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In this paper we shall define irregular semi-strong U,,,-numbers and semi-
strong U,,-numbers and investigate some properties of such numbers.

DEFINITION 1 (1). Let v € C and k € Z*. If there are infinitely many
polynomials P, (x) € Z[z] (deg P, (x) = m,, < k) such that
(a) 0<|P.(y)|=H(P,) ™™™ (n=1,2,...), lim w(n)= oo,

(b) | P, (v)] < H(Pp41)~¢ for some fixed o > 0,

then we say that v is an irreqular semi-strong U-number. If liminf,, . m,=
lim,, o0 My, we call 7y is a semi-strong U-number. By Theorem 4 in [5] we
see that if liminf, .., m, = m then v € U,,. Thus the number Ql/m in
Theorem 5 in [5] is a semi-strong U,,-number. Furthermore, U,,-numbers
in [1] and [2] are also semi-strong.

In the sequel Ul and U, will denote the set of all irregular semi-strong
U,,-numbers and the set of all semi-strong U,,-numbers respectively.

We shall now collect some lemmas:

LEMMA 1. Let oy, ag be two algebraic numbers with different minimal
polynomials. Then

g — ap| > 27 max(muma)F oy 4 1) (ny 4+ 1) "M H () "2 H (o) ™™

where ny,ny are the degrees and H(an), H(as) are the heights of a1, oo
respectively. (See Giiting [3], Th. 7.)
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LEMMA 2. Let a1, ag be conjugate algebraic numbers. Then
|Oé1 . Oé2| > (4n)1—n/2(n+ 1)1—n/2H(a1)—n+1/2
where n is the degree of ay. (See Giiting [3], Th. 8.)

LEMMA 3. Let P(z) € Z[z] be a polynomial of degree < n with height
< H, and let a be a root of P(x) = 0. If & is a complex number with
|€ —al <1 then

€ —al 221+ HTP(E)].
(See Schneider [6], Lemme 15, p. 74.)

LEMMA 4. Let P(z) be a polynomial of degree < n,H(P) < H, and
assume that P(x) = 0 has only simple roots. Then

€ — ao| < eolag H[H™ | P(€)]

where £ € C, ¢q is a positive constant depending only on n, ag is the leading
coefficient of P(x) and oy is the root of P(x) = 0 which is nearest to §. (See
Schneider [6], Lemme 18, p. 78.)

LEMMA 5. Let g, a,...,ar (k> 1) be algebraic numbers which belong
to an algebraic number field K of degree g, and let F(y,x1,xo,...,x) be
a polynomial with rational integral coefficients and with degree at least one
iny. If nis an algebraic number such that F(n,aq,...,ar) = 0, then the
degree of n < dg and h,, < 32d9+(htletHU)9gopha B9 where h,y, is
the height of n, H is the maximum of the absolute values of the coefficients
of F, l; is the degree of F inx; (i=1,...,k),d is the degree of F iny, and
he, is the height of i (i =1,...,k). (See Icen [4].)

THEOREM 1. Let {«;} be a sequence of algebraic numbers with

(1) dega;, =m; <k, lim H(a;) =00,

(2) 0 < Jaigr — | = H(ay)™™®  where lim w(i) = oo,
(3) laiv1 — ;| < H(aip1)™ ¢ for some 9> 0.
Then

lim a; € Uy, where m = liminf m; .
1—00 1—00

Proof. It follows from Lemma 1, Lemma 2, (1) and (2) that H (o 4+1) >
H(a;)? if i is sufficiently large. Let m, n (m > n) be integers. By (1)

m—1
(4) |t — an| < Z |lvi1 — e
i=n

< ZH(ozi)_w(i) < e H(ay) ™™ (nlarge)
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where c; is a positive constant not depending on H(ay,). Since H (o)~ "™
— 0 as n — 00, (4) shows that {«;} is a Cauchy sequence and so lim;_, o, «;
exists. Set lim; .., a; = v and let ¢ be a positive integer. Since a; — -,
there is an a (s > i) such that

|7 — @] < H(ay) ™.
Using this and (4) we have
(5)  0<|y—as| < |ow —as|+ |y — | < H(ag) *D+ (i large).
Hence applying Lemma 3 (and using (5)) yields
(6) 0 <[Py < H(P) ™ D/? (i large)

where P; is the minimal polynomial of c;. On the other hand, a combination
of (6), (2) and (3) gives us

