On semi-strong U-numbers

by
K. Alniaçik (İstanbul)
\section*{Dedicated to Professor Orhan Ş. İçen on his seventieth birthday}

In this paper we shall define irregular semi-strong U_{m}-numbers and semistrong U_{m}-numbers and investigate some properties of such numbers.

Definition $1\left({ }^{1}\right)$. Let $\gamma \in \mathbb{C}$ and $k \in \mathbb{Z}^{+}$. If there are infinitely many polynomials $P_{n}(x) \in \mathbb{Z}[x] \quad\left(\operatorname{deg} P_{n}(x)=m_{n} \leq k\right)$ such that

$$
\begin{equation*}
0<\left|P_{n}(\gamma)\right|=H\left(P_{n}\right)^{-w(n)} \quad(n=1,2, \ldots), \quad \lim _{n \rightarrow \infty} w(n)=\infty, \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
\left|P_{n}(\gamma)\right|<H\left(P_{n+1}\right)^{-\varrho} \quad \text { for some fixed } \varrho>0, \tag{b}
\end{equation*}
$$

then we say that γ is an irregular semi-strong U-number. If $\lim \inf _{n \rightarrow \infty} m_{n}=$ $\lim _{n \rightarrow \infty} m_{n}$, we call γ is a semi-strong U-number. By Theorem 4 in [5] we see that if $\lim \inf _{n \rightarrow \infty} m_{n}=m$ then $\gamma \in U_{m}$. Thus the number $\zeta^{1 / m}$ in Theorem 5 in [5] is a semi-strong U_{m}-number. Furthermore, U_{m}-numbers in [1] and [2] are also semi-strong.

In the sequel $U_{m}^{\text {is }}$ and U_{m}^{s} will denote the set of all irregular semi-strong U_{m}-numbers and the set of all semi-strong U_{m}-numbers respectively.

We shall now collect some lemmas:
Lemma 1. Let α_{1}, α_{2} be two algebraic numbers with different minimal polynomials. Then

$$
\left|\alpha_{1}-\alpha_{2}\right| \geq 2^{-\max \left(n_{1}, n_{2}\right)+1}\left(n_{1}+1\right)^{-n_{2}}\left(n_{2}+1\right)^{-n_{1}} H\left(\alpha_{1}\right)^{-n_{2}} H\left(\alpha_{2}\right)^{-n_{1}}
$$

where n_{1}, n_{2} are the degrees and $H\left(\alpha_{1}\right), H\left(\alpha_{2}\right)$ are the heights of α_{1}, α_{2} respectively. (See Güting [3], Th. 7.)

Research supported by the Scientific and Technical Research Counsil of Turkey.
$\left(^{1}\right)$ We note that the U_{m}-numbers obtained by LeVeque's method in [5] are here called "irregular semi-strong U_{m}-numbers".

Lemma 2. Let α_{1}, α_{2} be conjugate algebraic numbers. Then

$$
\left|\alpha_{1}-\alpha_{2}\right| \geq(4 n)^{1-n / 2}(n+1)^{1-n / 2} H\left(\alpha_{1}\right)^{-n+1 / 2}
$$

where n is the degree of α_{1}. (See Güting [3], Th. 8.)
Lemma 3. Let $P(x) \in \mathbb{Z}[x]$ be a polynomial of degree $\leq n$ with height $\leq H$, and let α be a root of $P(x)=0$. If ξ is a complex number with $|\xi-\alpha|<1$ then

$$
|\xi-\alpha| \geq n^{-2}(1+\xi)^{-n+1} H^{-1}|P(\xi)|
$$

(See Schneider [6], Lemme 15, p. 74.)
Lemma 4. Let $P(x)$ be a polynomial of degree $\leq n, H(P) \leq H$, and assume that $P(x)=0$ has only simple roots. Then

$$
\left|\xi-\alpha_{0}\right| \leq c_{0}\left|a_{0}^{-1}\right| H^{n-1}|P(\xi)|
$$

where $\xi \in \mathbb{C}, c_{0}$ is a positive constant depending only on n, a_{0} is the leading coefficient of $P(x)$ and α_{0} is the root of $P(x)=0$ which is nearest to ξ. (See Schneider [6], Lemme 18, p. 78.)

Lemma 5. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}(k \geq 1)$ be algebraic numbers which belong to an algebraic number field K of degree g, and let $F\left(y, x_{1}, x_{2}, \ldots, x_{k}\right)$ be a polynomial with rational integral coefficients and with degree at least one in y. If η is an algebraic number such that $F\left(\eta, \alpha_{1}, \ldots, \alpha_{k}\right)=0$, then the degree of $\eta \leq d g$ and $h_{\eta} \leq 3^{2 d g+\left(l_{1}+l_{2}+\ldots+l_{k}\right) \cdot g} H^{g} h_{\alpha_{1}}^{l_{1} g} \ldots h_{\alpha_{k}}^{l_{k} g}$, where h_{η} is the height of η, H is the maximum of the absolute values of the coefficients of F, l_{i} is the degree of F in $x_{i}(i=1, \ldots, k), d$ is the degree of F in y, and $h_{\alpha_{i}}$ is the height of $\alpha_{i}(i=1, \ldots, k)$. (See İçen [4].)

