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1. Introduction. An arithmetical function f that does not deviate
too largely from the identity function I : n 7→ n frequently satisfies an
asymptotic relation ∑

n≤x

f(n) = Cfx2 + Rf (x),

in which the error term Rf (x) is the primary object of interest.
A quite thoroughly investigated example is provided by Euler’s totient ϕ.

For instance, A. Walfisz’s [17] well known upper bound

Rϕ(x) =
∑
n≤x

ϕ(n)− 3
π2

x2 � x(log x)2/3(log log x)4/3

has superseded F. Mertens’ elementary estimate [12]

Rϕ(x) � x log x,

and in the opposite direction there are the results due to S. S. Pillai and
S. D. Chowla [14]

(1.1) Rϕ(x) = Ω(x log log log x)

and P. Erdős and H. N. Shapiro [4]

(1.2) Rϕ(x) = Ω±(x log log log log x).

Subsequently J. H. Proschan [15] applied the techniques of [4] and [14] to ob-
tain Ω-results for the remainder term Rf (x) corresponding to arithmetical
functions f = I ∗ (µ · g), where µ is the Möbius function and g is a posi-
tive integer valued completely multiplicative function that satisfies certain
growth conditions.

In this paper we will show how a method that has recently been used by
H. L. Montgomery [13] to improve (1.1) and (1.2) to

(1.3) Rϕ(x) = Ω±(x
√

log log x)
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can be extended to a class of arithmetical functions that is considerably
larger than that which was treated in [15].

Moreover, our estimates are as a rule much sharper than Proschan’s,
typically improving his Ω±(x log log log log x) to Ω±(x(log log x)δ) for an
appropriate positive constant δ = δ(f).

Our results are applicable to many generalizations of Euler’s ϕ-function,
e.g. the totients of Schemmel and Nagell (cf. [16]) and the function ϕF

defined with respect to an irreducible polynomial F ∈ Z[x] by

ϕF (n) := n
∏
p|n

(
1− %(p)

p

)
where %(p) denotes the number of zeros of F (x) (mod p).

2. Definitions and statement of main results. The members of
the class of functions that we investigate are of the form f = I ∗ h, where h
is an arithmetical function that has certain properties in common with the
Möbius function.

However, the similarity between h and µ need not be too close, since h
is allowed to be unbounded, for example. The precise conditions that are
to be fulfilled by h are summarized in the following

Definition 2.1. For real r ≥ 0 and a positive integer k the class C(r, k)
consists of all real-valued multiplicative arithmetical functions h which sat-
isfy

(2.1)
∑
n≤x

|h(n)| � x(log x)r;

(2.2) c(h) :=
∞∑

n=1

h(n)n−2 6= 0;

(2.3) there exists an integer B ≥ 1 such that h(pi) = 0 for primes p not
dividing B and 1 ≤ i < k;

(2.4) if n is a k-full integer then h(n) = µ(α(n))|h(n)|, where α(n) :=∏
p|n p is the squarefree kernel of n;

(2.5) the series
∑

p |h(pk)|p−k diverges;

(2.6) the series
∑

p |h(pk)|2p−2k converges.

R e m a r k s. (a) Throughout the letter p denotes a prime.
(b) Note that (2.1) implies that

∑
n≥1 h(n)n−1−ε converges absolutely

for every ε > 0.
(c) The Möbius function is in C(0, 1).
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Our primary result is

Theorem 2.2. Let f := I ∗h where h ∈ C(r, k). Suppose there is a mono-
tonically decreasing function ξ, defined for x > 0, which has the following
properties:

(2.7) sup
y>x

∣∣∣∣ ∑
x<n≤y

h(n)
n

∣∣∣∣ ≤ ξ(x) (x > 0) ;

(2.8) ξ(x)(log x)r is decreasing for sufficiently large x and
lim

x→∞
ξ(x)(log x)r = 0 ;

(2.9)
ξ(x− 1)

ξ(x)
→ 1 and xξ(x) � (log x)r+1 as x →∞ .

Furthermore, assume there is an integer M ≥ 3 for which the congruence
xk ≡ −1 (mod M) has ∆ϕ(M) ≥ 1 solutions (mod M) and such that for
integers a, relatively prime to M ,

(2.10)
∑
p≤x

p≡a (mod M)

|h(pk)|p−k =
1

ϕ(M)
Θ(x) + O(1)

where

(2.11) Θ(x) :=
∑
p≤x

|h(pk)|p−k .

