefree

[^0]for at least one integer m, then it will follow that (ii) every polynomial $f(x) \in \mathbb{Z}[x]$ with N_{f} squarefree is such that $f(m)$ is squarefree for infinitely many integers m (cf. the proof of Theorem 2 in [3]). In fact, (i) implies that (iii) every polynomial $f(x) \in \mathbb{Z}[x]$ is such that $f(m) / N_{f}$ is squarefree for infinitely many integers m. Our goal is to show the weaker result that almost all polynomials $f(x)$ with N_{f} squarefree take on at least one squarefree value.

To clarify our results, we define

$$
S_{n}(N)=\left\{f(x)=\sum_{j=0}^{n} a_{j} x^{j} \in \mathbb{Z}[x]:\left|a_{j}\right| \leq N \text { for } j=0,1, \ldots, n\right\} .
$$

Thus, $\left|S_{n}(N)\right|=(2[N]+1)^{n+1}$. We say that almost all polynomials $f(x)$ have a certain property P if for every nonnegative integer n,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{\mid\left\{f(x) \in S_{n}(N): f(x) \text { satisfies } P\right\} \mid}{\left|S_{n}(N)\right|}=1 . \tag{1}
\end{equation*}
$$

Results associated with almost all polynomials go back to van der Waerden [12]. He showed that for almost all polynomials $f(x)$ the associated Galois group is the symmetric group on n letters where $n=\operatorname{deg} f(x)$. In particular, this implies that almost all polynomials are irreducible. A proof of this latter fact can be found in Pólya and Szegő [11, p. 156]. Other related results can be found in Gallagher [4] and the author's [3].

We make a brief historic remark on the phrase "almost all" in this context. Van der Waerden's Algebra I includes a comment on his result above [13, p. 204]. The German edition states that the Galois group is the symmetric group for asymptotically " 100% " of the polynomials rather than using a German equivalent for "almost all". This led to a mistranslation in the English edition [14, p. 200] where a statement is made asserting that the Galois group is the symmetric group for "all" polynomials. The earliest editions of van der Waerden's Algebra I do not refer to his result above.

At times we will restrict our attention to polynomials $f(x)$ for which N_{f} is squarefree. An almost all result for such $f(x)$ will mean that (1) holds with $S_{n}(N)$ replaced by $\left\{f(x) \in S_{n}(N): N_{f}\right.$ squarefree $\}$. We will prove

Theorem 1. Almost all polynomials $f(x)$ with N_{f} squarefree are such that $f(m)$ is squarefree for some integer m.

Theorem 2. Almost all polynomials $f(x)$ are such that there is an integer m for which $f(m) / N_{f}$ is squarefree.

We will actually prove stronger results (see Section 3). As a consequence of the stronger results, we note that almost all polynomials $f(x)=$ $\sum_{j=0}^{n} a_{j} x^{j}$ are such that $f(m) / N_{f}$ is squarefree for some positive integer
$m \leq \psi\left(\max _{0 \leq j \leq n}\left\{\left|a_{j}\right|\right\}\right)$, where $\psi(x)$ is any function which tends to infinity with x.
2. Preliminaries. Throughout this section and the next we make use of the notation established in the introduction. We view n as being a fixed nonnegative integer so that, in particular, other quantities such as ε may depend on n. We will, however, stress when such a dependence is necessary. We reserve p for denoting primes.

Lemma 1. Let $\varepsilon>0$, and let $B=B(N)$ be a function which increases to infinity with N. Suppose further that $B(N)=o(N)$. Then there exists $N_{0}=N_{0}(n, \varepsilon, B)$ such that if $N \geq N_{0}$, then the number of pairs $(f(x), m)$ with $f(x) \in S_{n}(N), m \in \mathbb{Z} \cap[1, B]$, and $f(m)$ squarefree is in the interval

$$
\left[(1-\varepsilon) \frac{6}{\pi^{2}}(2 N)^{n+1} B,(1+\varepsilon) \frac{6}{\pi^{2}}(2 N)^{n+1} B\right] .
$$

Proof. Let $\varepsilon^{\prime}>0$. Fix m_{0} to be a positive integer satisfying $m_{0} \geq$ $\left(1 / \varepsilon^{\prime}\right)+1$ so that if $m \geq m_{0}$, then

$$
m^{n-1}+\ldots+m+1=\frac{m^{n}-1}{m-1}<\varepsilon^{\prime} m^{n}
$$

For the moment fix m to be an integer in $\left[m_{0}, B\right]$, and consider an integer d such that

$$
\begin{equation*}
|d| \leq\left(1-\varepsilon^{\prime}\right) N m^{n} . \tag{2}
\end{equation*}
$$

If $a_{0}, a_{1}, \ldots, a_{n-1}$ are arbitrary integers in $[-N, N]$ and N is sufficiently large, depending only on ε^{\prime}, we get

$$
\begin{equation*}
\left|d-\left(a_{n-1} m^{n-1}+\ldots+a_{1} m+a_{0}\right)\right| \leq N m^{n} \tag{3}
\end{equation*}
$$

We successively choose $a_{0}, a_{1}, \ldots, a_{n-1}$ as above with $a_{0} \equiv d(\bmod m)$ and for $j \in\{1,2, \ldots, n-1\}$,

$$
a_{j} \equiv\left(d-a_{0}-\ldots-a_{j-1} m^{j-1}\right) / m^{j}(\bmod m) .
$$

Thus, the total number of choices for $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ is

$$
\left(\frac{2[N]+1}{m}+O(1)\right)^{n}=\left(\frac{2 N}{m}\right)^{n}+O_{n}\left(\frac{N^{n-1}}{m^{n-1}}\right) .
$$

By (3), we can now find a unique $a_{n} \in[-N, N]$ such that

$$
d=a_{n} m^{n}+\ldots+a_{1} m+a_{0} .
$$

The above steps may be reversed. More specifically, given m and d as above, we must have that a_{0}, \ldots, a_{n-1} satisfy the congruences above, and this uniquely determines a_{n} as above. Thus, for m fixed in $\left[m_{0}, B\right.$], each integer d satisfying (2) has $(2 N / m)^{n}+O_{n}\left(N^{n-1} / m^{n-1}\right)$ representations of the form $f(m)$ where $f(x) \in S_{n}(N)$.

We now let m vary over all the positive integers $m \leq B$. We divide the pairs $(f(x), m)$, where $f(x) \in S_{n}(N)$ and $1 \leq m \leq B$, into 3 sets S_{1}, S_{2}, and S_{3}. The set S_{1} consists of those $(f(x), m)$ for which $d=f(m)$ is squarefree, $m \in\left[m_{0}, B\right]$, and (2) holds. The set S_{2} consists of those $(f(x), m)$ for which $d=f(m)$ is nonsquarefree, $m \in\left[m_{0}, B\right]$, and (2) holds. The set S_{3} consists of the remaining pairs $(f(x), m)$. Then since for any $t>0$ the number of squarefree numbers $\leq t$ is $\left(6 / \pi^{2}\right) t+O(\sqrt{t})$, we get

$$
\begin{aligned}
\left|S_{1}\right|= & \sum_{m_{0} \leq m \leq B}\left(\left(\frac{2 N}{m}\right)^{n} \frac{6}{\pi^{2}}\left(1-\varepsilon^{\prime}\right)(2 N) m^{n}+O_{n}\left(N^{n} m\right)+O\left(N^{n+1 / 2}\right)\right) \\
= & \left(6 / \pi^{2}\right)\left(1-\varepsilon^{\prime}\right)(2 N)^{n+1} B+O_{n}\left(N^{n+1} m_{0}\right) \\
& +O_{n}\left(N^{n} B^{2}\right)+O\left(N^{n+1 / 2} B\right), \\
\left|S_{2}\right|= & \left(1-\frac{6}{\pi^{2}}\right)\left(1-\varepsilon^{\prime}\right)(2 N)^{n+1} B+O_{n}\left(N^{n+1} m_{0}\right) \\
& +O_{n}\left(N^{n} B^{2}\right)+O\left(N^{n+1 / 2} B\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\left|S_{3}\right| & =(2[N]+1)^{n+1}[B]-\left|S_{1}\right|-\left|S_{2}\right| \\
& =\varepsilon^{\prime}(2 N)^{n+1} B+O_{n}\left(N^{n+1} m_{0}\right)+O_{n}\left(N^{n} B^{2}\right)+O\left(N^{n+1 / 2} B\right) .
\end{aligned}
$$