(1) [P < HP) D2 = iy — il 2 < H(Pyr) ™92 (i large).
Thus (6) and (7) show that v € U. Conversely, if v € Ul

' one can
show, using Lemma 4, that there exists a sequence of algebraic numbers

{a;} satisfying the relations in the theorem for some ¢ > 0 and a sequence

{w(@)}-

THEOREM 2. Let m € Z" and let P(x) € Z[x] be a polynomial of degree
> 1. Then there exist infinitely many v € US, such that P(y) € UZ,.

Proof. Let a be an algebraic number of degree m and let a(t) =
a, @, ... al™ denote the field conjugates of a. Let n € ZT, P(x) =

Zf:o b;xt (b # 0). We consider the equations

(8) P +y) =PV +y) (1<ij<m,i#j),

where y = n~!. For fixed i,j, (8) is equivalent to a polynomial equation

ap—1y* 1+ 4ag = 0. Since ar_1 = b (P —a)) #£ 0, (8) has only finitely
many solutions in y. Therefore if n is sufficiently large then deg P(a+n~1) =
m. Let {w(i)} be a sequence of real numbers with w(i) — oo as i — oo.
Now we define algebraic numbers «; (i = 1,2,...) as follows:

o] =a+ nl_l where n; € ZT with
(9) deg P(a+ny ') =m, ny > 3%,
Qir1 = Q4 + n;rll (Z > 1)

where n; 11 is a positive integer satisfying the conditions

(10) (a) deg P(a; + ”;rl1) =m, (b) H(ai)w(i) <nipr, () nf <miyr.
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By (9) we have a;41 = a + Z?;ll n;'. On the other hand, it is clear that

i+1 i+1
k=1 k=1

Using this and (10)(c) in Lemma 5 we obtain

(11) H(aipr) <ni7? (i large).

A combination of (9) and (11) gives us

(12) |ovi1 — il = n )y < H(agpr) VG2 (i large) .
Next it follows from (9) and (10)(b) that

(13) i1 — i < H(ay)™*0,

so we have 7 = lim; . a; € US, by Theorem 1. To prove P(y) € Us,, we
put P(a;) =i (i =1,2,...). It is well known that

Bit1 = Bil = [Pai1) — Pai)| = |eis1 — i [P'(})]  (i=1,2,...)

where a; < t < ;41 and P’(zx) is the derivative of P(x). Since o; — 7 as
i — 00, there is a constant co > 0 depending only on v and P(z) such that
|P'(t)| < c2. Thus we have

(14) |ﬂi+1 — ﬂl| < ‘ai—&—l — Oéi|H(Oéi) (Z large) .
On the other hand, applying Lemma 5 (using (11);) we find
(15) H(B;) < H(a)™ (i large).

Hence a combination of (13), (14) and (15) shows that
0 < |Big1 — Bi| < H(B;)Tw@FD/kmF1) (i Jarge) .
Next writing (15) for ¢ + 1 and combining this with (12) and (14) we find
Bi41 — Bil < levigr — i ? < H(Bigr) ™ /°
where 6 = 2(2m + 2)(km + 1). So by Theorem 1 we have lim; .., 3; =
P(lim; o a;) = P(y) € Us,.
The following can be obtained by using the arguments in Theorem 1.

COROLLARY 1. Let v € U, and P(x) € Z[x] with deg P(x) > 1. Then
P(y) € U;, where n | m.

COROLLARY 2. Let p be a prime, v € Uy and P(v) € Zlx] with 1 <
deg P(x) < p. Then P(vy) € U,.