Set

(2.12) L(x) := ((log x)r · ξ(x(log x)−r))−1 .

Then we have

(2.13)
∑
n≤x

f(n)
n

= c(h)x + E(x) ,

where

(2.14) E(x) � (log x)r+1

and

(2.15) E(x) = Ω±(exp(∆ ·Θ((2∆k)−1 log L(
√

x)))).

In most cases the conclusion of the theorem carries over to the perhaps
more natural error term

(2.16) R(x) =
∑
n≤x

f(n)− 1
2c(h)x2.

This is the subject of the first of the next two corollaries, for which we retain
the notation and assumptions of Theorem 2.2.
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Corollary 2.3. We have

(2.17) R(x) � x(log x)r+1

and , if additionally ξ(x) log x � 1, then

(2.18) R(x) = Ω±(x · exp(∆ ·Θ((2∆k)−1 log L(
√

x)))) .

Corollary 2.4. If limx→∞ ξ(x) log x = 0 then

(2.19)
∑
n≤x

E(n) ∼ 1
2 (c(h)− b(h))x

and

(2.20)
∑
n≤x

R(n) ∼ 1
4c(h)x2

where

b(h) :=
∞∑

n=1

h(n)
n

.

3. Proof of Theorem 2.2. It follows from f = I ∗ h and Abel’s
inequality (cf. [11], Satz 140) that

E(x) = −x
∑
n>x

h(n)n−2 −
∑
n≤x

h(n)
n

{
x

n

}
(3.1)

= −
∑
n≤x

h(n)
n

{
x

n

}
+ O(ξ(x)) .

Here {t} denotes the fractional part of the real number t.
From (3.1) we deduce that for all positive x and y

(3.2) E(x) = −
∑
n≤y

h(n)
n

{
x

n

}
+ O(ξ(x)) + O

(
x

y
ξ(y/2)

)
.

This is because for y ≤ x we have∣∣∣∣ ∑
y<n≤x

h(n)
n

{
x

n

}∣∣∣∣ =
∣∣∣∣ ∑
1≤k≤x/y

∑
x/(k+1)<n≤x/k

n>y

h(n)
n

{
x

n

}∣∣∣∣
≤

∑
k≤x/y

ξ(x/(k + 1)) ≤ x

y
ξ(y/2) ,

and for y > x ∣∣∣∣ ∑
x<n≤y

h(n)
n

{
x

n

}∣∣∣∣ ≤ ξ(x) .
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Following Montgomery [13] we introduce the function

s(t) :=
{

1
2 − {t} if t 6∈ Z,
0 if t ∈ Z

into formula (3.2) and use the convergence of
∑∞

n=1 h(n)n−1 to obtain for
y > 0 and nonintegral x > 0

(3.3) E(x) =
∑
n≤y

h(n)
n

s

(
x

n

)
+ O

(
x

y
ξ(y/2)

)
+ O(1) .

For natural numbers d, q and N and nonintegral β, 0 < β < q, we have
(cf. [13], Lemma 3)

N∑
n=1

s

(
nq + β

d

)
= (d, q)s

(
β

(d, q)

)
N

d
+ O(d) ,

which along with (3.3) and (2.1) yields (upon inverting the order of sum-
mation) for y > 0

N∑
n=1

E(nq + β) = N
∑
d≤y

h(d)
d2

(d, q)s
(

β

(d, q)

)
+ O(N)(3.4)

+ O(y(log y)r) + O(N2qy−1ξ(y/2)) .

The above formula (3.4) suggests a closer investigation of

(3.5) Σ(y, q, β) :=
∑
d≤y

h(d)
d2

(d, q)s
(

β

(d, q)

)
.

Since h is multiplicative and each natural number d may be written uniquely
as d = uv where α(u)|q and (v, q) = 1, we have

(3.6) Σ(y, q, β) =
∑
u≤y

α(u)|q

h(u)
u2

(u, q)s
(

β

(u, q)

) ∑
v≤y/u
(v,q)=1

h(v)
v2

.