Now, $\left|S_{1}\right|$ gives us a lower bound on the number of pairs $(f(x), m)$ with $f(m)$ squarefree and $m \in[1, B]$. An upper one is

$$
\begin{aligned}
\left|S_{1}\right|+\left|S_{3}\right|< & \left(6 / \pi^{2}\right)\left(1+\varepsilon^{\prime}\right)(2 N)^{n+1} B+O_{n}\left(N^{n+1} m_{0}\right) \\
& +O_{n}\left(N^{n} B^{2}\right)+O\left(N^{n+1 / 2} B\right)
\end{aligned}
$$

Thus, taking $\varepsilon^{\prime}=\varepsilon / 2$ and N sufficiently large, the result follows.
The proof of Lemma 1 given above is similar to the proof of Lemma 1 in [3]. Lemma 1 asserts that the $f(x) \in S_{n}(N)$ on average take on $\sim\left(6 / \pi^{2}\right) B$ squarefree values as x ranges over the positive integers $\leq B$. We note that this is true despite the fact that a positive proportion of the $f(x) \in S_{n}(N)$ take on no squarefree values. More specifically, observe that N_{f} is divisible by p^{2} if and only if

$$
\begin{aligned}
f(x) \equiv & x^{2}(x-1)^{2} \ldots(x-(p-1))^{2} g(x) \\
& +p x(x-1) \ldots(x-(p-1)) h(x)\left(\bmod p^{2}\right),
\end{aligned}
$$

for some polynomials $g(x)$ and $h(x) \in \mathbb{Z}[x]$. Thus, if $p \geq n+1$, then $f(x) \equiv 0$ is the only such $f(x)$ modulo p^{2}; if $(n+1) / 2 \leq p \leq n$, then there are exactly p^{n-p+1} incongruent such $f(x)$ modulo p^{2}; and if $p \leq n / 2$, then there are exactly $p^{2 n-3 p+2}$ incongruent such $f(x)$ modulo p^{2}. A simple application of the sieve of Eratosthenes implies that for N sufficiently large, the proportion of $f(x) \in S_{n}(N)$ for which N_{f} is nonsquarefree is asymptotic
to

$$
\begin{aligned}
1-\prod_{p \leq n / 2}\left(1-\frac{1}{p^{3 p}}\right) \prod_{(n+1) / 2 \leq p \leq n} & \left(1-\frac{1}{p^{n+1+p}}\right) \prod_{p \geq n+1}\left(1-\frac{1}{p^{2 n+2}}\right) \\
& \geq 1-\prod_{p}\left(1-\frac{1}{p^{3 p}}\right)=0.015675 \ldots
\end{aligned}
$$

Thus, the polynomials $f(x) \in S_{n}(N)$ which take on at least one squarefree value as x ranges over the positive integers $\leq B$ on average take on \geq $\left(6 / \pi^{2}\right) B(1.0159 \ldots)$ squarefree values. This curiosity is due to the size of the coefficients of the polynomials under consideration in comparison to B.

For $f(x) \in \mathbb{Z}[x]$ and $l \in \mathbb{Z}$, we define $\varrho(l)=\varrho_{f}(l)$ to be the number of incongruent solutions to $f(x) \equiv 0(\bmod l)$. The next lemma gives some basic properties of $\varrho(l)$.

Lemma 2. Let $f(x) \in \mathbb{Z}[x]$ of degree n. Then $\varrho(l)$ has the following properties:
(i) $\varrho(l)$ is multiplicative (i.e., if l_{1} and l_{2} are relatively prime integers, then $\left.\varrho\left(l_{1} l_{2}\right)=\varrho\left(l_{1}\right) \varrho\left(l_{2}\right)\right)$,
(ii) if $\varrho(p)=p$, then either $p \leq n$ or $f(x) \equiv 0(\bmod p)$,
(iii) if $\varrho(p)<p$, then $\varrho(p) \leq n$,
(iv) if $\varrho\left(p^{2}\right)>\varrho(p)$, then $f(x)$ has a multiple root modulo p (i.e., there exist an integer a and a polynomial $g(x)$ such that $\left.f(x) \equiv(x-a)^{2} g(x)(\bmod p)\right)$,
(v) if $\varrho\left(p^{2}\right)<p^{2}$, then $\varrho\left(p^{2}\right) \leq p n$,
(vi) if $p>n$ and $\varrho\left(p^{r}\right)=p^{r}$ for some positive integer r, then $f(x) \equiv$ $0\left(\bmod p^{r}\right)$.

Proof. Property (i) is an immediate consequence of the Chinese Remainder Theorem. A theorem of Lagrange states that either the number of solutions to the congruence $f(x) \equiv 0(\bmod p)$ is $\leq n$ or $f(x)$ is identically 0 as a polynomial modulo p. This easily implies (ii) and (iii). Each root m of $f(x)$ modulo p extends to at most p roots $m+k p$, where $k \in\{0,1, \ldots, p-1\}$, modulo p^{2}. Furthermore, m will extend to exactly 1 root of $f(x)$ modulo p^{2} unless m is a multiple root of $f(x)$ modulo p (cf. [7, pp. 63-69]). Thus, (iv) follows. From the above, if $\varrho(p)<p$, then (v) is a consequence of (iii). Also, if $p \leq n$, then (v) is immediate since then $\varrho\left(p^{2}\right) \leq p^{2} \leq p n$. Now, suppose that $p>n$ and $\varrho(p)=p$. Then $\varrho\left(p^{2}\right)<p^{2}$ implies that $f(x)=p g(x)$ where $g(x)$ is a polynomial in $\mathbb{Z}[x]$ which is not identically 0 modulo p. By Lagrange's Theorem, $g(x)$ has $\leq \operatorname{deg} g(x)=n$ roots modulo p. Each such root m of $g(x)$ modulo p corresponds to exactly p incongruent roots of $f(x)$ modulo p^{2} since $f(m+k p) \equiv p g(m+k p) \equiv 0\left(\bmod p^{2}\right)$ for each $k \in\{0,1, \ldots, p-1\}$. Thus, (v) follows. Finally, we just note that the proof of (vi) is similar to the proof of (v).

Lemma 3. For $B \geq e^{e}, f(x) \in \mathbb{Z}[x]$, and $z \leq \log \log B$, the number of positive integers $m \leq B$ for which $f(m)$ is not divisible by p^{2} for each $p \leq z$ is equal to

$$
\prod_{p \leq z}\left(1-\frac{\varrho\left(p^{2}\right)}{p^{2}}\right)(B+O(\log B))
$$

In particular, there exists an absolute constant $C_{1}>0$ such that the number of positive integers $m \leq B$ for which $f(m)$ is squarefree is

$$
\leq \prod_{p \leq z}\left(1-\frac{\varrho\left(p^{2}\right)}{p^{2}}\right)\left(B+C_{1} \log B\right)
$$

The proof of Lemma 3 is omitted. It is a direct application of the sieve of Eratosthenes. The main idea in the paper is to show that for most $f(x) \in S_{n}(N)$ the upper bound given above is very close to the actual number of integers $m \leq B$ for which $f(m)$ is squarefree. This is what is to be expected since the product above converges as z tends to infinity.

Lemma 4. Let $x_{j} \in(0,1)$ for $j \in\{1,2, \ldots, r\}$. Then

$$
\prod_{j=1}^{r}\left(1-x_{j}\right) \geq 1-\sum_{j=1}^{r} x_{j}
$$

The proof of Lemma 4 is easily done by induction since by the conditions on x_{j},

$$
\left(1-\sum_{j=1}^{r-1} x_{j}\right)\left(1-x_{r}\right) \geq 1-\sum_{j=1}^{r} x_{j}
$$

Lemma 5. As $f(x)$ ranges over all the incongruent polynomials of degree $\leq n$ modulo p^{2}, the average value of $\varrho_{f}\left(p^{2}\right)$ is 1 .

