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In this paper we shall define irregular semi-strong Um-numbers and semi-
strong Um-numbers and investigate some properties of such numbers.

Definition 1 (1). Let γ ∈ C and k ∈ Z+. If there are infinitely many
polynomials Pn(x) ∈ Z[x] (deg Pn(x) = mn ≤ k) such that

(a) 0 < |Pn(γ)| = H(Pn)−w(n) (n = 1, 2, . . .), lim
n→∞

w(n) = ∞ ,

(b) |Pn(γ)| < H(Pn+1)−% for some fixed % > 0 ,

then we say that γ is an irregular semi-strong U-number. If lim infn→∞mn=
limn→∞mn, we call γ is a semi-strong U-number. By Theorem 4 in [5] we
see that if lim infn→∞mn = m then γ ∈ Um. Thus the number ζ1/m in
Theorem 5 in [5] is a semi-strong Um-number. Furthermore, Um-numbers
in [1] and [2] are also semi-strong.

In the sequel U is
m and U s

m will denote the set of all irregular semi-strong
Um-numbers and the set of all semi-strong Um-numbers respectively.

We shall now collect some lemmas:

Lemma 1. Let α1, α2 be two algebraic numbers with different minimal
polynomials. Then

|α1 − α2| ≥ 2−max(n1,n2)+1(n1 + 1)−n2(n2 + 1)−n1H(α1)−n2H(α2)−n1

where n1, n2 are the degrees and H(α1),H(α2) are the heights of α1, α2

respectively. (See Güting [3], Th. 7.)
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(1) We note that the Um-numbers obtained by LeVeque’s method in [5] are here called
“irregular semi-strong Um-numbers”.
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Lemma 2. Let α1, α2 be conjugate algebraic numbers. Then

|α1 − α2| ≥ (4n)1−n/2(n + 1)1−n/2H(α1)−n+1/2

where n is the degree of α1. (See Güting [3], Th. 8.)

Lemma 3. Let P (x) ∈ Z[x] be a polynomial of degree ≤ n with height
≤ H, and let α be a root of P (x) = 0. If ξ is a complex number with
|ξ − α| < 1 then

|ξ − α| ≥ n−2(1 + ξ)−n+1H−1|P (ξ)| .
(See Schneider [6], Lemme 15, p. 74.)

Lemma 4. Let P (x) be a polynomial of degree ≤ n, H(P ) ≤ H, and
assume that P (x) = 0 has only simple roots. Then

|ξ − α0| ≤ c0|a−1
0 |Hn−1|P (ξ)|

where ξ ∈ C, c0 is a positive constant depending only on n, a0 is the leading
coefficient of P (x) and α0 is the root of P (x) = 0 which is nearest to ξ. (See
Schneider [6], Lemme 18, p. 78.)

Lemma 5. Let α1, α2, . . . , αk (k ≥ 1) be algebraic numbers which belong
to an algebraic number field K of degree g, and let F (y, x1, x2, . . . , xk) be
a polynomial with rational integral coefficients and with degree at least one
in y. If η is an algebraic number such that F (η, α1, . . . , αk) = 0, then the
degree of η ≤ dg and hη ≤ 32dg+(l1+l2+...+lk)·gHghl1g

α1
. . . hlkg

αk
, where hη is

the height of η, H is the maximum of the absolute values of the coefficients
of F , li is the degree of F in xi (i = 1, . . . , k), d is the degree of F in y, and
hαi is the height of αi (i = 1, . . . , k). (See İçen [4].)

Theorem 1. Let {αi} be a sequence of algebraic numbers with

(1) deg αi = mi ≤ k, lim
i→∞

H(αi) = ∞ ,

(2) 0 < |αi+1 − αi| = H(αi)−w(i) where lim
i→∞

w(i) = ∞ ,

(3) |αi+1 − αi| ≤ H(αi+1)−% for some % > 0 .

Then
lim

i→∞
αi ∈ U is

m where m = lim inf
i→∞

mi .