For the sake of convenience set

Φq :=
∑
v≥1

(v,q)=1

h(v)v−2

and note that (2.1) and partial summation imply that

(3.7) Φq =
∑

v≤y/u
(v,q)=1

h(v)v−2 + O

(
u

y
(log y)r

)
.
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Since (again by partial summation)∑
u≤y

α(u)|q

|h(u)|
u

(u, q) ≤ q
∑
u≤y

|h(u)|
u

� q(log y)r+1 ,

formulas (3.6) and (3.7) give

(3.8) Σ(y, q, β) = Φq

∑
u≤y

α(u)|q

h(u)
u2

(u, q)s
(

β

(u, q)

)
+ O

(
q

y
(log y)2r+1

)
.

Recall (cf. (2.3)) the existence of an integer B such that h(pi) = 0
whenever 1 ≤ i < k and (p,B) = 1, and choose for a given y ≥ 1 a
squarefree natural number Q satisfying

(3.9) (Q,B) = 1 and q := Qk ≤ y.

Taking into account that h(u) = 0 whenever α(u)|q, unless u is k-full, we
may parametrize the integers u in (3.8) by u = akb, where a is a (necessarily
squarefree) divisor of Q and α(b)|a. Thus we obtain

Σ(y, q, β) = Φq

∑
a|Q

µ(a)
ak

s

(
β

ak

) ∑
b≤y/ak

α(b)|a

|h(akb)|
b2

(3.10)

+ O

(
q

y
(log y)2r+1

)
,

where we have used (2.4).
Now set m := ∆ϕ(M) and denote by r1, . . . , rm representatives of the

distinct residue classes x (mod M) which satisfy xk ≡ −1 (mod M).
Let t ≥ t0 be a real parameter, and define

(3.11) Q :=
∏
p≤t

(p,B)=1
p≡r1,...,rm (mod M)

p .

Determine N as the smallest natural number such that

(3.12) N ≥ 2 and L(N − 1) < q = Qk ≤ L(N) .

As (2.8) ensures that limx→∞ L(x) = ∞, N is well defined provided t0 is
large enough. With

(3.13) y := 2N(log N)−r

it follows from (2.9) that q ≤ y for large t, i.e. (3.9) is satisfied, and thus
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(3.4), (3.5) and (3.10) may be combined to yield

(3.14)
∑
n≤N

E(nq + β) = NΦq

∑
a|Q

µ(a)
ak

s

(
β

ak

) ∑
b≤y/ak

α(b)|a

|h(akb)|
b2

+ O(N) .

The influence of the factor Φq on the size and the sign of the right side of
(3.14) is negligible since

|Φq| ≥
∣∣∣∣ ∑

n≥1

h(n)
n2

∣∣∣∣( ∑
n≥1

|h(n)|
n2

)−1

,

and the sign of Φq is constant for large t, as one sees upon consideration of
the relevant Euler factors

∑
i≥0 h(pi)p−2i. Thus without loss of generality

we may suppose that Φq remains larger than a fixed positive constant.
To obtain the Ω+-result for E(x) we restrict the parameter t to the range

of values for which µ(Q) = 1. With β = q/M the conditions 0 < β < q and
β 6∈ Z are trivially satisfied.

If a divides Q then

β

ak
=

(
Q

a

)k 1
M

and
(

Q

a

)k

≡ µ(a) (mod M) ,

which implies that

µ(a)s(β/ak) = 1/2− 1/M ≥ 1/6 .

Hence we deduce from (3.14) that∑
n≤N

E(nq + β) � N
∑
a|Q

a−k
∑

b≤y/ak

α(b)|a

|h(akb)|b−2 + O(N)

� N
∑
a|Q

|h(ak)|a−k + O(N) ,

whence

(3.15)
∑
n≤N

E(nq + β) � N
∏
p|Q

(1 + |h(pk)|p−k) + O(N) .

Here we have used ak ≤ Qk = q ≤ y to estimate from below each sum over
b by |h(ak)|.

Since 1 + x ≥ (1 − x2)ex for x ≥ 0, and in view of (2.6), (2.10), (2.11)
and (3.11), we have

(3.16)
∏
p|Q

(1 + |h(pk)|p−k) � exp
( ∑

p|Q

|h(pk)|p−k
)
� exp(∆ ·Θ(t)) .
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The prime number theorem for arithmetic progressions gives

log Q =
∑
p≤t

p≡r1,...,rm (mod M)

log p + O(1) ∼ ∆t ,

and therefore

(3.17) log log Q = log t + log ∆ + o(1) .