Theorem 1. Let $\left\{\alpha_{i}\right\}$ be a sequence of algebraic numbers with

$$
\begin{equation*}
\operatorname{deg} \alpha_{i}=m_{i} \leq k, \quad \lim _{i \rightarrow \infty} H\left(\alpha_{i}\right)=\infty \tag{1}
\end{equation*}
$$

Then

$$
\begin{gather*}
0<\left|\alpha_{i+1}-\alpha_{i}\right|=H\left(\alpha_{i}\right)^{-w(i)} \quad \text { where } \lim _{i \rightarrow \infty} w(i)=\infty \tag{2}\\
\left|\alpha_{i+1}-\alpha_{i}\right| \leq H\left(\alpha_{i+1}\right)^{-\varrho} \quad \text { for some } \varrho>0 \tag{3}
\end{gather*}
$$

$$
\lim _{i \rightarrow \infty} \alpha_{i} \in U_{m}^{\mathrm{is}} \quad \text { where } m=\liminf _{i \rightarrow \infty} m_{i}
$$

Proof. It follows from Lemma 1, Lemma 2, (1) and (2) that $H\left(\alpha_{i+1}\right)>$ $H\left(\alpha_{i}\right)^{2}$ if i is sufficiently large. Let $m, n(m>n)$ be integers. By (1)

$$
\begin{align*}
\left|\alpha_{m}-\alpha_{n}\right| & \leq \sum_{i=n}^{m-1}\left|\alpha_{i+1}-\alpha_{i}\right| \tag{4}\\
& <\sum_{i=n}^{\infty} H\left(\alpha_{i}\right)^{-w(i)}<c_{1} H\left(\alpha_{n}\right)^{-w(n)} \quad(n \text { large })
\end{align*}
$$

where c_{1} is a positive constant not depending on $H\left(\alpha_{n}\right)$. Since $H\left(\alpha_{n}\right)^{-w(n)}$ $\rightarrow 0$ as $n \rightarrow \infty$, (4) shows that $\left\{\alpha_{i}\right\}$ is a Cauchy sequence and so $\lim _{i \rightarrow \infty} \alpha_{i}$ exists. Set $\lim _{i \rightarrow \infty} \alpha_{i}=\gamma$ and let i be a positive integer. Since $\alpha_{i} \rightarrow \gamma$, there is an $\alpha_{s}(s>i)$ such that

$$
\left|\gamma-\alpha_{s}\right| \leq H\left(\alpha_{i}\right)^{-w(i)} .
$$

Using this and (4) we have

$$
\begin{equation*}
0<\left|\gamma-\alpha_{i}\right| \leq\left|\alpha_{s}-\alpha_{i}\right|+\left|\gamma-\alpha_{s}\right|<H\left(\alpha_{i}\right)^{-w(i)+1} \quad(i \text { large }) . \tag{5}
\end{equation*}
$$

Hence applying Lemma 3 (and using (5)) yields

$$
\begin{equation*}
0<\left|P_{i}(\gamma)\right|<H\left(P_{i}\right)^{-w(i) / 2} \quad(i \text { large }) \tag{6}
\end{equation*}
$$

where P_{i} is the minimal polynomial of α_{i}. On the other hand, a combination of (6), (2) and (3) gives us

$$
\begin{equation*}
\left|P_{i}(\gamma)\right|<H\left(P_{i}\right)^{-w(i) / 2}=\left|\alpha_{i+1}-\alpha_{i}\right|^{1 / 2} \leq H\left(P_{i+1}\right)^{-\varrho / 2} \quad(i \text { large }) \tag{7}
\end{equation*}
$$

Thus (6) and (7) show that $\gamma \in U_{m}^{\text {is }}$. Conversely, if $\gamma \in U_{m}^{\text {is }}$, one can show, using Lemma 4, that there exists a sequence of algebraic numbers $\left\{\alpha_{i}\right\}$ satisfying the relations in the theorem for some $\varrho>0$ and a sequence $\{w(i)\}$.

Theorem 2. Let $m \in \mathbb{Z}^{+}$and let $P(x) \in \mathbb{Z}[x]$ be a polynomial of degree ≥ 1. Then there exist infinitely many $\gamma \in U_{m}^{\mathrm{s}}$ such that $P(\gamma) \in U_{m}^{\mathrm{s}}$.

Proof. Let α be an algebraic number of degree m and let $\alpha^{(1)}=$ $\alpha, \alpha^{(2)}, \ldots, \alpha^{(m)}$ denote the field conjugates of α. Let $n \in \mathbb{Z}^{+}, P(x)=$ $\sum_{i=0}^{k} b_{i} x^{i}\left(b_{k} \neq 0\right)$. We consider the equations

$$
\begin{equation*}
P\left(\alpha^{(i)}+y\right)=P\left(\alpha^{(j)}+y\right) \quad(1 \leq i, j \leq m, i \neq j), \tag{8}
\end{equation*}
$$

where $y=n^{-1}$. For fixed $i, j,(8)$ is equivalent to a polynomial equation $a_{k-1} y^{k-1}+\ldots+a_{0}=0$. Since $a_{k-1}=b_{k}\left(\alpha^{(i)}-\alpha^{(j)}\right) \neq 0$, (8) has only finitely many solutions in y. Therefore if n is sufficiently large then $\operatorname{deg} P\left(\alpha+n^{-1}\right)=$ m. Let $\{w(i)\}$ be a sequence of real numbers with $w(i) \rightarrow \infty$ as $i \rightarrow \infty$. Now we define algebraic numbers $\alpha_{i}(i=1,2, \ldots)$ as follows:
(9) $\left\{\begin{array}{cl}\alpha_{1}=\alpha+n_{1}^{-1} & \text { where } n_{1} \in \mathbb{Z}^{+} \text {with } \\ \operatorname{deg} P\left(\alpha+n_{1}^{-1}\right)=m, n_{1}>3^{3 m}, \\ \alpha_{i+1}=\alpha_{i}+n_{i+1}^{-1} & (i \geq 1)\end{array}\right.$
where n_{i+1} is a positive integer satisfying the conditions
(10) (a) $\operatorname{deg} P\left(\alpha_{i}+n_{i+1}^{-1}\right)=m$,
(b) $H\left(\alpha_{i}\right)^{w(i)} \leq n_{i+1}$,
(c) $n_{i}^{2}<n_{i+1}$.