P r o o f. It follows from Lemma 1, Lemma 2, (1) and (2) that H(αi+1) >
H(αi)2 if i is sufficiently large. Let m, n (m > n) be integers. By (1)

|αm − αn| ≤
m−1∑
i=n

|αi+1 − αi|(4)

<
∞∑

i=n

H(αi)−w(i) < c1H(αn)−w(n) (n large)
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where c1 is a positive constant not depending on H(αn). Since H(αn)−w(n)

→ 0 as n →∞, (4) shows that {αi} is a Cauchy sequence and so limi→∞ αi

exists. Set limi→∞ αi = γ and let i be a positive integer. Since αi → γ,
there is an αs (s > i) such that

|γ − αs| ≤ H(αi)−w(i) .

Using this and (4) we have

(5) 0 < |γ − αi| ≤ |αs − αi|+ |γ − αs| < H(αi)−w(i)+1 (i large) .

Hence applying Lemma 3 (and using (5)) yields

(6) 0 < |Pi(γ)| < H(Pi)−w(i)/2 (i large)

where Pi is the minimal polynomial of αi. On the other hand, a combination
of (6), (2) and (3) gives us

(7) |Pi(γ)| < H(Pi)−w(i)/2 = |αi+1 − αi|1/2 ≤ H(Pi+1)−%/2 (i large) .

Thus (6) and (7) show that γ ∈ U is
m. Conversely, if γ ∈ U is

m, one can
show, using Lemma 4, that there exists a sequence of algebraic numbers
{αi} satisfying the relations in the theorem for some % > 0 and a sequence
{w(i)}.

Theorem 2. Let m ∈ Z+ and let P (x) ∈ Z[x] be a polynomial of degree
≥ 1. Then there exist infinitely many γ ∈ U s

m such that P (γ) ∈ U s
m.

P r o o f. Let α be an algebraic number of degree m and let α(1) =
α, α(2), . . . , α(m) denote the field conjugates of α. Let n ∈ Z+, P (x) =∑k

i=0 bix
i (bk 6= 0). We consider the equations

(8) P (α(i) + y) = P (α(j) + y) (1 ≤ i, j ≤ m, i 6= j) ,

where y = n−1. For fixed i, j, (8) is equivalent to a polynomial equation
ak−1y

k−1+. . .+a0 = 0. Since ak−1 = bk(α(i)−α(j)) 6= 0, (8) has only finitely
many solutions in y. Therefore if n is sufficiently large then deg P (α+n−1) =
m. Let {w(i)} be a sequence of real numbers with w(i) → ∞ as i → ∞.
Now we define algebraic numbers αi (i = 1, 2, . . .) as follows:

(9)

 α1 = α + n−1
1 where n1 ∈ Z+ with

deg P (α + n−1
1 ) = m, n1 > 33m ,

αi+1 = αi + n−1
i+1 (i ≥ 1)

where ni+1 is a positive integer satisfying the conditions

(10) (a) deg P (αi + n−1
i+1) = m , (b) H(αi)w(i) ≤ ni+1 , (c) n2

i < ni+1 .
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By (9) we have αi+1 = α +
∑i+1

k=1 n−1
k . On the other hand, it is clear that

H
( i+1∑

k=1

n−1
k

)
≤

i+1∏
k=1

nk .

Using this and (10)(c) in Lemma 5 we obtain

(11) H(αi+1) ≤ n2m+2
i+1 (i large) .

A combination of (9) and (11) gives us

(12) |αi+1 − αi| = n−1
i+1 ≤ H(αi+1)−1/(2m+2) (i large) .

Next it follows from (9) and (10)(b) that

(13) |αi+1 − αi| ≤ H(αi)−w(i) ,

so we have γ = limi→∞ αi ∈ U s
m by Theorem 1. To prove P (γ) ∈ U s

m, we
put P (αi) = βi (i = 1, 2, . . .). It is well known that

|βi+1 − βi| = |P (αi+1)− P (αi)| = |αi+1 − αi| |P ′(t)| (i = 1, 2, . . .)

where αi < t < αi+1 and P ′(x) is the derivative of P (x). Since αi → γ as
i →∞, there is a constant c2 > 0 depending only on γ and P (x) such that
|P ′(t)| < c2. Thus we have

(14) |βi+1 − βi| < |αi+1 − αi|H(αi) (i large) .