Moreover, (2.9), (2.12) and (3.12) show that q = Qk ∼ L(N), whence

(3.18) log log Q = log log L(N)− log k + o(1) .

Combining (3.17) and (3.18) we obtain

t ∼ (k∆)−1 log L(N) ,

and thus by (3.15) and (3.16)

(3.19)
∑
n≤N

E(nq + β) � N exp
(

∆ ·Θ
(

1 + o(1)
k∆

log L(N)
))

.

The function L∗(x) defined by

(L∗(x))−1 := (log(x(log x)−r))r· ξ(x(log x)−r)

is increasing for sufficiently large x and satisfies

log L∗(x) = log L(x) + o(1) (x →∞) .

Since Θ(x + O(1)) = Θ(x) + o(1) it follows from (3.19) that

(3.20)
∑
n≤N

E(nq + β) � N exp(∆ ·Θ((2∆k)−1 log L∗(N))) .

As nq + β ≤ N2 (1 ≤ n ≤ N) for large t, the relation

E(x) = o(exp(∆ ·Θ((2∆k)−1 log L∗(
√

x))))

or its equivalent

E(x) = o(exp(∆ ·Θ((2∆k)−1 log L(
√

x))))

would imply∑
n≤N

E(nq + β) = o(N exp(∆ ·Θ((2∆k)−1 log L∗(N)))) ,

which contradicts (3.20). This proves the Ω+-part of (2.15).
The same argument may be used to obtain the corresponding Ω−-result:

one need only require t in (3.11) to run through values for which µ(Q) = −1.
The estimate E(x) � (log x)r+1 follows immediately from (2.1), (3.1)

and partial summation. This completes the proof of the theorem.
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P r o o f o f C o r o l l a r y 2.3. From f = I ∗ h we infer

R(x) = − 1
2
x2

∑
n>x

h(n)n−2 − x
∑
n≤x

h(n)
n

{
x

n

}
+

1
2
x

∑
n≤x

h(n)
n

+
1
2

∑
n≤x

h(n)
({

x

n

}2

−
{

x

n

})
.

Therefore (3.1) and the convergence of
∑

n≥1 h(n) · n−1 yield

(3.21) R(x) = xE(x) + O(x) +
1
2

∑
n≤x

h(n)
({

x

n

}2

−
{

x

n

})
,

and consequently R(x) � x(log x)r+1 in view of (2.1) and (2.14).
Moreover, (2.1) and the assumption that ξ(x) � (log x)−1 yield∣∣∣∣ ∑
n≤x

h(n)
({

x

n

}2

−
{

x

n

})∣∣∣∣
≤

∑
n≤
√

x

|h(n)|+
∣∣∣∣x x∫
√

x

∑
√

x<n≤t

h(n)
(

2
{

x

t

}
− 1

)
t−2 dt

∣∣∣∣
� x3/4 + xξ(

√
x) log x � x ,

since Abel’s inequality gives∣∣∣ ∑
√

x<n≤t

h(n)
n

n
∣∣∣ ≤ tξ(

√
x) .

P r o o f o f C o r o l l a r y 2.4. A comparison of formulas (3.1) and (3.21)
shows that the assumption ξ(x) = o(1/ log x) implies

R(x) = xE(x) + 1
2b(h)x + o(x) .

Therefore (2.20) follows from (2.19) by partial summation. To obtain (2.19)
one may use the standard approach of Pillai and Chowla [14].

4. Applications. In some of the applications of Theorem 2.2 and its
corollaries it is important to have estimates for sums involving iterates of
the Möbius function.

Lemma 4.1. For d ≥ 2 let µd := µd−1 ∗µ, where µ1 := µ. Then for every
d ≥ 1 there is a positive constant cd for which∑

n≤x

µd(n)n−1 �d exp(−cd

√
log x) .
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P r o o f. By induction. The case d = 1 is the prime number theorem.
Since µd(pj) = (−1)j

(
d
j

)
, it follows that∑

n≤x

|µd(n)|n−1 ≤
∏
p≤x

( ∑
j≥0

|µd(pj)|p−j
)
� (log x)d .