THEOREM 3. Let m € Z+ and let {P,(z)} be a sequence of polynomials
in Zlz] with deg Pp(x) > 1 (n = 1,2,...). Then there are infinitely many
v € U, such that P,(v) € U3, (n=1,2,...).
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Proof. Let @ > 1 be algebraic of degree m and let {w(i)} be a sequence
of positive real numbers with lim; ., w(i) = oco.

We shall construct N, € Z* as follows:

Let Ny be a positive integer satisfying
(16) deg Pi(a+ N;Y)=m, N; >3,

Then we define Nj (k > 2) as an integer satisfying the conditions

k
(2); deng-(aJrZN;l):m (i=1,2,...,k),
j=1

w(k—1)
an ®)y,  H+XN') <N
j=1
(C) N]?*l < Nk .

Now set a1 = a + Nl_l and a1 = a; + N;ll for ¢ > 1. Using Theorem 2
and (17)(b)x one can show that v 1= lim; oo a; = a + > oo N ' € US,.
Next, let n > 1 be an integer. We define algebraic numbers (3; as

ﬂlza‘f‘ZNj_l, ﬂerl:Bz"‘N;iz (221,2,)
j=1
It is clear that lim; .., 0; = lim; ,,cc; = 7. On the other hand, by
(17)(a)i=n,k=n we deduce degP,(f1) = m and by (17)(a)i=nk=n+j
(17)(b)k=n+j, and (17)(c) we have
deg P (B;) =m,  H(B;)*™ ™D < Ny,

N2y < Npjpr o (1=2,3,...),
that is, {#;} and P,(z) satisfy the conditions in Theorem 2. Thus P, () €
Us, (n=1,2,...).

DEFINITION 2. Let {z;} be a sequence of positive integers with
log x;41 _
— 00 10g ZT;

and let v € U with convergents {a;} as in Theorem 1. If there exist a
subsequence {x,,} of {z;} and positive real numbers k1, ko such that

(18) o < H(oy) <2 (i=1,2,...)
then we say that the sequence {H («;)} is comparable with {z;}.
THEOREM 4. Let {z;} be as in Definition 2. Then the set
F = AU{yeUs | {H(«;)} is comparable with {x;}, where a; — v,meZ*}

is an uncountable subfield of C which is algebraically closed.
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Proof. Let y1,y2 € F. Assume that y; € U, yo € UlS. Then there
are positive real numbers ki, ko, k3, k4, 01,02 and sequences of algebraic
numbers {a;}, {8} (degay;, deg3; < k, where k > max(r,t)) such that

0<|y1 —ou| = H(Oéz‘)_w(i) < H(ajqpq)7,

(19) lim w(i) =00, lim H(a;) = o0,
50 0< [y2 = Bil = H(Bi)*" < H(Biy1)" 2,
(20) lim wy(i) =00, lim H(f;) = o0,

and subsequences {z,, }, {xm,} of {z;} satisfying

(21) ol < H(oy) <2k (i=1,2,...),
(22) als <H(B) <aks  (i=1,2,..).

Let {x,,} denote the monotonic union sequence formed from {z,,}, {xm, }.
Assume that z,, > max(H (a1), H(B1)). We define positive integers j(i),
t(i) and then algebraic numbers d; as

(23) nju) = max{n, |n, <ri},  mye =max{m, | m, <ri}, 1>,
(24) 0 = iy + Py -

Consider the set B = {d; | i > ip}. If B contains only finitely many
algebraic numbers, there is a subsequence of {i}, say {ix}, and an algebraic
number & which belongs to B such that

5:aj(ik) +/8t(ik) (k = 1,2,...).
In this equality taking limit as k — oo we obtain y; +y> =9 € A C F.
Secondly, assume that B contains infinitely many algebraic numbers. Hence
there is a subsequence {iy} of {i} with
(25) dir, = (i) + Becin)
(il > i0,5i7, 75 (5i5 if r 75 s,k =1,2,..., 4, < ig for r < s, (5% = (Sj for