We omit the proof of Lemma 5 as it follows in a fairly straightforward manner by using translation considerations to establish that each of $0,1, \ldots, p^{2}-1$ have an equal probability of being attained as a value of $f(m)\left(\bmod p^{2}\right)$.

Our next goal is to show that for most $f(x) \in S_{n}(N)$, if

$$
\prod_{p \leq z}\left(1-\frac{\varrho\left(p^{2}\right)}{p^{2}}\right)>0
$$

then it is not too small. We formulate this in the following manner.
Lemma 6. Let $\varepsilon>0$, and let N be sufficiently large (depending on n and $\varepsilon)$. Let $z \leq \log \log N$. Then there exist positive numbers $n_{0}=n_{0}(\varepsilon)$ and
$\varepsilon^{\prime}=\varepsilon^{\prime}(\varepsilon, n)$ such that the number of $f(x) \in S_{n}(N)$ satisfying
(i) $\prod_{p \leq n^{2}+n_{0}}\left(1-\frac{\varrho_{f}\left(p^{2}\right)}{p^{2}}\right)>0 \quad$ and
(ii) $\prod_{p \leq z}\left(1-\frac{\varrho_{f}\left(p^{2}\right)}{p^{2}}\right)<\varepsilon^{\prime}$
is $\leq \varepsilon(2 N)^{n+1}$.
Proof. Consider the $f(x) \in S_{n}(N)$ for which (i) holds (where n_{0} as well as ε^{\prime} are for the moment unspecified). Thus, $\varrho\left(p^{2}\right)<p^{2}$ for each such $f(x)$ and each prime $p \leq n^{2}+n_{0}$. Hence,

$$
\prod_{p \leq n^{2}+n_{0}}\left(1-\frac{\varrho_{f}\left(p^{2}\right)}{p^{2}}\right) \geq \prod_{p \leq n^{2}+n_{0}}\left(1-\frac{p^{2}-1}{p^{2}}\right)=\prod_{p \leq n^{2}+n_{0}} p^{-2} .
$$

Now, consider any $f(x) \in S_{n}(N)$. We find from Lemma 2(ii), (iii), and (iv) that for $n^{2}+n_{0}<p \leq z$, either $\varrho_{f}\left(p^{2}\right) \leq n$ or $f(x)$ has a multiple root modulo p. Letting

$$
c(n, z)=\prod_{n^{2}+n_{0}<p \leq z}\left(1-\frac{n}{p^{2}}\right),
$$

we see that $c(n, z)$ is greater than the product

$$
c(n)=\prod_{p>n^{2}+n_{0}}\left(1-\frac{n}{p^{2}}\right),
$$

which is easily seen to converge to a positive quantity. Hence, for each $f(x) \in S_{n}(N)$,

$$
\begin{aligned}
\prod_{n^{2}+n_{0}<p \leq z}\left(1-\frac{\varrho_{f}\left(p^{2}\right)}{p^{2}}\right) & \geq \prod_{n^{2}+n_{0}<p \leq z}\left(1-\frac{n}{p^{2}}\right) \prod_{n^{2}+n_{0}<p \leq z}^{*}\left(1-\frac{\varrho_{f}\left(p^{2}\right)}{p^{2}}\right) \\
& \geq c(n) \prod_{n^{2}+n_{0}<p \leq z}^{*}\left(1-\frac{\varrho_{f}\left(p^{2}\right)}{p^{2}}\right),
\end{aligned}
$$

where \prod^{*} indicates that the product is over those primes p for which $f(x)$ has a multiple root modulo p. We now show that this latter product is not small for most polynomials $f(x) \in S_{n}(N)$.

Let $k=k(\varepsilon)$ be a positive integer such that

$$
\sum_{j=0}^{\infty}\left(\frac{7}{10}\right)^{2^{j} k}<\frac{\varepsilon}{2 e}
$$

Such a k exists since

$$
\sum_{j=0}^{\infty}\left(\frac{7}{10}\right)^{2^{j} k} \leq \sum_{j=k}^{\infty}\left(\frac{7}{10}\right)^{j}=\frac{10}{3}\left(\frac{7}{10}\right)^{k}
$$

Define

$$
t(j)=\left(n^{2}+n_{0}\right)^{2^{j}} \quad \text { for } j \in\{0,1, \ldots, s+1\},
$$

where s is chosen so that $\left(n^{2}+n_{0}\right)^{2^{s}}<z \leq\left(n^{2}+n_{0}\right)^{2^{s+1}}$. Thus,

$$
\prod_{n^{2}+n_{0}<p \leq z}^{*}\left(1-\frac{\varrho_{f}\left(p^{2}\right)}{p^{2}}\right) \geq \prod_{j=0}^{s}\left(\prod_{t(j)<p \leq t(j+1)}^{*}\left(1-\frac{\varrho\left(p^{2}\right)}{p^{2}}\right)\right) .
$$

Let $T=T(n, N)$ be the set of $f(x) \in S_{n}(N)$ for which there is a $j \in$ $\{0,1, \ldots, s\}$ such that $f(x)$ has a multiple root modulo p for $\geq 2^{j} k$ primes $p \in(t(j), t(j+1)]$. Also, we define $T^{\prime}=T^{\prime}(n, N)$ to be the set of $f(x) \in$ $S_{n}(N)$ for which $\varrho_{f}\left(p^{2}\right)=p^{2}$ for some prime $p \in\left(n^{2}+n_{0}, z\right]$. We show that

$$
\begin{equation*}
\left|T \cup T^{\prime}\right| \leq \varepsilon(2 N)^{n+1} \tag{4}
\end{equation*}
$$

and then establish that $\prod_{p \leq z}\left(1-\varrho_{f}\left(p^{2}\right) / p^{2}\right) \geq \varepsilon^{\prime}$ for the remaining $f(x) \in$ $S_{n}(N)$.

We deal with T^{\prime} first. By Lemma 2(vi), each $f(x) \in T^{\prime}$ is such that $f(x) \equiv 0\left(\bmod p^{2}\right)$ for some prime $p \in\left(n^{2}+n_{0}, z\right]$. Note that the number of $f(x) \in S_{n}(N)$ such that $f(x) \equiv 0\left(\bmod p^{2}\right)$ for a given prime p is

$$
\left(\frac{2 N}{p^{2}}+O(1)\right)^{n+1}=\left(\frac{2 N}{p^{2}}\right)^{n+1}+O_{n}\left(N^{n}\right)
$$

The choice of $z \leq \log \log N$ easily implies that the total number of such $f(x) \in T^{\prime}$ is

$$
\begin{aligned}
& \leq \sum_{n^{2}+n_{0}<p \leq z}\left(\left(\frac{2 N}{p^{2}}\right)^{n+1}+O_{n}\left(N^{n}\right)\right) \\
& \leq\left(\sum_{p>n^{2}+n_{0}}\left(\frac{2 N}{p^{2}}\right)^{n+1}\right)+O_{n}\left(N^{n} \log \log N\right) \\
& \leq(2 N)^{n+1}\left(\sum_{p>n_{0}} \frac{1}{p^{2}}\right)+O_{n}\left(N^{n} \log \log N\right) .
\end{aligned}
$$

For n_{0} chosen sufficiently large (depending only on ε) we get $\left|T^{\prime}\right| \leq$ $(\varepsilon / 2)(2 N)^{n+1}$.