The inductive step is therefore a consequence of the identity (cf. [1],
Thm. 3.17),∑

n≤x

µd(n)n−1 =
∑

n≤
√

x

µd−1(n)n−1
∑

m≤x/n

µ(m)m−1

+
∑

n≤
√

x

µ(n)n−1
∑

m≤x/n

µd−1(m)m−1

−
∑

n≤
√

x

µd−1(n)n−1
∑

n≤
√

x

µ(n)n−1 .

Our first application deals with Nagell’s totient, which is defined for
every natural j by

θ(j, n) := n
∏
p|n

(
1− ε(j, p)

p

)
where

ε(j, p) :=
{

1 if p | j,
2 if (p, j) = 1.

Theorem 4.2. For every positive integer j let

γ(j) := 1
2

∏
p|j

(p2 − 1)(p2 − 2)−1
∏
p

(1− 2p−2) .

Then ∑
n≤x

θ(j, n) = γ(j)x2 + Rj(x)

where
Rj(x) � x(log x)2

and
Rj(x) = Ω±(x log log x) .

P r o o f. Write θ(j, n) = I ∗hj(n), where hj(p) := −ε(j, p) and hj(pα) :=
0 whenever α ≥ 2. A standard argument (cf. [5], Thm. 2) shows that∑

n≤x

|hj(n)| � x

log x

∏
p≤x

(1 + |hj(p)|p−1) � x log x ,

whence hj ∈ C(1, 1).
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In order to estimate
∑

x<n≤y hj(n)n−1, we factorize hj as hj = µ2 ∗Aj .
The Euler product∏

p

( ∑
ν≥0

Aj(pν)p−νs
)

=
∏
p|j

1− p−s

1− 2p−s

∏
p

(1− (ps − 1)−2)

converges absolutely in Re s > 1/2, and thus
∑

n≥1 Aj(n)n−1/2−ε converges
absolutely for every ε > 0.

Therefore by Lemma 4.1∑
n≤x

hj(n)n−1 =
∑

n≤
√

x

Aj(n)n−1
∑

m≤x/n

µ2(m)m−1

+
∑

√
x<n≤x

Aj(n)n−1
∑

m≤x/n

µ2(m)m−1

� exp(−c
√

log x)

for some positive constant c = c(j). Hence there exist constants c1 = c1(j)
and c2 = c2(j) such that for x > 0 we have

sup
y>x

∣∣∣ ∑
x<n≤y

hj(n)n−1
∣∣∣ ≤ c1 exp(−c2

√
log(1 + x)) =: ξj(x) .

Obviously ξj(x) satisfies the assumptions of Corollary 2.3. Furthermore,

Θj(x) =
∑
p≤x

|hj(p)|p−1 = 2 log log x + O(1) ,

and since k = 1 we may take M = 3 (which implies ∆ = 1/2), so (2.10) is
fulfilled. As log L(

√
x) �

√
log x, we have

∆ ·Θj((2∆k)−1 log L(
√

x)) ≥ log log log x + O(1)

and Theorem 4.2 follows from Corollary 2.3.

In the same way we may also deal with Schemmel’s totient, which is a
multiplicative function defined for every natural j by

Φj(pα) :=
{

0 if p ≤ j,
pα(1− j/p) if p > j.

Theorem 4.3. For natural j let

λ(j) := 1
2

∏
p≤j

(1− p−1)
∏
p>j

(1− jp−2) .

Then ∑
n≤x

Φj(n) = λ(j)x2 + Rj(x)

where
Rj(x) � x(log x)j
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and
Rj(x) = Ω±(x(log log x)j/2) .

P r o o f. In this case we have Φj = I ∗ hj , with

hj(pα) :=

{ 0 if α ≥ 2,
−p if α = 1 and p ≤ j,
−j if α = 1 and p > j.

It is readily verified that hj ∈ C(j − 1, 1). As before we factor hj as hj =
µj ∗Bj , where

∑
n≥1 Bj(n)n−1/2−ε converges absolutely for every ε > 0. In

view of Lemma 4.1 we then obtain

(4.1) sup
y>x

∣∣∣ ∑
x<n≤y

hj(n)n−1
∣∣∣ � exp(−c

√
log x)

for an appropriate constant c = c(j) > 0.
Again we may choose M = 3; since

∆ ·Θj(x) = 1
2

∑
p≤x

|hj(p)|p−1 = (j/2) log log x + O(1)

and log L(
√

x) �
√

log x, Corollary 2.3 yields the theorem.