J=t+ Lk +2,..., 041 —1).
On the other hand, by Lemma 5, we have

2 2 2
(26) H(0,) < 3% H(ey)* H(Buin)®  (k=1,2,...).
Next by (21) and (22) we get
k k
H(ej) a2, o H(Bi) < amy, -

Finally, by (23), we obtain
H(Oéj(ik)) s H(ﬁt(zk)) < :L.Irrzjx(kg,lu) '

Thus using this in (25) and putting ks = k? max(kq, k4) + 1 yields
(27) H5,) < oks O lorge).



Semi-strong U-numbers 355

On the other hand, a combination of (21), (22) and (23) gives us
(28) H(aj(ik+1—1)+1) 2 xﬁ;<ik+1fl)+l Z
H(ﬁt(ikﬂ—l)‘i‘l) = mf'?j(imrlwrl Z Ty,

Using (19), (20) and (28) shows that
ly1 +y2 — 6| = [y1 +y2 — 0ip s -1

(29) <Y1 — (i)l + Y2 = Betin -1l 5
H(aj(ik+1—1)+1)_gl + H(ﬁt(im—l—1)4-1)_92 = 2$T_ii+1 )

where ¢ = min(p1 k1, 02k3).
Next, writing (27) with k& replaced by k£ + 1 and using this in (29) we
have

(30) [y +y2 = 03| < H(bi, )¢/ (K large).
Furthermore, it follows from (27) and (29) that
ly1 + y2 — 05, | < H(dik)_w(i’“) (k large)

where w(iy) = glog @y, /2kslogay, . It is clear that w(ix) — oo as k —

00, so we have y; + 42 € U for some m < k2.
Now we show that {H(d;,)} is comparable with {z;}. Using (29) and

Tr,,,, > Tr, in the inequality 1060 = Oin | < |y +y2— 040 |+ Y1 +y2 — 63|
we obtain
(31) 041 — 0ap| < x;fﬁ (k large) .
Next, by Lemma 1,
_ 2
|6ik~+1 - 6%’ > H(5ik+1) 3k (k large) .
Combining this with (31) gives
_ 2
(32) H(8iy,) > 2,2/ (K large) .

Thus (27) and (32) show that {H(d;,)} is comparable with {z;}, that is,
Y1+y2 € F.

Now we show that yi1y2 € F. For this we shall approximate yiys by
algebraic numbers ¢/ defined as

(33) (5; = Q4 ﬁt(i) (’L > io) .
If B={0,]i>1ip} contains only finitely many algebraic numbers, then it

follows from (33) that y1y2 € A C F. If not, there is a subsequence {iy} of
{i} such that

(34) 0, = icin)  Bein)
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(il > 19, 5i7‘ 7'é 51'5 if r 7'é s, k=1,2,..., 1 <ig forr < s, 6j = 5Zk for
j=tk+ 1,k +2,... i1 — 1). Using (19), (20) and (28) we obtain

(35) [y1y2 — 6;, | = lyiy2 — 0, 1l = 9192 — (i 1) Brtina—)|
<1l ly2 = Beipr—) + 1Betinsi—) | 1y1 — @iy a—1)l
< Mz °

Tig41
where M = 2max{|y1], |y2| + 1}
On the other hand, using similar arguments to the previous steps, we
obtain

(36) () <ok (klarge).
Hence, using (35) and (36), we get
ly1y2 — 0;, | < H(J; )me/2hs < H((;;k)w(i"’) (k large)

Tk+1
where w(i) — oo as k — oo, which shows that y1y2 € UL for some m < k2.
Next by using Lemma 1 and (35), one can show that { H(d;, )} is comparable
with {z;} and so we have y;y2 € F.

Finally let « € A. Then using similar arguments to the proof of the fact
that y1 + y2, Y192 € F, and approximating a1, v+ y1, —y1, y1 - by {ao},
{a+ a;}, {—a;}, {a; '} respectively, one can show that ay;, a + y1, —y1,
y; ' €F.