On the other hand, applying Lemma 5 (using (11)i) we find

(15) H(βi) ≤ H(αi)km+1 (i large) .

Hence a combination of (13), (14) and (15) shows that

0 < |βi+1 − βi| < H(βi)(−w(i)+1)/(km+1) (i large) .

Next writing (15) for i + 1 and combining this with (12) and (14) we find

|βi+1 − βi| < |αi+1 − αi|1/2 < H(βi+1)−1/δ

where δ = 2(2m + 2)(km + 1). So by Theorem 1 we have limi→∞ βi =
P (limi→∞ αi) = P (γ) ∈ U s

m.

The following can be obtained by using the arguments in Theorem 1.

Corollary 1. Let γ ∈ U s
m and P (x) ∈ Z[x] with deg P (x) ≥ 1. Then

P (γ) ∈ U s
n, where n | m.

Corollary 2. Let p be a prime, γ ∈ U s
p and P (x) ∈ Z[x] with 1 ≤

deg P (x) < p. Then P (γ) ∈ U s
p.

Theorem 3. Let m ∈ Z+ and let {Pn(x)} be a sequence of polynomials
in Z[x] with deg Pn(x) ≥ 1 (n = 1, 2, . . .). Then there are infinitely many
γ ∈ U s

m such that Pn(γ) ∈ U s
m (n = 1, 2, . . .).
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P r o o f. Let α > 1 be algebraic of degree m and let {w(i)} be a sequence
of positive real numbers with limi→∞ w(i) = ∞.

We shall construct Nk ∈ Z+ as follows:
Let N1 be a positive integer satisfying

(16) deg P1(α + N−1
1 ) = m , N1 > 33m .

Then we define Nk (k ≥ 2) as an integer satisfying the conditions

(a)i,k deg Pi

(
α +

k∑
j=1

N−1
j

)
= m (i = 1, 2, . . . , k) ,

(17) (b)k H
(
α +

k−1∑
j=1

N−1
j

)w(k−1)

< Nk ,

(c) N2
k−1 < Nk .

Now set α1 = α + N−1
1 and αi+1 = αi + N−1

i+1 for i ≥ 1. Using Theorem 2
and (17)(b)k one can show that γ := limi→∞ αi = α +

∑∞
i=1 N−1

i ∈ U s
m.

Next, let n ≥ 1 be an integer. We define algebraic numbers βi as

β1 = α +
n∑

j=1

N−1
j , βi+1 = βi + N−1

n+i (i = 1, 2, . . .) .

It is clear that limi→∞ βi = limi→∞ αi = γ. On the other hand, by
(17)(a)i=n,k=n we deduce deg Pn(β1) = m and by (17)(a)i=n,k=n+j ,
(17)(b)k=n+j , and (17)(c) we have

deg Pn(βj) = m , H(βj)w(n+j−1) ≤ Nn+j ,

N2
n+j < Nn+j+1 (j = 2, 3, . . .) ,

that is, {βj} and Pn(x) satisfy the conditions in Theorem 2. Thus Pn(γ) ∈
U s

m (n = 1, 2, . . .).

Definition 2. Let {xi} be a sequence of positive integers with

lim
i→∞

log xi+1

log xi
= ∞

and let γ ∈ U is
m with convergents {αi} as in Theorem 1. If there exist a

subsequence {xni
} of {xi} and positive real numbers k1, k2 such that

(18) xk1
ni
≤ H(αi) ≤ xk2

ni
(i = 1, 2, . . .)

then we say that the sequence {H(αi)} is comparable with {xi}.
Theorem 4. Let {xi} be as in Definition 2. Then the set