As a further application of the results of Section 2 we will consider the
multiplicative function ϕF defined with respect to an irreducible polynomial
F ∈ Z[x] of degree g ≥ 1 by

ϕF (n) := n
∏
p|n

(1− %F (p)/p)

where %F (p) is the number of zeros of F (x) (mod p). The verification of the
premises of Theorem 2.2 and Corollary 2.3 is somewhat more arduous than
in the first two examples and will be taken care of in a series of lemmas.

In the sequel F (x) = agx
g + . . . + a1x + a0 ∈ Z[x] denotes a fixed

irreducible polynomial of degree g ≥ 1. Furthermore, let K be a splitting
field of F (x)/Q and η ∈ K a fixed zero of F . If we write ϕF = I ∗ hF , then

hF (pα) =
{
−%F (p) if α = 1,
0 if α ≥ 2.

From Erdős ([3], Lemma 7) it follows that

(4.2) ΘF (x) =
∑
p≤x

|hF (p)|p−1 =
∑
p≤x

%F (p)p−1 = log log x + O(1) ,

and thus (cf. [5], Thm. 2)∑
n≤x

|hF (n)| � x

log x

∏
p≤x

(1 + %F (p)/p) � x ,

so that hF ∈ C(0, 1).
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Lemma 4.4. For p unramified in Q(η), if ag and the discriminant
∆(1, η, . . . , ηg−1) are p-adic units, then %F (p) is the number of prime di-
visors of p of degree one in Q(η).

P r o o f. For ag = 1 the proof is well known (cf. [2], pp. 212–213). The
general case is an immediate consequence of [7] (Thm. 7.6 and Prop. 7.7).

Lemma 4.5. There are positive constants c1 = c1(F ) and c2 = c2(F )
such that for x > 0

sup
y>x

∣∣∣ ∑
x<n≤y

hF (n)n−1
∣∣∣ ≤ c1 exp(−c2(log(1 + x))1/12).

P r o o f. By Lemma 4.4 there exists a positive integer D for which %F (p)
is the number of prime divisors of p of degree one in Q(η), whenever p does
not divide D.

Let ζF (s) :=
∏

p(1−N(p)−s)−1 be the Dedekind zeta-function of Q(η),
where N(p) denotes the norm of a prime ideal p of Q(η). Then

HF (s) :=
∑
n≥1

hF (n)n−s = GF (s)/ζF (s),

where

GF (s) :=
∑
n≥1

bF (n)n−s

=
∏
p|D

(1− %F (p)p−s)
∏
p|D

∏
p|p

(1−N(p)−s)−1

×
∏
p - D

∏
p|p

fp>1

(1−N(p)−s)−1
∏
p - D

(1− %F (p)p−s)(1− p−s)−%F (p)

is absolutely convergent in Re s > 1/2; here fp denotes the inertial degree
of the prime ideal p. In particular, for every ε > 0

(4.3)
∑

√
x<n≤x

|bF (n)|n−1 �ε x−1/4+ε .

Writing (ζF (s))−1 =
∑

n≥1 aF (n)n−s, we have (cf. Landau [10], pp. 80–89)

(4.4)
∑
n≥1

aF (n)n−1 = 0

and

(4.5)
∑
n≤x

aF (n) � x exp(−c(log x)1/12)

for some positive constant c = c(F ).
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Partial summation, (4.4) and (4.5) yield

(4.6)
∑
n≤x

aF (n)n−1 � exp(−c1(log x)1/12) .

The lemma now follows from (4.3), (4.6) and the identity∑
n≤x

hF (n)n−1 =
∑

n≤
√

x

bF (n)n−1
∑

m≤x/n

aF (m)m−1

+
∑

√
x<n≤x

bF (n)n−1
∑

m≤x/n

aF (m)m−1.

Lemma 4.6. For a natural number M let ωM be a primitive M-th root
of unity and QM := Q(ωM ). If QM ∩K = Q, then for integers a relatively
prime to M we have

(4.7)
∑
p≤x

p≡a (mod M)

%F (p)p−1 =
1

ϕ(M)
log log x + O(1).