By (9) we have $\alpha_{i+1}=\alpha+\sum_{k=1}^{i+1} n_{k}^{-1}$. On the other hand, it is clear that

$$
H\left(\sum_{k=1}^{i+1} n_{k}^{-1}\right) \leq \prod_{k=1}^{i+1} n_{k}
$$

Using this and (10)(c) in Lemma 5 we obtain

$$
\begin{equation*}
H\left(\alpha_{i+1}\right) \leq n_{i+1}^{2 m+2} \quad(i \text { large }) \tag{11}
\end{equation*}
$$

A combination of (9) and (11) gives us

$$
\begin{equation*}
\left|\alpha_{i+1}-\alpha_{i}\right|=n_{i+1}^{-1} \leq H\left(\alpha_{i+1}\right)^{-1 /(2 m+2)} \quad(i \text { large }) \tag{12}
\end{equation*}
$$

Next it follows from (9) and (10)(b) that

$$
\begin{equation*}
\left|\alpha_{i+1}-\alpha_{i}\right| \leq H\left(\alpha_{i}\right)^{-w(i)} \tag{13}
\end{equation*}
$$

so we have $\gamma=\lim _{i \rightarrow \infty} \alpha_{i} \in U_{m}^{\mathrm{s}}$ by Theorem 1. To prove $P(\gamma) \in U_{m}^{\mathrm{s}}$, we put $P\left(\alpha_{i}\right)=\beta_{i}(i=1,2, \ldots)$. It is well known that

$$
\left|\beta_{i+1}-\beta_{i}\right|=\left|P\left(\alpha_{i+1}\right)-P\left(\alpha_{i}\right)\right|=\left|\alpha_{i+1}-\alpha_{i}\right|\left|P^{\prime}(t)\right| \quad(i=1,2, \ldots)
$$

where $\alpha_{i}<t<\alpha_{i+1}$ and $P^{\prime}(x)$ is the derivative of $P(x)$. Since $\alpha_{i} \rightarrow \gamma$ as $i \rightarrow \infty$, there is a constant $c_{2}>0$ depending only on γ and $P(x)$ such that $\left|P^{\prime}(t)\right|<c_{2}$. Thus we have

$$
\begin{equation*}
\left|\beta_{i+1}-\beta_{i}\right|<\left|\alpha_{i+1}-\alpha_{i}\right| H\left(\alpha_{i}\right) \quad(i \text { large }) \tag{14}
\end{equation*}
$$

On the other hand, applying Lemma 5 (using $(11)_{i}$) we find

$$
\begin{equation*}
H\left(\beta_{i}\right) \leq H\left(\alpha_{i}\right)^{k m+1} \quad(i \text { large }) \tag{15}
\end{equation*}
$$

Hence a combination of (13), (14) and (15) shows that

$$
0<\left|\beta_{i+1}-\beta_{i}\right|<H\left(\beta_{i}\right)^{(-w(i)+1) /(k m+1)} \quad(i \text { large }) .
$$

Next writing (15) for $i+1$ and combining this with (12) and (14) we find

$$
\left|\beta_{i+1}-\beta_{i}\right|<\left|\alpha_{i+1}-\alpha_{i}\right|^{1 / 2}<H\left(\beta_{i+1}\right)^{-1 / \delta}
$$

where $\delta=2(2 m+2)(k m+1)$. So by Theorem 1 we have $\lim _{i \rightarrow \infty} \beta_{i}=$ $P\left(\lim _{i \rightarrow \infty} \alpha_{i}\right)=P(\gamma) \in U_{m}^{\mathrm{s}}$.

The following can be obtained by using the arguments in Theorem 1.
Corollary 1. Let $\gamma \in U_{m}^{\mathrm{s}}$ and $P(x) \in \mathbb{Z}[x]$ with $\operatorname{deg} P(x) \geq 1$. Then $P(\gamma) \in U_{n}^{\mathrm{s}}$, where $n \mid m$.

Corollary 2. Let p be a prime, $\gamma \in U_{p}^{\mathrm{s}}$ and $P(x) \in \mathbb{Z}[x]$ with $1 \leq$ $\operatorname{deg} P(x)<p$. Then $P(\gamma) \in U_{p}^{\mathrm{s}}$.

Theorem 3. Let $m \in \mathbb{Z}^{+}$and let $\left\{P_{n}(x)\right\}$ be a sequence of polynomials in $\mathbb{Z}[x]$ with $\operatorname{deg} P_{n}(x) \geq 1(n=1,2, \ldots)$. Then there are infinitely many $\gamma \in U_{m}^{\mathrm{s}}$ such that $P_{n}(\gamma) \in U_{m}^{\mathrm{s}}(n=1,2, \ldots)$.

Proof. Let $\alpha>1$ be algebraic of degree m and let $\{w(i)\}$ be a sequence of positive real numbers with $\lim _{i \rightarrow \infty} w(i)=\infty$.