F = A ∪ {γ∈U is
m | {H(αi)} is comparable with {xi}, where αi → γ, m∈Z+}

is an uncountable subfield of C which is algebraically closed.
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P r o o f. Let y1, y2 ∈ F . Assume that y1 ∈ U is
r , y2 ∈ U is

t . Then there
are positive real numbers k1, k2, k3, k4, %1, %2 and sequences of algebraic
numbers {αi}, {βi} (deg αi, deg βi ≤ k, where k ≥ max(r, t)) such that

(19)
0 < |y1 − αi| = H(αi)−w(i) < H(αi+1)−%1 ,

lim
i→∞

w(i) = ∞ , lim
i→∞

H(αi) = ∞ ,

(20)
0 < |y2 − βi| = H(βi)−w2(i) < H(βi+1)−%2 ,

lim
i→∞

w2(i) = ∞ , lim
i→∞

H(βi) = ∞ ,

and subsequences {xni
}, {xmi

} of {xi} satisfying

(21) xk1
ni
≤ H(αi) ≤ xk2

ni
(i = 1, 2, . . .) ,

(22) xk3
mi

≤ H(βi) ≤ xk4
mi

(i = 1, 2, . . .) .

Let {xri} denote the monotonic union sequence formed from {xni}, {xmi}.
Assume that xri0

> max(H(α1),H(β1)). We define positive integers j(i),
t(i) and then algebraic numbers δi as

(23) nj(i) = max{nν | nν ≤ ri} , mt(i) = max{mν | mν ≤ ri} , i > i0 ,

(24) δi = αj(i) + βt(i) .

Consider the set B = {δi | i ≥ i0}. If B contains only finitely many
algebraic numbers, there is a subsequence of {i}, say {ik}, and an algebraic
number δ which belongs to B such that

δ = αj(ik) + βt(ik) (k = 1, 2, . . .) .

In this equality taking limit as k → ∞ we obtain y1 + y2 = δ ∈ A ⊂ F .
Secondly, assume that B contains infinitely many algebraic numbers. Hence
there is a subsequence {ik} of {i} with

(25) δik
= αj(ik) + βt(ik)

(i1 > i0, δir
6= δis

if r 6= s, k = 1, 2, . . . , ir < is for r < s, δik
= δj for

j = ik + 1, ik + 2, . . . , ik+1 − 1).
On the other hand, by Lemma 5, we have

(26) H(δik
) ≤ 32k2

H(αj(ik))k2
H(βt(ik))k2

(k = 1, 2, . . .) .

Next by (21) and (22) we get

H(αj(ik)) ≤ xk2
nj(ik)

, H(βt(ik)) ≤ xk4
mt(ik)

.

Finally, by (23), we obtain

H(αj(ik)) , H(βt(ik)) ≤ xmax(k2,k4)
rik

.

Thus using this in (25) and putting k5 = k2 max(k2, k4) + 1 yields

(27) H(δik
) ≤ xk5

rik
(k large) .
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On the other hand, a combination of (21), (22) and (23) gives us

(28)
H(αj(ik+1−1)+1) ≥ xk1

nj(ik+1−1)+1
≥ xk1

rik+1
,

H(βt(ik+1−1)+1) ≥ xk3
mj(ik+1−1)+1

≥ xk3
rik+1

.

Using (19), (20) and (28) shows that

(29)

|y1 + y2 − δik
| = |y1 + y2 − δik+1−1|
≤ |y1 − αj(ik+1−1)|+ |y2 − βt(ik+1−1)| ,

H(αj(ik+1−1)+1)−%1 + H(βt(ik+1−1)+1)−%2 ≤ 2x−%
rik+1

,

where % = min(%1k1, %2k3).
Next, writing (27) with k replaced by k + 1 and using this in (29) we

have

(30) |y1 + y2 − δik
| ≤ H(δik+1)

−%/2k5 (k large) .