P r o o f. Denote by Gal(K/Q) the Galois group of the extension K/Q and
consider the decomposition Gal(K/Q) =

⋃r
i=1 Γi into conjugation classes.

For a rational prime p, unramified in K, let
[
K/Q
(p)

]
denote the conjugacy

class of the Frobenius automorphism of any prime divisor p of p. If D is
defined as in the proof of Lemma 4.5, then for any p not dividing D, %F (p)

depends only upon
[
K/Q
(p)

]
(cf. [7], Ch. 3, Prop. 2.8), say %F (p) = γi for[

K/Q
(p)

]
= Γi.

By assumption Gal(KQM/Q) = Gal(K/Q) × Gal(QM/Q). If τa is the
element of Gal(QM/Q) such that τa(ωM ) = ωa

M , then we have the following
decomposition into conjugation classes:

Gal(KQM/Q) =
r⋃

i=1

⋃
a (mod M)
(a,M)=1

Γi × {τa}.

Since
[
KQM/Q

(p)

]
= Γi × {τa} implies p ≡ a (mod M) and

[
K/Q
(p)

]
= Γi,

that is, %F (p) = γi, we have

(4.8)
∑
p≤x

p≡a (mod M)

%F (p) =
r∑

i=1

γi · π(i,a)(x) + O(1) ,
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where π(i,a)(x) is the number of primes p not exceeding x for which[
KQM/Q

(p)

]
= Γi × {τa}.

By Chebotarev’s density theorem with error term (cf. [9]), (4.8) implies
that

(4.9)
∑
p≤x

p≡a (mod M)

%F (p) = λ · li(x) + O(x exp(−c
√

log x)),

where the constant

λ := [KQM : Q]−1 ·
r∑

i=1

|Γi|γi

is independent of a. Partial summation in (4.9), gives∑
p≤x

p≡a (mod M)

%F (p)p−1 = λ log log x + O(1) ,

and a comparison with (4.2) yields λ = 1/ϕ(M), which proves (4.7).

Using the previous two lemmas we can now easily prove

Theorem 4.7. For an irreducible nonconstant polynomial F ∈ Z[x] let

ϕF (n) := n
∏
p|n

(1− %F (p)/p),

where %F (p) is the number of zeros of F (mod p). If

cF := 1
2

∏
p

(1− %F (p)p−2)

and q denotes the smallest odd prime that is unramified in a splitting field
K of F (x), then ∑

n≤x

ϕF (n) = cF x2 + RF (x)

where
RF (x) � x log x

and
RF (x) = Ω±(x(log log x)1/(q−1)).

P r o o f. Recall that ϕF = I ∗hF with hF ∈ C(0, 1). By Lemma 4.5 there
are positive constants c1 and c2 such that

sup
y>x

∣∣∣ ∑
x<n≤y

hF (n)n−1
∣∣∣ ≤ c1 exp(−c2(log(1 + x))1/12) =: ξF (x) .

Obviously ξF satisfies the assumptions of Corollary 2.3.
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Since q is totally ramified in Qq, we have Qq ∩K = Q. Lemma 4.6 and
formula (4.2) show that∑

p≤x
p≡a (mod q)

%F (p)p−1 =
1

ϕ(q)
ΘF (x) + O(1) =

1
q − 1

log log x + O(1) .

An application of Corollary 2.3 yields the proof.

Up to this point our examples have dealt with functions I ∗ h, where
h ∈ C(r, 1) for some nonnegative r. In closing we will therefore bring an
application of Corollary 2.3 which involves the class C(0, 2). The relevant
function f is defined by

f(n) :=
∑
d|n

(d,n/d)=1

ϕ(d);

f(n) is the number of integers possessing weak order (mod n) (cf. [8]). In
this case f = I ∗ h where

h(pα) :=
{

0 if α = 1,
1− p if α ≥ 2.

It can be seen without too much difficulty that h ∈ C(0, 2) and it can be
shown that

sup
y>x

∣∣∣ ∑
x<n≤y

h(n)n−1
∣∣∣ � exp(−c

√
log x)

(cf. [6]). Hence Corollary 2.3 gives∑
n≤x

f(n) =
(

1
2

∑
n≥1

h(n)n−2
)
x2 + R(x)

where R(x) � x log x and R(x) = Ω±(x
√

log log x).
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