We now turn to considering T. We begin by dividing up T into subsets T_{j} which are not necessarily disjoint. For each $j \in\{0,1, \ldots, s\}$, we define T_{j} as the set of $f(x) \in S_{n}(N)$ such that $f(x)$ has a multiple root modulo p for $\geq 2^{j} k$ primes $p \in(t(j), t(j+1)]$. Fix j, and set $w=2^{j} k$. Let p_{1}, \ldots, p_{w} be w distinct primes in $(t(j), t(j+1)]$. Define $T_{j}\left(p_{1}, \ldots, p_{w}\right)$ to be the set of $f(x) \in T_{j}$ such that $f(x)$ has a multiple root modulo p_{j} for each $j \in\{1, \ldots, w\}$. Note that each $f(x) \in T_{j}$ belongs to some set $T_{j}\left(p_{1}, \ldots, p_{w}\right)$. The number of incongruent polynomials modulo a prime p of degree $\leq n$ which have a multiple root modulo p is equal to the number of
incongruent polynomials of the form $(x-a)^{2} g(x)$ where $a \in\{0,1, \ldots, p-1\}$ and $\operatorname{deg} g(x) \leq n-2$. Thus, the number of such polynomials is $\leq p^{n}$. Therefore, the Chinese Remainder Theorem easily yields that the number of incongruent polynomials $f(x)$ modulo $p_{1} \ldots p_{w}$ of degree $\leq n$ such that $f(x)$ has a multiple root modulo p_{j} for each $j \in\{1, \ldots, w\}$ is $\leq p_{1}^{n} \ldots p_{w}^{n}$. By dividing $T_{j}\left(p_{1}, \ldots, p_{w}\right)$ into these $\leq p_{1}^{n} \ldots p_{w}^{n}$ congruence classes, we get

$$
\left|T_{j}\left(p_{1}, \ldots, p_{w}\right)\right| \leq\left(\frac{2 N+1}{p_{1} \ldots p_{w}}+1\right)^{n+1} p_{1}^{n} \ldots p_{w}^{n}
$$

By the definition of s we have $\left(n^{2}+n_{0}\right)^{2^{s}}<z$, so that for n_{0} sufficiently large, $w \leq 2^{s} k<z$. Also, each $p_{j} \leq t(s+1)=t(s)^{2} \leq z^{2}$ so that $p_{1} \ldots p_{w} \leq z^{2 z}$. The choice $z \leq \log \log N$ gives

$$
p_{1} \ldots p_{w} \leq \frac{2 N}{n+1}-1
$$

for N sufficiently large (depending on n). Hence,

$$
\begin{aligned}
\left|T_{j}\left(p_{1}, \ldots, p_{w}\right)\right| & \leq\left(\frac{2 N+1}{p_{1} \ldots p_{w}}+\frac{\frac{2 N}{n+1}-1}{p_{1} \ldots p_{w}}\right)^{n+1} p_{1}^{n} \ldots p_{w}^{n} \\
& =\left(1+\frac{1}{n+1}\right)^{n+1} \frac{(2 N)^{n+1}}{p_{1} \ldots p_{w}}<e \frac{(2 N)^{n+1}}{p_{1} \ldots p_{w}}
\end{aligned}
$$

Since each polynomial in T_{j} belongs to some $T_{j}\left(p_{1}, \ldots, p_{w}\right)$ described above, we now get

$$
\left|T_{j}\right| \leq e(2 N)^{n+1}\left(\sum_{t(j)<p \leq t(j+1)} \frac{1}{p}\right)^{w} \leq e(2 N)^{n+1} c^{w}
$$

where we can take c to be any constant $>\log 2$ provided n_{0} is sufficiently large. Here, we have used the fact that

$$
\sum_{p \leq y} \frac{1}{p}=\log \log y+A+o(1)
$$

for some absolute constant A. We take $c=7 / 10$.
We are now ready to complete our estimate for $|T|$. We get

$$
|T| \leq \sum_{j=0}^{s}\left|T_{j}\right| \leq e(2 N)^{n+1} \sum_{j=0}^{\infty}\left(\frac{7}{10}\right)^{2^{j} k}<\frac{\varepsilon}{2}(2 N)^{n+1}
$$

by our choice of k. The above estimates on $\left|T^{\prime}\right|$ and $|T|$ easily imply (4).
We now consider $\prod_{n^{2}+n_{0}<p \leq z}^{*}\left(1-\varrho_{f}\left(p^{2}\right) / p^{2}\right)$ where $f(x) \in S_{n}(N)-$ $T-T^{\prime}$. By Lemma 2(v), for each prime p in the range of the product above, $\varrho\left(p^{2}\right) \leq n p$. Also, for each $j \in\{0,1, \ldots, s\}$, there are fewer than $2^{j} k$ primes
$p \in(t(j), t(j+1)]$ for which $f(x)$ has a multiple root modulo p. Hence,

$$
\prod_{t(j)<p \leq t(j+1)}^{*}\left(1-\frac{\varrho_{f}\left(p^{2}\right)}{p^{2}}\right) \geq \prod_{t(j)<p \leq t(j+1)}^{*}\left(1-\frac{n}{p}\right) \geq\left(1-\frac{n}{t(j)}\right)^{2^{j} k}
$$

Thus, using Lemma 4,

$$
\begin{aligned}
\prod_{n^{2}+n_{0}<p \leq z}^{*}\left(1-\frac{\varrho_{f}\left(p^{2}\right)}{p^{2}}\right) & \geq \prod_{j=0}^{s}\left(1-\frac{n}{t(j)}\right)^{2^{j} k} \\
& \geq 1-\sum_{j=0}^{s} \frac{2^{j} k n}{t(j)}=1-\sum_{j=0}^{s} \frac{2^{j} k n}{\left(n^{2}+n_{0}\right)^{2^{j}}}>\frac{1}{2},
\end{aligned}
$$

provided n_{0} is sufficiently large. We note that we can choose n_{0} so that everything above holds and so that n_{0} only depends on ε (and not on n unless, of course, ε depends on n). For example, by checking the cases $n \leq \sqrt{n_{0}}$ and $n>\sqrt{n_{0}}$ separately, the last inequality above is easily seen to hold provided that

$$
\sum_{j=0}^{\infty} \frac{2^{j} k}{n_{0}^{2^{j-(1 / 2)}}}<\frac{1}{2},
$$

which, since k only depended on ε, gives a lower bound on n_{0} depending only on ε.

Combining the above, we see that for $f(x) \in S_{n}(N)-T-T^{\prime}$ and $f(x)$ satisfying (i),

$$
\prod_{p \leq z}\left(1-\frac{\varrho\left(p^{2}\right)}{p^{2}}\right) \geq \frac{c(n)}{2}\left(\prod_{p \leq n^{2}+n_{0}} p^{-2}\right)
$$

Thus, the lemma follows by letting ε^{\prime} be the right-hand side above.
Lemma 7. Let $\varepsilon>0$, and let N be sufficiently large (depending on n and ع). Let $z \in[2, \log \log N]$. Then
$\sum_{f(x) \in S_{n}(N)}\left(\prod_{p \leq z}\left(1-\frac{\varrho_{f}\left(p^{2}\right)}{p^{2}}\right)\right)=\left(\prod_{p \leq z}\left(1-\frac{1}{p^{2}}\right)\right)(2 N)^{n+1}+O_{n}\left(N^{n+\varepsilon}\right)$.
Proof. For each $p \leq z$, consider the $p^{2 n+2}$ incongruent polynomials modulo p^{2} of degree $\leq n$, and let $w_{1}(p), \ldots, w_{r}(p)$, where $r=r(p)=$ $p^{2 n+2}$, denote some ordering of the values of $\varrho_{f}\left(p^{2}\right)$ as $f(x)$ ranges over these polynomials. Let p_{1}, \ldots, p_{t} represent the $t=\pi(z)$ primes $\leq z$, and let $f_{1}(x), \ldots, f_{t}(x)$ denote arbitrary polynomials with integral coefficients. Then the Chinese Remainder Theorem implies that the number of
$f(x) \in S_{n}(N)$ such that $f(x) \equiv f_{j}(x)\left(\bmod p_{j}^{2}\right)$ for every $j \in\{1, \ldots, t\}$ is