We shall construct $N_{k} \in \mathbb{Z}^{+}$as follows:
Let N_{1} be a positive integer satisfying

$$
\begin{equation*}
\operatorname{deg} P_{1}\left(\alpha+N_{1}^{-1}\right)=m, \quad N_{1}>3^{3 m} \tag{16}
\end{equation*}
$$

Then we define $N_{k}(k \geq 2)$ as an integer satisfying the conditions
$(\mathrm{a})_{i, k} \quad \operatorname{deg} P_{i}\left(\alpha+\sum_{j=1}^{k} N_{j}^{-1}\right)=m \quad(i=1,2, \ldots, k)$,
$(\mathrm{b})_{k} \quad H\left(\alpha+\sum_{j=1}^{k-1} N_{j}^{-1}\right)^{w(k-1)}<N_{k}$,
(c) $\quad N_{k-1}^{2}<N_{k}$.

Now set $\alpha_{1}=\alpha+N_{1}^{-1}$ and $\alpha_{i+1}=\alpha_{i}+N_{i+1}^{-1}$ for $i \geq 1$. Using Theorem 2 and $(17)(\mathrm{b})_{k}$ one can show that $\gamma:=\lim _{i \rightarrow \infty} \alpha_{i}=\alpha+\sum_{i=1}^{\infty} N_{i}^{-1} \in U_{m}^{\mathrm{s}}$.

Next, let $n \geq 1$ be an integer. We define algebraic numbers β_{i} as

$$
\beta_{1}=\alpha+\sum_{j=1}^{n} N_{j}^{-1}, \quad \beta_{i+1}=\beta_{i}+N_{n+i}^{-1} \quad(i=1,2, \ldots)
$$

It is clear that $\lim _{i \rightarrow \infty} \beta_{i}=\lim _{i \rightarrow \infty} \alpha_{i}=\gamma$. On the other hand, by (17) (a) $)_{i=n, k=n}$ we deduce $\operatorname{deg} P_{n}\left(\beta_{1}\right)=m$ and by $(17)(\mathrm{a})_{i=n, k=n+j}$, $(17)(\mathrm{b})_{k=n+j}$, and (17)(c) we have

$$
\begin{aligned}
\operatorname{deg} P_{n}\left(\beta_{j}\right)=m, \quad H\left(\beta_{j}\right)^{w(n+j-1)} \leq & N_{n+j} \\
& N_{n+j}^{2}<N_{n+j+1} \quad(j=2,3, \ldots),
\end{aligned}
$$

that is, $\left\{\beta_{j}\right\}$ and $P_{n}(x)$ satisfy the conditions in Theorem 2. Thus $P_{n}(\gamma) \in$ $U_{m}^{\mathrm{s}}(n=1,2, \ldots)$.

Definition 2. Let $\left\{x_{i}\right\}$ be a sequence of positive integers with

$$
\lim _{i \rightarrow \infty} \frac{\log x_{i+1}}{\log x_{i}}=\infty
$$

and let $\gamma \in U_{m}^{\text {is }}$ with convergents $\left\{\alpha_{i}\right\}$ as in Theorem 1 . If there exist a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{i}\right\}$ and positive real numbers k_{1}, k_{2} such that

$$
\begin{equation*}
x_{n_{i}}^{k_{1}} \leq H\left(\alpha_{i}\right) \leq x_{n_{i}}^{k_{2}} \quad(i=1,2, \ldots) \tag{18}
\end{equation*}
$$

then we say that the sequence $\left\{H\left(\alpha_{i}\right)\right\}$ is comparable with $\left\{x_{i}\right\}$.
Theorem 4. Let $\left\{x_{i}\right\}$ be as in Definition 2. Then the set
$F=A \cup\left\{\gamma \in U_{m}^{\text {is }} \mid\left\{H\left(\alpha_{i}\right)\right\}\right.$ is comparable with $\left\{x_{i}\right\}$, where $\left.\alpha_{i} \rightarrow \gamma, m \in \mathbb{Z}^{+}\right\}$ is an uncountable subfield of \mathbb{C} which is algebraically closed.

Proof. Let $y_{1}, y_{2} \in F$. Assume that $y_{1} \in U_{r}^{\text {is }}, y_{2} \in U_{t}^{\text {is }}$. Then there are positive real numbers $k_{1}, k_{2}, k_{3}, k_{4}, \varrho_{1}, \varrho_{2}$ and sequences of algebraic numbers $\left\{\alpha_{i}\right\},\left\{\beta_{i}\right\}\left(\operatorname{deg} \alpha_{i}, \operatorname{deg} \beta_{i} \leq k\right.$, where $\left.k \geq \max (r, t)\right)$ such that

$$
\begin{align*}
0<\left|y_{1}-\alpha_{i}\right| & =H\left(\alpha_{i}\right)^{-w(i)}<H\left(\alpha_{i+1}\right)^{-\varrho_{1}}, \\
\lim _{i \rightarrow \infty} w(i) & =\infty, \quad \lim _{i \rightarrow \infty} H\left(\alpha_{i}\right)=\infty, \tag{19}\\
0<\left|y_{2}-\beta_{i}\right| & =H\left(\beta_{i}\right)^{-w_{2}(i)}<H\left(\beta_{i+1}\right)^{-\varrho_{2}}, \\
\lim _{i \rightarrow \infty} w_{2}(i) & =\infty, \quad \lim _{i \rightarrow \infty} H\left(\beta_{i}\right)=\infty, \tag{20}
\end{align*}
$$

and subsequences $\left\{x_{n_{i}}\right\},\left\{x_{m_{i}}\right\}$ of $\left\{x_{i}\right\}$ satisfying

$$
\begin{align*}
x_{n_{i}}^{k_{1}} & \leq H\left(\alpha_{i}\right) \leq x_{n_{i}}^{k_{2}} \quad(i=1,2, \ldots), \tag{21}\\
x_{m_{i}}^{k_{3}} & \leq H\left(\beta_{i}\right) \leq x_{m_{i}}^{k_{4}} \quad(i=1,2, \ldots) . \tag{22}
\end{align*}
$$