Furthermore, it follows from (27) and (29) that

|y1 + y2 − δik
| ≤ H(δik

)−w(ik) (k large)

where w(ik) = % log xrik+1
/2k5 log xrik

. It is clear that w(ik) → ∞ as k →
∞, so we have y1 + y2 ∈ U is

m for some m ≤ k2.
Now we show that {H(δik

)} is comparable with {xi}. Using (29) and
xrik+1

> xrik
in the inequality |δik+1−δik

| ≤ |y1 +y2−δik+1 |+ |y1 +y2−δik
|

we obtain

(31) |δik+1 − δik
| ≤ x−%/2

rik+1
(k large) .

Next, by Lemma 1,

|δik+1 − δik
| ≥ H(δik+1)

−3k2
(k large) .

Combining this with (31) gives

(32) H(δik+1) > x−%/6k2

rik+1
(k large) .

Thus (27) and (32) show that {H(δik
)} is comparable with {xi}, that is,

y1 + y2 ∈ F .
Now we show that y1y2 ∈ F . For this we shall approximate y1y2 by

algebraic numbers δ′i defined as

(33) δ′i = αj(i) · βt(i) (i > i0) .

If B = {δ′i | i > i0} contains only finitely many algebraic numbers, then it
follows from (33) that y1y2 ∈ A ⊂ F . If not, there is a subsequence {ik} of
{i} such that

(34) δ′ik
= αj(ik) · βt(ik)
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(i1 > i0, δir
6= δis

if r 6= s, k = 1, 2, . . . , ir < is for r < s, δj = δik
for

j = ik + 1, ik + 2, . . . , ik+1 − 1). Using (19), (20) and (28) we obtain

|y1y2 − δ′ik
| = |y1y2 − δ′ik+1−1| = |y1y2 − αj(ik+1−1) · βt(ik+1−1)|(35)
≤ |y1| |y2 − βt(ik+1−1)|+ |βt(ik+1−1)| |y1 − αj(ik+1−1)|
≤ Mx−%

rik+1

where M = 2 max{|y1|, |y2|+ 1}.
On the other hand, using similar arguments to the previous steps, we

obtain

(36) H(δ′ik
) ≤ xk5

rik
(k large) .

Hence, using (35) and (36), we get

|y1y2 − δ′ik
| ≤ H(δ′ik+1

)−%/2k5 ≤ H(δ′ik
)w(ik) (k large)

where w(ik) →∞ as k →∞, which shows that y1y2 ∈ U is
m for some m ≤ k2.

Next by using Lemma 1 and (35), one can show that {H(δ′ik
)} is comparable

with {xi} and so we have y1y2 ∈ F .
Finally let α ∈ A. Then using similar arguments to the proof of the fact

that y1 + y2, y1y2 ∈ F , and approximating αy1, α + y1, −y1, y−1
1 by {ααi},

{α + αi}, {−αi}, {α−1
i } respectively, one can show that αy1, α + y1, −y1,

y−1
1 ∈ F .

Now we show that F is algebraically closed. Consider the equation

f(x) = a0 + a1x + . . . + akxk = 0 (k ≥ 1, ak 6= 0)

where ai ∈ F . We may assume that aν ∈ U is
m (ν = 0, 1, . . . , k); only trivial

changes are required if some are algebraic. Hence there are sequences of alge-
braic numbers α

(ν)
i (ν = 0, 1, . . . , k), subsequences {x

n
(ν)
i

} (ν = 0, 1, . . . , k)

and positive real numbers %ν , k
(ν)
1 , k

(ν)
2 , tν (ν = 0, 1, . . . , k) with the fol-

lowing properties:

(37) |aν − α
(ν)
i | = H(α(ν)

i )−wν(i) < H(α(ν)
i+1)

−%ν

(deg α
(ν)
i ≤ tν , ν = 0, 1, . . . , k, i = 1, 2, . . .),

(38) x
k
(ν)
1

n
(ν)
i

≤ H(α(ν)
i ) ≤ x

k
(ν)
2

n
(ν)
i

(ν = 0, 1, . . . , k, i = 1, 2, . . .) .