$$
\left(\frac{2[N]+1}{p_{1}^{2} \ldots p_{t}^{2}}+O(1)\right)^{n+1}=\left(\frac{2 N}{p_{1}^{2} \ldots p_{t}^{2}}\right)^{n+1}+O_{n}\left(\left(\frac{2 N}{p_{1}^{2} \ldots p_{t}^{2}}\right)^{n}\right)
$$

where we have used the fact that since $z \leq \log \log N$,

$$
\begin{equation*}
p_{1}^{2} \ldots p_{t}^{2} \leq(\log \log N)^{2 \log \log N}<N^{\varepsilon^{\prime}} \tag{6}
\end{equation*}
$$

where $\varepsilon^{\prime} \in(0,1)$ and N is sufficiently large (depending on ε^{\prime}). For later purposes, we fix $\varepsilon^{\prime}=\min \{1 / 2, \varepsilon\}$. If w_{j}^{\prime} denotes the number of incongruent roots of $f_{j}(x)$ modulo p_{j}^{2}, then the contribution of the $f(x) \equiv f_{j}(x)\left(\bmod p_{j}^{2}\right)$ (for all $j \in\{1, \ldots, t\}$) on the left-hand side of (5) is

$$
\prod_{j=1}^{t}\left(1-\frac{w_{j}^{\prime}}{p_{j}^{2}}\right)\left(\left(\frac{2 N}{p_{1}^{2} \ldots p_{t}^{2}}\right)^{n+1}+O_{n}\left(\left(\frac{2 N}{p_{1}^{2} \ldots p_{t}^{2}}\right)^{n}\right)\right)
$$

Hence, summing over all $f(x) \in S_{n}(N)$, we get

$$
\begin{aligned}
\sum_{f(x) \in S_{n}(N)} & \prod_{p \leq z}\left(1-\frac{\varrho_{f}\left(p^{2}\right)}{p^{2}}\right) \\
= & \prod_{p \leq z}\left(\left(1-\frac{w_{1}(p)}{p^{2}}\right)+\ldots+\left(1-\frac{w_{r}(p)}{p^{2}}\right)\right) \\
& \times\left(\left(\frac{2 N}{p_{1}^{2} \ldots p_{t}^{2}}\right)^{n+1}+O_{n}\left(\left(\frac{2 N}{p_{1}^{2} \ldots p_{t}^{2}}\right)^{n}\right)\right)
\end{aligned}
$$

Recalling the definition of $w_{j}(p)$ and Lemma 5 , we get

$$
\begin{aligned}
\prod_{p \leq z}\left(\sum_{j=1}^{r(p)}\left(1-\frac{w_{j}(p)}{p^{2}}\right)\right) & =\prod_{p \leq z}\left(r(p)-\frac{r(p)}{p^{2}}\right) \\
& =\left(\prod_{p \leq z} p^{2 n+2}\right) \prod_{p \leq z}\left(1-\frac{1}{p^{2}}\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\sum_{f(x) \in S_{n}(N)} \prod_{p \leq z}(1- & \left.\frac{\varrho_{f}\left(p^{2}\right)}{p^{2}}\right) \\
& =\prod_{p \leq z}\left(1-\frac{1}{p^{2}}\right)\left((2 N)^{n+1}+O_{n}\left((2 N)^{n} \prod_{p \leq z} p^{2}\right)\right)
\end{aligned}
$$

Recalling our choice of $\varepsilon^{\prime}=\min \{1 / 2, \varepsilon\}$ in (6), we get the desired result.
3. The main theorems. We are now ready to prove Theorems 1 and 2 of the introduction. As mentioned there, we will actually be able to prove
slightly stronger results.
Theorem 3. Let $n \in \mathbb{Z}^{+} \cup\{0\}$, and let $B(N)$ be a function which increases to infinity with N. Then the proportion of polynomials $f(x) \in S_{n}(N)$ with N_{f} squarefree such that $f(m)$ is squarefree for some integer $m \in[1, B]$ tends to 1 as N tends to infinity.

Theorem 4. Let $n \in \mathbb{Z}^{+} \cup\{0\}$, and let $B(N)$ be a function which increases to infinity with N. Then the proportion of polynomials $f(x) \in S_{n}(N)$ such that $f(m) / N_{f}$ is squarefree for some integer $m \in[1, B]$ tends to 1 as N tends to infinity.

Proof of Theorem 3. We suppose, as we may, that $B(N)=o(N)$ and that N is sufficiently large (depending on ε given below and n). Recall the discussion after Lemma 1 and, in particular, that there is a positive proportion of $f(x) \in S_{n}(N)$ for which N_{f} is squarefree. Alternatively, one may deduce that N_{f} is squarefree for a positive proportion of the $f(x) \in$ $S_{n}(N)$ as a consequence of Theorem 1 in [3], which stated that for a positive proportion of the $f(x) \in S_{n}(N)$, there is an integer m for which $f(m)$ is prime. Let $\varepsilon>0$. To obtain Theorem 3, we need only prove that if N is sufficiently large, there are $\leq \varepsilon(2 N)^{n+1}$ polynomials $f(x) \in S_{n}(N)$ with N_{f} squarefree and such that $f(m)$ is nonsquarefree for all integers $m \in[1, B]$. In fact, for later purposes, we prove something stronger. Using the notation of Lemma 6 with $n_{0}=n_{0}(\varepsilon / 2)$, we prove that the set T of $f(x) \in S_{n}(N)$ such that (i) $\operatorname{gcd}\left(N_{f}, \prod_{p \leq n^{2}+n_{0}} p^{2}\right)$ is squarefree and (ii) $f(m)$ is nonsquarefree for every integer $m \in[1, B]$ satisfies $|T| \leq \varepsilon(2 N)^{n+1}$ (provided N is sufficiently large). Assume that $|T|>\varepsilon(2 N)^{n+1}$. Let $z=$ $\log \log B$. For each $f(x) \in S_{n}(N)$, we denote by $W(f(x))$ the number of integers $m \in[1, B]$ such that $f(m)$ is squarefree. Then Lemma 3 implies that

$$
W(f(x))=\prod_{p \leq z}\left(1-\frac{\varrho\left(p^{2}\right)}{p^{2}}\right) B+E(f(x))
$$

where

$$
E(f(x)) \leq C_{1} \prod_{p \leq z}\left(1-\frac{\varrho\left(p^{2}\right)}{p^{2}}\right) \log B .
$$

Thus, using Lemma 7, we get

$$
\begin{align*}
\sum_{f(x) \in S_{n}(N)} W(f(x)) & =\sum_{f(x) \in S_{n}(N)}\left(\prod_{p \leq z}\left(1-\frac{\varrho\left(p^{2}\right)}{p^{2}}\right) B+E(f(x))\right) \tag{7}\\
& =\prod_{p \leq z}\left(1-\frac{1}{p^{2}}\right)(2 N)^{n+1} B+E_{1},
\end{align*}
$$

with

$$
E_{1}=\sum_{f(x) \in S_{n}(N)} E(f(x))+O_{n}\left(N^{n+1 / 2} B\right) \leq C_{2}\left(N^{n+1} \log B+N^{n+1 / 2} B\right),
$$

where $C_{2}=C_{2}(n)$ and we note that E_{1} may be negative (so that, in particular, we claim no bound on $\left|E_{1}\right|$ at this point). Note that

$$
\prod_{p \leq z}\left(1-\frac{1}{p^{2}}\right)>\prod_{p}\left(1-\frac{1}{p^{2}}\right)=\frac{6}{\pi^{2}} .
$$

Recalling that $z=\log \log B(N)$, we find that since N and, hence, $B(N)$ are sufficiently large,

$$
\frac{6}{\pi^{2}}<\prod_{p \leq z}\left(1-\frac{1}{p^{2}}\right)<\frac{6}{\pi^{2}}+\frac{\varepsilon^{\prime}}{2}
$$

where $\varepsilon^{\prime}>0$ is arbitrarily small and possibly depends on ε and n. Thus,

$$
\sum_{f(x) \in S_{n}(N)} W(f(x))=\frac{6}{\pi^{2}}(2 N)^{n+1} B+E_{2},
$$

where

$$
E_{2} \leq \varepsilon^{\prime}(2 N)^{n+1} B
$$

On the other hand, Lemma 1 gives us

$$
\sum_{f(x) \in S_{n}(N)} W(f(x))=\frac{6}{\pi^{2}}(2 N)^{n+1} B+E_{3},
$$

where

$$
\left|E_{3}\right| \leq \varepsilon^{\prime}(2 N)^{n+1} B .
$$

Thus, in fact,

$$
\left|E_{2}\right|=\left|E_{3}\right| \leq \varepsilon^{\prime}(2 N)^{n+1} B .
$$

Recalling how E_{2} was obtained, we now get

$$
\left|E_{1}\right| \leq 2 \varepsilon^{\prime}(2 N)^{n+1} B .
$$

The importance of this last inequality is that, unlike the previous inequality on E_{1}, we are now supplied with a lower bound on E_{1}. More specifically, $E_{1} \geq-2 \varepsilon^{\prime}(2 N)^{n+1} B$.