Let $\left\{x_{r_{i}}\right\}$ denote the monotonic union sequence formed from $\left\{x_{n_{i}}\right\},\left\{x_{m_{i}}\right\}$. Assume that $x_{r_{i_{0}}}>\max \left(H\left(\alpha_{1}\right), H\left(\beta_{1}\right)\right)$. We define positive integers $j(i)$, $t(i)$ and then algebraic numbers δ_{i} as
(23) $n_{j(i)}=\max \left\{n_{\nu} \mid n_{\nu} \leq r_{i}\right\}, \quad m_{t(i)}=\max \left\{m_{\nu} \mid m_{\nu} \leq r_{i}\right\}, \quad i>i_{0}$,

$$
\begin{equation*}
\delta_{i}=\alpha_{j(i)}+\beta_{t(i)} . \tag{24}
\end{equation*}
$$

Consider the set $B=\left\{\delta_{i} \mid i \geq i_{0}\right\}$. If B contains only finitely many algebraic numbers, there is a subsequence of $\{i\}$, say $\left\{i_{k}\right\}$, and an algebraic number δ which belongs to B such that

$$
\delta=\alpha_{j\left(i_{k}\right)}+\beta_{t\left(i_{k}\right)} \quad(k=1,2, \ldots) .
$$

In this equality taking limit as $k \rightarrow \infty$ we obtain $y_{1}+y_{2}=\delta \in A \subset F$. Secondly, assume that B contains infinitely many algebraic numbers. Hence there is a subsequence $\left\{i_{k}\right\}$ of $\{i\}$ with

$$
\begin{equation*}
\delta_{i_{k}}=\alpha_{j\left(i_{k}\right)}+\beta_{t\left(i_{k}\right)} \tag{25}
\end{equation*}
$$

$\left(i_{1}>i_{0}, \delta_{i_{r}} \neq \delta_{i_{s}}\right.$ if $r \neq s, k=1,2, \ldots, i_{r}<i_{s}$ for $r<s, \delta_{i_{k}}=\delta_{j}$ for $\left.j=i_{k}+1, i_{k}+2, \ldots, i_{k+1}-1\right)$.

On the other hand, by Lemma 5, we have

$$
\begin{equation*}
H\left(\delta_{i_{k}}\right) \leq 3^{2 k^{2}} H\left(\alpha_{j\left(i_{k}\right)}\right)^{k^{2}} H\left(\beta_{t\left(i_{k}\right)}\right)^{k^{2}} \quad(k=1,2, \ldots) . \tag{26}
\end{equation*}
$$

Next by (21) and (22) we get

$$
H\left(\alpha_{j\left(i_{k}\right)}\right) \leq x_{n_{j\left(i_{k}\right)}}^{k_{2}}, \quad H\left(\beta_{t\left(i_{k}\right)}\right) \leq x_{m_{t\left(i_{k}\right)}}^{k_{4}} .
$$

Finally, by (23), we obtain

$$
H\left(\alpha_{j\left(i_{k}\right)}\right), H\left(\beta_{t\left(i_{k}\right)}\right) \leq x_{r_{i_{k}}}^{\max \left(k_{2}, k_{4}\right)} .
$$

Thus using this in (25) and putting $k_{5}=k^{2} \max \left(k_{2}, k_{4}\right)+1$ yields

$$
\begin{equation*}
H\left(\delta_{i_{k}}\right) \leq x_{r_{i_{k}}}^{k_{5}} \quad(k \text { large }) \tag{27}
\end{equation*}
$$

On the other hand, a combination of (21), (22) and (23) gives us

$$
\begin{align*}
& H\left(\alpha_{j\left(i_{k+1}-1\right)+1}\right) \geq x_{n_{j\left(i_{k+1}-1\right)+1}}^{k_{1}} \geq x_{r_{i_{k+1}}}^{k_{1}} \\
& H\left(\beta_{t\left(i_{k+1}-1\right)+1}\right) \geq x_{m_{j\left(i_{k+1}-1\right)+1}}^{k_{3}} \geq x_{r_{i_{k+1}}}^{k_{3}} \tag{28}
\end{align*}
$$

Using (19), (20) and (28) shows that

$$
\begin{align*}
&\left|y_{1}+y_{2}-\delta_{i_{k}}\right|=\left|y_{1}+y_{2}-\delta_{i_{k+1}-1}\right| \\
& \leq\left|y_{1}-\alpha_{j\left(i_{k+1}-1\right)}\right|+\left|y_{2}-\beta_{t\left(i_{k+1}-1\right)}\right| \tag{29}\\
& H\left(\alpha_{j\left(i_{k+1}-1\right)+1}\right)^{-\varrho_{1}}+H\left(\beta_{t\left(i_{k+1}-1\right)+1}\right)^{-\varrho_{2}} \leq 2 x_{r_{i_{k+1}}}^{-\varrho}
\end{align*}
$$

where $\varrho=\min \left(\varrho_{1} k_{1}, \varrho_{2} k_{3}\right)$.
Next, writing (27) with k replaced by $k+1$ and using this in (29) we have

$$
\begin{equation*}
\left|y_{1}+y_{2}-\delta_{i_{k}}\right| \leq H\left(\delta_{i_{k+1}}\right)^{-\varrho / 2 k_{5}} \quad(k \text { large }) . \tag{30}
\end{equation*}
$$