We may also assume that all roots of f(x) = 0 are simple.
Let f(γ) = 0 for some γ ∈ C and let {xri

} be the monotonic union
sequence formed from {x

n
(0)
i

}, {x
n

(1)
i

}, . . . , {x
n

(k)
i

}. Let ri0 be a positive

integer with xri0
≥ maxν=0,1,...,k H(α(ν)

1 ). For i ≥ i0 we define integers
jν(i) and polynomials Fi(x) as

(39) jν(i) = max{n(ν)
r | n(ν)

r ≤ ri} (ν = 0, 1, . . . , k) ,
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(40) Fi(x) = α
(0)
j0(i)

+ α
(1)
j1(i)

x + . . . + α
(k)
jk(i)x

k (i ≥ i0) .

Since α
(ν)
jν(i) → aν as i →∞ (ν = 0, 1, . . . , k), there is a sequence of algebraic

numbers {δi} such that Fi(δi) = 0 and δi → γ as i → ∞. Now if γ ∈ A
then there is nothing to prove. Therefore we may suppose that γ 6∈ A. This
yields that the set {δi | i ≥ i0} is infinite. Furthermore, we shall assume
that δr 6= δs if r 6= s (if not, the proof can be completed using the arguments
in (24), (25)).

It is well known that

(41) f(γ)− f(δi) = η(γ − δi)f ′(θi)

where η ∈ C with 0 ≤ |η| ≤ 1 and θi is a complex number on the segment
γδi. Since γ is a simple root of f(x) = 0, we have f ′(γ) 6= 0. Furthermore,
since δi → γ as i → ∞, there is a constant c3 such that |f ′(θi)| > c3 for
large i. Thus, using this and f(γ) = 0 in (41), we obtain

(42) |γ − δi| < (|η|c3)−1|f(δi)| (i large) .

Now we give an upper bound for |f(δi)|. Using (37) we obtain

|f(δi)| =
∣∣∣ k∑

t=0

(at − α
(t)
jt(i)

+ α
(t)
jt(i)

)δt
i

∣∣∣ ≤ k∑
t=0

|at − α
(t)
jt(i)

| |δt
i |

≤ {H(α(0)
j0(i)+1)

−%0 + H(α(1)
j1(i)+1)

−%1 + . . .

. . . + H(α(k)
ik(i)+1)

−%k}max(1, |δi|)k

and so

(43) |f(δi)| ≤ c4{ min
ν=0,1,...,k

H(α(ν)
jt(i)+1)}

−%

where c4 = (k + 1)(|γ|+ 1)k and % = minν=0,1,...,k{%ν}.
On the other hand, by (38) and (39) we have

min
ν=0,1,...,k

{H(α(ν)
jν(i)+1)} ≥ x

k
(ν)
1

njν (i)+1 ≥ x
k
(ν)
1

ri+1 ≥ xk6
ri+1

(i large)

where k6 = minν=0,1,...,k{k(ν)
1 }. Combining this with (42) and (43) we

obtain

(44) |γ − δi| ≤ c4(c3|η|)−1x−k6
ri+1

< x−k6%/2
ri+1

(i large) .

Next, applying Lemma 5 (using (39) and (40)), we get

H(δi) ≤ xk7
ri

(i large)

where k7 > 0 is a fixed real number. Using this in (44) we obtain

|γ − δi| = H(δi)w4(i) < H(δi+1)(−k6%/2)k7 (i large)
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where w4(i) →∞ as i →∞, which shows γ ∈ U is
m for some m ∈ Z+. Finally,

using similar arguments to the previous steps, one can show that H(δi) is
comparable with {xi} and this completes the proof.

As a consequence of Theorem 4 we have

Corollary 3. Let {xi} be a sequence as in Definition 1. Then the set
of all semi-strong Liouville numbers comparable with {xi}, together with the
rationals, forms an uncountable subfield of R.

Furthermore, the following can be obtained by using arguments in The-
orem 4:

Corollary 4. Let F (y, x1, x2, . . . , xk) be a polynomial with algebraic
coefficients, γ ∈ U and γi ∈ U is

mi
(i = 1, . . . , k). Then F (γ, γ1, . . . , γk) ∈

U ∪A.
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