Recalling the definitions of T and $E(f(x))$, we get

$$
E(f(x))=-\prod_{p \leq z}\left(1-\frac{\varrho_{f}\left(p^{2}\right)}{p^{2}}\right) B \quad \text { for all } f(x) \in T .
$$

Thus,

$$
\sum_{f(x) \in T} E(f(x))=-\sum_{f(x) \in T} \prod_{p \leq z}\left(1-\frac{\varrho_{f}\left(p^{2}\right)}{p^{2}}\right) B .
$$

The definition of T easily implies that for each prime $p \leq n^{2}+n_{0}, \varrho_{f}\left(p^{2}\right)<$ p^{2} for all $f(x) \in T$. Thus, by Lemma 6 , there exists an $\varepsilon^{\prime \prime}$ such that

$$
\begin{equation*}
\prod_{p \leq z}\left(1-\frac{\varrho_{f}\left(p^{2}\right)}{p^{2}}\right) \geq \varepsilon^{\prime \prime} \tag{8}
\end{equation*}
$$

for all but at most $(\varepsilon / 2)(2 N)^{n+1}$ polynomials $f(x) \in T$. Since by assumption $|T|>\varepsilon(2 N)^{n+1}$, there are $\geq(\varepsilon / 2)(2 N)^{n+1}$ polynomials $f(x) \in T$ for which (8) holds. Hence,

$$
\sum_{f(x) \in T} E(f(x)) \leq-\frac{\varepsilon}{2} \varepsilon^{\prime \prime}(2 N)^{n+1} B
$$

On the other hand,

$$
\begin{aligned}
\sum_{\substack{f(x) \in S_{n}(N) \\
E(f(x))>0}} E(f(x)) & \leq C_{1} \sum_{\substack{f(x) \in S_{n}(N) \\
E(f(x))>0}} \prod_{p \leq z}\left(1-\frac{\varrho_{f}\left(p^{2}\right)}{p^{2}}\right) \log B \\
& \leq C_{1}\left|S_{n}(N)\right| \log B \\
& \leq C_{1}(2 N)^{n+1} \log B+O_{n}\left((2 N)^{n} \log B\right)
\end{aligned}
$$

Thus, recalling the definition of E_{1},

$$
E_{1} \leq-\frac{\varepsilon}{2} \varepsilon^{\prime \prime}(2 N)^{n+1} B+O\left((2 N)^{n+1} \log B\right)+O_{n}\left(N^{n+1 / 2} B\right)
$$

We are still free to choose $\varepsilon^{\prime}>0$. We take $\varepsilon^{\prime}=\left(\varepsilon \varepsilon^{\prime \prime}\right) / 5$. Then the above contradicts the inequality

$$
\left|E_{1}\right| \leq 2 \varepsilon^{\prime}(2 N)^{n+1} B=\frac{2}{5} \varepsilon \varepsilon^{\prime \prime}(2 N)^{n+1} B
$$

completing the proof.
Proof of Theorem 4. For $n=0$, the theorem is clear, so we only consider $n \geq 1$. Let $\varepsilon \in(0,1)$, and let N be sufficiently large (depending on n and $\varepsilon)$. Assume that there exist $\geq \varepsilon(2 N)^{n+1}$ polynomials $f(x) \in S_{n}(N)$ such that $f(m) / N_{f}$ is nonsquarefree for every $m \in[1, B]$. Let T_{1} denote the set of such polynomials. By the proof of Theorem 3 and the notation of Lemma 6, the number $n_{0}=n_{0}(\varepsilon / 6)$ is such that $\left|T_{2}\right| \leq(\varepsilon / 3)(2 N)^{n+1}$ where T_{2} denotes the set of $f(x) \in S_{n}(N)$ for which (i) $\operatorname{gcd}\left(N_{f}, \prod_{p \leq n^{2}+n_{0}} p^{2}\right)$ is squarefree and (ii) $f(m)$ is nonsquarefree for each integer $m \in[1, B]$. Since increasing the size of n_{0} will only decrease the number of $f(x)$ for which (i) and (ii) hold, we may assume that $n_{0} \geq 7$. We do this so that later we may use the estimate

$$
\sum_{j \geq n_{0}} \frac{1}{j^{2}}<\frac{4}{25}
$$

Let $T_{3}=T_{1}-T_{2}$ so that T_{3} consists of $\geq(2 \varepsilon / 3)(2 N)^{n+1}$ polynomials $f(x) \in T_{1}$ for which N_{f} is divisible by p^{2} for some $p \leq n^{2}+n_{0}$. Define

$$
M=M(n, \varepsilon)=\left(\frac{4\left(n^{2}+n_{0}\right)}{\varepsilon}\right)^{2\left(n^{2}+n_{0}\right)}
$$

and

$$
B^{\prime}=B^{\prime}(N)=\frac{1}{M} B\left(\frac{N}{(2 M)^{n}}\right)-1
$$

Using the notation of Lemma 6, define

$$
n_{1}=n_{1}(\varepsilon)=n_{0}\left(\frac{\varepsilon}{4(2 M)^{n^{2}+n+2}}\right)
$$

The proof of Theorem 3 implies that there are

$$
\leq \frac{\varepsilon}{2(2 M)^{n^{2}+n+2}}\left|S_{n}\left((2 M)^{n} N\right)\right|
$$

polynomials $g(x) \in S_{n}\left((2 M)^{n} N\right)$ for which ($\left.\mathrm{i}^{\prime}\right) \operatorname{gcd}\left(N_{g}, \prod_{p \leq n^{2}+n_{1}} p^{2}\right)$ is squarefree and (ii') $g(m)$ is nonsquarefree for each integer m in the interval $\left[1, B^{\prime}\left((2 M)^{n} N\right)\right]$. We will obtain a contradiction by showing that there are more than $\left(\varepsilon /\left(2(2 M)^{n^{2}+n+2}\right)\right)\left|S_{n}\left((2 M)^{n} N\right)\right|$ such $g(x)$ (even under the condition that $\left.\operatorname{gcd}\left(N_{g}, \prod_{p \leq n^{2}+n_{1}} p\right)=1\right)$.

We begin by restricting our attention to $p \leq n^{2}+n_{0}$. For each such p, let $k=k(p)=k(p, n, \varepsilon)$ be the minimal positive integer such that

$$
p^{k+1} \geq \frac{4\left(n^{2}+n_{0}\right)}{\varepsilon}
$$

Note that $\varepsilon \in(0,1)$ implies that the right-hand side above is $>n^{2}+n_{0}$ so that $p^{k}<4\left(n^{2}+n_{0}\right) / \varepsilon$. Let T_{4} be the set of polynomials $f(x) \in T_{3}$ such that p^{k+1} divides N_{f} for at least one prime $p \leq n^{2}+n_{0}$. The constant term of each such $f(x)$, being $f(0)$, must be divisible by p^{k+1}. Thus, the number of $f(x) \in T_{3}$ for which p^{k+1} divides N_{f} for a given prime $p \leq n^{2}+n_{0}$ is

$$
\begin{aligned}
& \leq(2 N+1)^{n}\left(\frac{2 N+1}{p^{k+1}}+1\right) \leq \frac{\varepsilon}{4\left(n^{2}+n_{0}\right)}(2 N+1)^{n+1}+(2 N+1)^{n} \\
& \leq \frac{\varepsilon}{3\left(n^{2}+n_{0}\right)}(2 N)^{n+1}
\end{aligned}
$$

Hence,

$$
\left|T_{4}\right| \leq \pi\left(n^{2}+n_{0}\right) \frac{\varepsilon}{3\left(n^{2}+n_{0}\right)}(2 N)^{n+1} \leq \frac{\varepsilon}{3}(2 N)^{n+1}
$$

Define $T_{5}=T_{3}-T_{4}$. Thus, $\left|T_{5}\right| \geq(\varepsilon / 3)(2 N)^{n+1}$.