Furthermore, it follows from (27) and (29) that

$$
\left|y_{1}+y_{2}-\delta_{i_{k}}\right| \leq H\left(\delta_{i_{k}}\right)^{-w\left(i_{k}\right)} \quad(k \text { large })
$$

where $w\left(i_{k}\right)=\varrho \log x_{r_{i_{k+1}}} / 2 k_{5} \log x_{r_{i_{k}}}$. It is clear that $w\left(i_{k}\right) \rightarrow \infty$ as $k \rightarrow$ ∞, so we have $y_{1}+y_{2} \in U_{m}^{\text {is }}$ for some $m \leq k^{2}$.

Now we show that $\left\{H\left(\delta_{i_{k}}\right)\right\}$ is comparable with $\left\{x_{i}\right\}$. Using (29) and $x_{r_{i_{k+1}}}>x_{r_{i_{k}}}$ in the inequality $\left|\delta_{i_{k+1}}-\delta_{i_{k}}\right| \leq\left|y_{1}+y_{2}-\delta_{i_{k+1}}\right|+\left|y_{1}+y_{2}-\delta_{i_{k}}\right|$ we obtain

$$
\begin{equation*}
\left|\delta_{i_{k+1}}-\delta_{i_{k}}\right| \leq x_{r_{i_{k+1}}}^{-\varrho / 2} \quad(k \text { large }) . \tag{31}
\end{equation*}
$$

Next, by Lemma 1,

$$
\left|\delta_{i_{k+1}}-\delta_{i_{k}}\right| \geq H\left(\delta_{i_{k+1}}\right)^{-3 k^{2}} \quad(k \text { large }) .
$$

Combining this with (31) gives

$$
\begin{equation*}
H\left(\delta_{i_{k+1}}\right)>x_{r_{i_{k+1}}}^{-\varrho / 6 k^{2}} \quad(k \text { large }) \tag{32}
\end{equation*}
$$

Thus (27) and (32) show that $\left\{H\left(\delta_{i_{k}}\right)\right\}$ is comparable with $\left\{x_{i}\right\}$, that is, $y_{1}+y_{2} \in F$.

Now we show that $y_{1} y_{2} \in F$. For this we shall approximate $y_{1} y_{2}$ by algebraic numbers δ_{i}^{\prime} defined as

$$
\begin{equation*}
\delta_{i}^{\prime}=\alpha_{j(i)} \cdot \beta_{t(i)} \quad\left(i>i_{0}\right) \tag{33}
\end{equation*}
$$

If $B=\left\{\delta_{i}^{\prime} \mid i>i_{0}\right\}$ contains only finitely many algebraic numbers, then it follows from (33) that $y_{1} y_{2} \in A \subset F$. If not, there is a subsequence $\left\{i_{k}\right\}$ of $\{i\}$ such that

$$
\begin{equation*}
\delta_{i_{k}}^{\prime}=\alpha_{j\left(i_{k}\right)} \cdot \beta_{t\left(i_{k}\right)} \tag{34}
\end{equation*}
$$

$\left(i_{1}>i_{0}, \delta_{i_{r}} \neq \delta_{i_{s}}\right.$ if $r \neq s, k=1,2, \ldots, i_{r}<i_{s}$ for $r<s, \delta_{j}=\delta_{i_{k}}$ for $j=i_{k}+1, i_{k}+2, \ldots, i_{k+1}-1$). Using (19), (20) and (28) we obtain
(35) $\left|y_{1} y_{2}-\delta_{i_{k}}^{\prime}\right|=\left|y_{1} y_{2}-\delta_{i_{k+1}-1}^{\prime}\right|=\left|y_{1} y_{2}-\alpha_{j\left(i_{k+1}-1\right)} \cdot \beta_{t\left(i_{k+1}-1\right)}\right|$

$$
\begin{aligned}
& \leq\left|y_{1}\right|\left|y_{2}-\beta_{t\left(i_{k+1}-1\right)}\right|+\left|\beta_{t\left(i_{k+1}-1\right)}\right|\left|y_{1}-\alpha_{j\left(i_{k+1}-1\right)}\right| \\
& \leq M x_{r_{i_{k+1}}}^{-\varrho}
\end{aligned}
$$

where $M=2 \max \left\{\left|y_{1}\right|,\left|y_{2}\right|+1\right\}$.
On the other hand, using similar arguments to the previous steps, we obtain

$$
\begin{equation*}
H\left(\delta_{i_{k}}^{\prime}\right) \leq x_{r_{i_{k}}}^{k_{5}} \quad(k \text { large }) . \tag{36}
\end{equation*}
$$

Hence, using (35) and (36), we get

$$
\left|y_{1} y_{2}-\delta_{i_{k}}^{\prime}\right| \leq H\left(\delta_{i_{k+1}}^{\prime}\right)^{-\varrho / 2 k_{5}} \leq H\left(\delta_{i_{k}}^{\prime}\right)^{w\left(i_{k}\right)} \quad(k \text { large })
$$

where $w\left(i_{k}\right) \rightarrow \infty$ as $k \rightarrow \infty$, which shows that $y_{1} y_{2} \in U_{m}^{\text {is }}$ for some $m \leq k^{2}$. Next by using Lemma 1 and (35), one can show that $\left\{H\left(\delta_{i_{k}}^{\prime}\right)\right\}$ is comparable with $\left\{x_{i}\right\}$ and so we have $y_{1} y_{2} \in F$.