For $f(x) \in T_{5}$, define

$$
M_{f}=\prod_{r=1}^{\infty}\left(\prod_{\substack{p \leq n^{2}+n_{0} \\ p^{r} \mid N_{f}}} p\right) \quad \text { and } \quad P_{f}=M_{f} \prod_{p \mid M_{f}} p .
$$

Note that $N_{f}=M_{f} Q_{f}$ where $\operatorname{gcd}\left(Q_{f}, \prod_{p \leq n^{2}+n_{0}} p\right)=1$ and that $P_{f} \leq M_{f}^{2}$. By the definition of T_{5}, for each prime $p \leq n^{2}+n_{0}$ and each $f(x) \in T_{5}$, we see that p^{k+1} does not divide M_{f}. This easily implies that each of M_{f} and P_{f} is $\leq M(n, \varepsilon)$ for every $f(x) \in T_{5}$.

We now define a function $\alpha: T_{5} \rightarrow S_{n}\left((2 M)^{n} N\right)$ as follows. For each $f(x) \in T_{5}$ and each prime $p \leq n^{2}+n_{0}$, define $r=r(p, f(x))$ to be the nonnegative integer such that p^{r} divides M_{f} and p^{r+1} does not divide M_{f}. In particular, p^{r+1} does not divide N_{f} so that there is an integer $a=a(p, f(x)) \in\left[1, p^{r+1}\right]$ such that $f(a) \not \equiv 0\left(\bmod p^{r+1}\right)$. Necessarily, $f(a) \equiv 0\left(\bmod p^{r}\right)$. By the Chinese Remainder Theorem, there is a minimal positive integer $b=b(f(x))$ such that $f(b)$ is divisible by M_{f} and, for each prime $p \leq n^{2}+n_{0}, f(b)$ is not divisible by $p M_{f}$. Furthermore, since $f(x) \in T_{5}$,

$$
\begin{array}{r}
1 \leq b \leq \prod_{p \leq n^{2}+n_{0}} p^{r(p, f(x))+1} \leq \prod_{p \leq n^{2}+n_{0}} p^{k(p)+1} \leq\left(\prod_{p \leq n^{2}+n_{0}} p^{k(p)}\right)^{2} \\
\leq M(n, \varepsilon) .
\end{array}
$$

Define

$$
g(x)=f\left(P_{f} x+b\right) / M_{f} .
$$

Each coefficient of $f\left(P_{f} x+b\right)$ is divisible by M_{f}, except possibly the constant term $f(b)$. But $f(b) \equiv 0\left(\bmod M_{f}\right)$, and thus $g(x) \in \mathbb{Z}[x]$. Furthermore, it is easily verified that each coefficient of $g(x)$ has absolute value $\leq N(2 M)^{n}$. We define $\alpha(f(x))=g(x)$.

Note that M_{f} and P_{f} are uniquely determined by one another; in other words, given M_{f}, one can determine P_{f}, and given P_{f}, one can determine M_{f}. Since there exist $\leq M(n, \varepsilon)$ possible values for P_{f} and $\leq M(n, \varepsilon)$ possible values for b, it is easy to see that for each $g(x)$ in the image of α, there are at most M^{2} possible $f(x) \in T_{5}$ such that $\alpha(f(x))=g(x)$. In particular, since N is sufficiently large,

$$
\begin{aligned}
\left|\alpha\left(T_{5}\right)\right| & \geq \frac{1}{M^{2}}\left|T_{5}\right| \geq \frac{\varepsilon}{3 M^{2}}(2 N)^{n+1} \\
& =\frac{\varepsilon}{3\left(2^{n^{2}+n}\right)\left(M^{n^{2}+n+2}\right)}\left(2(2 M)^{n} N\right)^{n+1} \\
& \geq \frac{\varepsilon}{(2 M)^{n^{2}+n+2}}\left|S_{n}\left((2 M)^{n} N\right)\right| .
\end{aligned}
$$

On the other hand, one can check that the definitions of b and $g(x)$ above imply that for $g(x) \in \alpha\left(T_{5}\right)$,

$$
\operatorname{gcd}\left(N_{g}, \prod_{p \leq n^{2}+n_{0}} p\right)=1
$$

Recall that by assumption, each $f(x) \in T_{5} \subseteq T_{1}$ is such that $f(m) / N_{f}$ is nonsquarefree for each integer $m \in[1, B]$. Note that $B^{\prime}\left((2 M)^{n} N\right)=$ $(B(N) / M)-1$. Now, if $m \in[1,(B(N) / M)-1]$ and b is as in the definition of α, then $P_{f} m+b$ is a positive integer $\leq B(N)$. Also, the definition of M_{f} implies that M_{f} divides N_{f}. We now conclude that if $f(x) \in T_{5}$ and $g(x)=\alpha(f(x))$, then $g(m)=f\left(P_{f} m+b\right) / M_{f}$ is nonsquarefree for each integer $m \in\left[1, B^{\prime}\left((2 M)^{n} N\right)\right]$.

Thus far, we have shown that there are

$$
\geq \frac{\varepsilon}{(2 M)^{n^{2}+n+2}}\left|S_{n}\left((2 M)^{n} N\right)\right|
$$

polynomials $g(x) \in S_{n}\left((2 M)^{n} N\right)$ such that $\operatorname{gcd}\left(N_{g}, \prod_{p \leq n^{2}+n_{0}} p\right)=1$ and (ii') holds. Let T_{1}^{\prime} denote the set of all such $g(x)$. Let T_{2}^{\prime} denote the set of all $g(x) \in T_{1}^{\prime}$ such that also $\operatorname{gcd}\left(N_{g}, \prod_{p \leq n^{2}+n_{L_{1}}} p\right)=1$. It now suffices to prove that

$$
\left|T_{2}^{\prime}\right|>\frac{\varepsilon}{2(2 M)^{n^{2}+n+2}}\left|S_{n}\left((2 M)^{n} N\right)\right|
$$

For $p \in\left(n^{2}+n_{0}, n^{2}+n_{1}\right]$, define $k^{\prime}=k^{\prime}(p)=k^{\prime}(p, n, \varepsilon)$ as the minimal positive integer such that

$$
p^{k^{\prime}+1} \geq \frac{4\left(n^{2}+n_{1}\right)(2 M)^{n^{2}+n+2}}{\varepsilon}
$$

Then following the argument which led to an estimate of $\left|T_{5}\right|$, we find that there are

$$
\geq \frac{2 \varepsilon}{3(2 M)^{n^{2}+n+2}}\left|S_{n}\left((2 M)^{n} N\right)\right|
$$

polynomials $g(x) \in T_{1}^{\prime}$ such that if $p \in\left(n^{2}+n_{0}, n^{2}+n_{1}\right]$ and p^{r} divides N_{g}, then $r \leq k^{\prime}(p)$. Let T_{3}^{\prime} denote the set of all such $g(x)$. Note that $T_{2}^{\prime} \subseteq T_{3}^{\prime}$. In fact, our goal now is to show that most of the polynomials in T_{3}^{\prime} are in T_{2}^{\prime}.

For each $g(x) \in T_{3}^{\prime}$, let

$$
M_{g}^{\prime}=\prod_{r=1}^{\infty}\left(\prod_{\substack{n^{2}+n_{0}<p \leq n^{2}+n_{1} \\ p \mid N_{g}}} p\right)=\prod_{r=1}^{\infty}\left(\prod_{\substack{p \leq n^{2}+n_{1} \\ p \mid N_{g}}} p\right)
$$

Note that with n and ε fixed, so are M and $k^{\prime}(p)$ for each $p \in\left(n^{2}+n_{0}, n^{2}+\right.$ $\left.n_{1}\right]$. Thus, M_{g}^{\prime} takes on a finite number of distinct values. Let M^{\prime} be one
such value of M_{g}^{\prime}. By the definition of n_{1} and the proof of Theorem 3, we find that there are

$$
\leq \frac{\varepsilon}{2(2 M)^{n^{2}+n+2}}\left|S_{n}\left(\frac{(2 M)^{n} N}{M^{\prime}}\right)\right| \leq \frac{\varepsilon}{(2 M)^{n^{2}+n+2}\left(M^{\prime}\right)^{n+1}}\left|S_{n}\left((2 M)^{n} N\right)\right|
$$

polynomials $h(x) \in S_{n}\left((2 M)^{n} N / M^{\prime}\right)$ such that $\operatorname{gcd}\left(N_{h}, \prod_{p \leq n^{2}+n_{1}} p\right)=1$ and $h(m)$ is nonsquarefree for each positive integer $m \leq B^{\prime}\left((2 M)^{n} N / M^{\prime}\right) \leq$ $B^{\prime}\left((2 M)^{n} N\right)$. We note that we want the above to hold for every choice of M^{\prime}, and we can do this since N is sufficiently large and there are only finitely many values of M^{\prime}. Since every prime factor of M^{\prime} is $>n^{2}+$ $n_{0}>n$, we see by Lemma $2\left(\right.$ vi) that each $g(x)$ with $M_{g}^{\prime}=M^{\prime}$ satisfies $g(x) \equiv 0\left(\bmod M^{\prime}\right)$. But this means that $g(x)=M^{\prime} h(x)$ for some $h(x) \in S_{n}\left((2 M)^{n} N / M^{\prime}\right)$. The definition of $M^{\prime}=M_{g}^{\prime}$ implies that every such $h(x)$ satisfies $\operatorname{gcd}\left(N_{h}, \prod_{p \leq n^{2}+n_{1}} p\right)=1$. Also, using the fact that $\operatorname{gcd}\left(P_{f}, \prod_{n^{2}+n_{0}<p \leq n^{2}+n_{1}} p\right)=1$, one can show from the definition of M_{f} and M_{g}^{\prime} that $M_{f} M_{g}^{\prime}$ divides N_{f} where $\alpha(f(x))=g(x)$. One finds that for $h(x)$ as above, $h(m)=f\left(P_{f} m+b\right) /\left(M_{f} M_{g}^{\prime}\right)$ is nonsquarefree for each positive integer $m \leq B^{\prime}\left((2 M)^{n} N / M^{\prime}\right)$. Therefore,

$$
\begin{aligned}
\left|T_{3}^{\prime}-T_{2}^{\prime}\right| & \leq \sum^{*} \frac{\varepsilon}{(2 M)^{n^{2}+n+2}\left(M^{\prime}\right)^{n+1}}\left|S_{n}\left((2 M)^{n} N\right)\right| \\
& =\frac{\varepsilon}{(2 M)^{n^{2}+n+2}}\left(\sum^{*}\left(M^{\prime}\right)^{-n-1}\right)\left|S_{n}\left((2 M)^{n} N\right)\right|
\end{aligned}
$$

where \sum^{*} denotes that the sum is over those values of M^{\prime} which are strictly greater than 1 . Since each such M^{\prime} is divisible by some prime $p>n^{2}+n_{0}$, we deduce that each such M^{\prime} is $\geq n^{2}+n_{0} \geq n_{0}$. Thus, since $n \geq 1$,

$$
\sum^{*}\left(M^{\prime}\right)^{-n-1} \leq \sum_{j \geq n_{0}} \frac{1}{j^{2}}
$$

which, by our choice of $n_{0} \geq 7$, is $<4 / 25$. Hence,

$$
\left|T_{3}^{\prime}-T_{2}^{\prime}\right| \leq \frac{4 \varepsilon}{25(2 M)^{n^{2}+n+2}}\left|S_{n}\left((2 M)^{n} N\right)\right|
$$

so that

$$
\left|T_{2}^{\prime}\right| \geq\left|T_{3}^{\prime}\right|-\left|T_{3}^{\prime}-T_{2}^{\prime}\right| \geq \frac{38 \varepsilon}{75(2 M)^{n^{2}+n+2}}\left|S_{n}\left((2 M)^{n} N\right)\right|
$$

which completes the proof.
Before concluding the paper, we note that Theorem 4 and, hence, Theorem 2 can be improved slightly. For $f(x) \in \mathbb{Z}[x]$, write $N_{f}=U_{f} V_{f}$, where V_{f} is the largest squarefree factor of N_{f}. Then one may replace the role of $f(m) / N_{f}$ in the statement of Theorem 4 with $f(m) / U_{f}$. The
proof is essentially the same with the following minor changes. One defines $\alpha(f(x))=g(x)$ where now $g(x)=f\left(P_{f} x+b\right) / \operatorname{gcd}\left(M_{f}, U_{f}\right)$. Then $g(x) \in \alpha\left(T_{5}\right)$ implies that $\operatorname{gcd}\left(N_{g}, \prod_{p \leq n^{2}+n_{0}} p^{2}\right)$ is squarefree. One considers, instead of T_{2}^{\prime}, the set $T_{2}^{\prime \prime}$ of $g(x) \in S_{n}\left((2 M)^{n} N\right)$ such that (i') and (ii') hold. Since $T_{2}^{\prime} \subseteq T_{2}^{\prime \prime}$, the lower bound for $\left|T_{2}^{\prime}\right|$ obtained in the proof of Theorem 4 is a lower bound for $\left|T_{2}^{\prime \prime}\right|$, and the desired improvement follows.

References

[1] L. E. Dickson, History of the Theory of Numbers, Vol. I, Chelsea, New York 1971.
[2] P. Erdős, Arithmetical properties of polynomials, J. London Math. Soc. 28 (1953), 416-425.
[3] M. Filaseta, Prime values of irreducible polynomials, Acta Arith. 50 (1988), 133145.
[4] P. X. Gallagher, The large sieve and probabilistic Galois theory, in: Proc. Sympos. Pure Math. 24, Amer. Math. Soc., 1973, 91-101.
[5] C. Hooley, On the power free values of polynomials, Mathematika 14 (1967), 21-26.
[6] M. Huxley and M. Nair, Power free values of polynomials, III, Proc. London Math. Soc. 41 (1980), 66-82.
[7] W. J. LeVeque, Fundamentals of Number Theory, Addison-Wesley, Reading, Massachusetts, 1977.
[8] T. Nagel, Zur Arithmetik der Polynome, Abh. Math. Sem. Hamburg. Univ. 1 (1922), 179-194.
[9] M. Nair, Power free values of polynomials, Mathematika 23 (1976), 159-183.
[10] - Power free values of polynomials, II , Proc. London Math. Soc. 38 (1979), 353368.
[11] G. Pólya and G. Szegő, Problems and Theorems in Analysis II, Springer, New York 1976.
[12] B. L. van der Waerden, Die Seltenheit der reduziblen Gleichungen und der Gleichungen mit Affekt, Monatsh. Math. 43 (1936), 133-147.
[13] -, Algebra I, Springer, Berlin 1966.
[14] -, Algebra, Vol. I, 7th edition, translated by F. Blum and J. R. Schulenberger, Frederick Ungar Publ. Co., New York 1970.

MATHEMATICS DEPARTMENT

UNIVERSITY OF SOUTH CAROLINA
COLUMBIA, SOUTH CAROLINA 29208
U.S.A.

Received on 2.7.1990
and in revised form on 19.3.1991

[^0]: * Research was supported in part by the NSF under grant number DMS-8903123.