Finally let $\alpha \in A$. Then using similar arguments to the proof of the fact that $y_{1}+y_{2}, y_{1} y_{2} \in F$, and approximating $\alpha y_{1}, \alpha+y_{1},-y_{1}, y_{1}^{-1}$ by $\left\{\alpha \alpha_{i}\right\}$, $\left\{\alpha+\alpha_{i}\right\},\left\{-\alpha_{i}\right\},\left\{\alpha_{i}^{-1}\right\}$ respectively, one can show that $\alpha y_{1}, \alpha+y_{1},-y_{1}$, $y_{1}^{-1} \in F$.

Now we show that F is algebraically closed. Consider the equation

$$
f(x)=a_{0}+a_{1} x+\ldots+a_{k} x^{k}=0 \quad\left(k \geq 1, a_{k} \neq 0\right)
$$

where $a_{i} \in F$. We may assume that $a_{\nu} \in U_{m}^{\text {is }}(\nu=0,1, \ldots, k)$; only trivial changes are required if some are algebraic. Hence there are sequences of algebraic numbers $\alpha_{i}^{(\nu)}(\nu=0,1, \ldots, k)$, subsequences $\left\{x_{n_{i}^{(\nu)}}\right\}(\nu=0,1, \ldots, k)$ and positive real numbers $\varrho_{\nu}, k_{1}^{(\nu)}, k_{2}^{(\nu)}, t_{\nu}(\nu=0,1, \ldots, k)$ with the following properties:

$$
\begin{equation*}
\left|a_{\nu}-\alpha_{i}^{(\nu)}\right|=H\left(\alpha_{i}^{(\nu)}\right)^{-w_{\nu}(i)}<H\left(\alpha_{i+1}^{(\nu)}\right)^{-\varrho_{\nu}} \tag{37}
\end{equation*}
$$

$\left(\operatorname{deg} \alpha_{i}^{(\nu)} \leq t_{\nu}, \nu=0,1, \ldots, k, i=1,2, \ldots\right)$,

$$
\begin{equation*}
x_{n_{i}^{(\nu)}}^{k_{1}^{(\nu)}} \leq H\left(\alpha_{i}^{(\nu)}\right) \leq x_{n_{i}^{(\nu)}}^{k_{2}^{(\nu)}} \quad(\nu=0,1, \ldots, k, i=1,2, \ldots) . \tag{38}
\end{equation*}
$$

We may also assume that all roots of $f(x)=0$ are simple.
Let $f(\gamma)=0$ for some $\gamma \in \mathbb{C}$ and let $\left\{x_{r_{i}}\right\}$ be the monotonic union sequence formed from $\left\{x_{n_{i}^{(0)}}\right\},\left\{x_{n_{i}^{(1)}}\right\}, \ldots,\left\{x_{n_{i}^{(k)}}\right\}$. Let $r_{i_{0}}$ be a positive integer with $x_{r_{i_{0}}} \geq \max _{\nu=0,1, \ldots, k} H\left(\alpha_{1}^{(\nu)}\right)$. For $i \geq i_{0}$ we define integers $j_{\nu}(i)$ and polynomials $F_{i}(x)$ as

$$
\begin{equation*}
j_{\nu}(i)=\max \left\{n_{r}^{(\nu)} \mid n_{r}^{(\nu)} \leq r_{i}\right\} \quad(\nu=0,1, \ldots, k), \tag{39}
\end{equation*}
$$

$$
\begin{equation*}
F_{i}(x)=\alpha_{j_{0}(i)}^{(0)}+\alpha_{j_{1}(i)}^{(1)} x+\ldots+\alpha_{j_{k}(i)}^{(k)} x^{k} \quad\left(i \geq i_{0}\right) . \tag{40}
\end{equation*}
$$

Since $\alpha_{j_{\nu}(i)}^{(\nu)} \rightarrow a_{\nu}$ as $i \rightarrow \infty \quad(\nu=0,1, \ldots, k)$, there is a sequence of algebraic numbers $\left\{\delta_{i}\right\}$ such that $F_{i}\left(\delta_{i}\right)=0$ and $\delta_{i} \rightarrow \gamma$ as $i \rightarrow \infty$. Now if $\gamma \in A$ then there is nothing to prove. Therefore we may suppose that $\gamma \notin A$. This yields that the set $\left\{\delta_{i} \mid i \geq i_{0}\right\}$ is infinite. Furthermore, we shall assume that $\delta_{r} \neq \delta_{s}$ if $r \neq s$ (if not, the proof can be completed using the arguments in (24), (25)).

It is well known that

$$
\begin{equation*}
f(\gamma)-f\left(\delta_{i}\right)=\eta\left(\gamma-\delta_{i}\right) f^{\prime}\left(\theta_{i}\right) \tag{41}
\end{equation*}
$$

where $\eta \in \mathbb{C}$ with $0 \leq|\eta| \leq 1$ and θ_{i} is a complex number on the segment $\overline{\gamma \delta_{i}}$. Since γ is a simple root of $f(x)=0$, we have $f^{\prime}(\gamma) \neq 0$. Furthermore, since $\delta_{i} \rightarrow \gamma$ as $i \rightarrow \infty$, there is a constant c_{3} such that $\left|f^{\prime}\left(\theta_{i}\right)\right|>c_{3}$ for large i. Thus, using this and $f(\gamma)=0$ in (41), we obtain

$$
\begin{equation*}
\left|\gamma-\delta_{i}\right|<\left(|\eta| c_{3}\right)^{-1}\left|f\left(\delta_{i}\right)\right| \quad(i \text { large }) . \tag{42}
\end{equation*}
$$

Now we give an upper bound for $\left|f\left(\delta_{i}\right)\right|$. Using (37) we obtain

$$
\begin{aligned}
& \left|f\left(\delta_{i}\right)\right|=\left|\sum_{t=0}^{k}\left(a_{t}-\alpha_{j_{t}(i)}^{(t)}+\alpha_{j_{t}(i)}^{(t)}\right) \delta_{i}^{t}\right| \leq \sum_{t=0}^{k}\left|a_{t}-\alpha_{j_{t}(i)}^{(t)}\right|\left|\delta_{i}^{t}\right| \\
& \leq\left\{H\left(\alpha_{j_{0}(i)+1}^{(0)}\right)^{-\varrho_{0}}+H\left(\alpha_{j_{1}(i)+1}^{(1)}\right)^{-\varrho_{1}}+\ldots\right. \\
& \left.\ldots+H\left(\alpha_{i_{k}(i)+1}^{(k)}\right)^{-\varrho_{k}}\right\} \max \left(1,\left|\delta_{i}\right|\right)^{k}
\end{aligned}
$$

and so

$$
\begin{equation*}
\left|f\left(\delta_{i}\right)\right| \leq c_{4}\left\{\min _{\nu=0,1, \ldots, k} H\left(\alpha_{j_{t}(i)+1}^{(\nu)}\right)\right\}^{-\varrho} \tag{43}
\end{equation*}
$$

where $c_{4}=(k+1)(|\gamma|+1)^{k}$ and $\varrho=\min _{\nu=0,1, \ldots, k}\left\{\varrho_{\nu}\right\}$.
On the other hand, by (38) and (39) we have

$$
\min _{\nu=0,1, \ldots, k}\left\{H\left(\alpha_{j_{\nu}(i)+1}^{(\nu)}\right)\right\} \geq x_{n_{j_{\nu}(i)+1}}^{k_{\nu}^{(\nu)}} \geq x_{r_{i+1}}^{k_{\nu}^{(\nu)}} \geq x_{r_{i+1}}^{k_{6}} \quad(i \text { large })
$$

where $k_{6}=\min _{\nu=0,1, \ldots, k}\left\{k_{1}^{(\nu)}\right\}$. Combining this with (42) and (43) we obtain

$$
\begin{equation*}
\left|\gamma-\delta_{i}\right| \leq c_{4}\left(c_{3}|\eta|\right)^{-1} x_{r_{i+1}}^{-k_{6}}<x_{r_{i+1}}^{-k_{6} / 2} \quad(i \text { large }) . \tag{44}
\end{equation*}
$$

Next, applying Lemma 5 (using (39) and (40)), we get

$$
H\left(\delta_{i}\right) \leq x_{r_{i}}^{k_{7}} \quad(i \text { large })
$$

where $k_{7}>0$ is a fixed real number. Using this in (44) we obtain

$$
\left|\gamma-\delta_{i}\right|=H\left(\delta_{i}\right)^{w_{4}(i)}<H\left(\delta_{i+1}\right)^{\left(-k_{6} \varrho / 2\right) k_{7}} \quad(i \text { large })
$$

where $w_{4}(i) \rightarrow \infty$ as $i \rightarrow \infty$, which shows $\gamma \in U_{m}^{\text {is }}$ for some $m \in \mathbb{Z}^{+}$. Finally, using similar arguments to the previous steps, one can show that $H\left(\delta_{i}\right)$ is comparable with $\left\{x_{i}\right\}$ and this completes the proof.

As a consequence of Theorem 4 we have
Corollary 3. Let $\left\{x_{i}\right\}$ be a sequence as in Definition 1. Then the set of all semi-strong Liouville numbers comparable with $\left\{x_{i}\right\}$, together with the rationals, forms an uncountable subfield of \mathbb{R}.

Furthermore, the following can be obtained by using arguments in Theorem 4:

Corollary 4. Let $F\left(y, x_{1}, x_{2}, \ldots, x_{k}\right)$ be a polynomial with algebraic coefficients, $\gamma \in U$ and $\gamma_{i} \in U_{m_{i}}^{\text {is }}(i=1, \ldots, k)$. Then $F\left(\gamma, \gamma_{1}, \ldots, \gamma_{k}\right) \in$ $U \cup A$.

References

[1] K. Alniaçik, On Mahler's U-numbers, Amer. J. Math. 105 (6) (1983), 1347-1356.
[2] A. Baker, Transcendental Number Theory, Cambridge University Press, London and New York 1975, 90-91.
[3] R. Güting, Approximation of algebraic numbers by algebraic numbers, Michigan Math. J. 8 (1961), 149-159.
[4] O. Ş. İçen, Anhang zu den Arbeiten "Über die Funktionswerte der p-adisch elliptischen Funktionen I und II", İstanbul Univ. Fen Fak. Mecm. Ser. A 38 (1973), 25-35.
[5] W. J. LeVeque, On Mahler's U-numbers, J. London Math. Soc. 28 (1953), 220-229.
[6] T. Schneider, Introduction aux Nombres Transcendants, Gauthier-Villars, Paris 1959.

İSTANBUL ÜNIVERSITESI
FEN FAKÜLTESI
MATEMATIK BÖLÜMÜ
VEZNECILER, İSTANBUL
tURKEY