Now we show that F' is algebraically closed. Consider the equation

f@)=ap+az+...+az® =0 (k>1,a5 #0)
where a; € F. We may assume that a, € US (v =0,1,...,k); only trivial
changes are required if some are algebraic. Hence there are sequences of alge-
braic numbers agl’) (v =0,1,...,k), subsequences {xngw} (v=0,1,...,k)
and positive real numbers g,, k%y), kzéy), t, (v=0,1,...,k) with the fol-
lowing properties:

(37) jay — ol = H(@") == ® < g(a))-e

(degal” <t,,v=0,1,... k i=12,_.),

) )
(38) x:}_y) < H(a!") < x’:jy) (v=0,1,....k i=1,2,...).
We may also assume that all roots of f(z) = 0 are simple.

Let f(y) = 0 for some v € C and let {z,,} be the monotonic union
sequence formed from {z 0}, {z o },...,{z x}. Let r; be a positive
integer with z,, > max,—o1,.k H(agu)).
Jv (i) and polynomials F;(x) as

(39) ]V(Z) = max{n&”) | n7("y) < Ti} (1/ =0,1,..., k) )

For i > iy we define integers
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0 1 k . .
(40) Fy(w) = afly) +agipe+ o+ aflyat (2 ).
)

Since o () > Oy @S i— o0 (v=0,1,...,k), there is a sequence of algebraic

numbers {d;} such that F;(§;) = 0 and 6; — v as i — oo. Now if y € A
then there is nothing to prove. Therefore we may suppose that v ¢ A. This
yields that the set {J; | ¢ > ip} is infinite. Furthermore, we shall assume
that d, # J, if r # s (if not, the proof can be completed using the arguments

n (24), (25)).

It is well known that

(41) FO) = f(6:) = m(y = 6:) ' (6:)

where n € C with 0 < || < 1 and 6; is a complex number on the segment
vd;. Since 7 is a simple root of f(x) = 0, we have f’(y) # 0. Furthermore,
since 0; — vy as i — oo, there is a constant c3 such that |f’(6;)] > c3 for
large i. Thus, using this and f(y) = 0 in (41), we obtain

(42) v = &l < (Inles) ' f(%)] (i large).
Now we give an upper bound for |f(d;)|. Using (37) we obtain
16801 = [ 30—+l < 3 ol

<{H@. )@+ HWY e

Jo(i)+1 Ji(i)+1
k _
o H(alr )7 b max(L [6])
and so
(43) @) <ed min  H( )}

Ly

where ¢4 = (k +1)(Jy| + 1)* and o = min,—o1,.. x{0v}.
On the other hand, by (38) and (39) we have

(v) (v)
(v) ky k k .
)} 2 $"jy(i)+1 Z x"'i1+1 Z xr6+1 (’L large)

,min  {H (0 )1

where kg = min,—g k{k{”)}. Combining this with (42) and (43) we
obtain
(44) [y = &l < caleslnl)"tap ke <@ fo? (i large).
Next, applying Lemma 5 (using (39) and (40)), we get
H(S) < 2% (i large)
where k7 > 0 is a fixed real number. Using this in (44) we obtain

|y = 8i = H(8;)"") < H(6i11)F/?* (i large)
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where w4 (i) — oo as i — 0o, which shows v € U for some m € Z*. Finally,
using similar arguments to the previous steps, one can show that H(J;) is
comparable with {x;} and this completes the proof.

As a consequence of Theorem 4 we have

COROLLARY 3. Let {z;} be a sequence as in Definition 1. Then the set
of all semi-strong Liouville numbers comparable with {x;}, together with the
rationals, forms an uncountable subfield of R.

Furthermore, the following can be obtained by using arguments in The-
orem 4:

COROLLARY 4. Let F(y,z1,22,...,x) be a polynomial with algebraic
coefficients, v € U and v; € U (i = 1,...,k). Then F(y,71,...,7) €
UUA.
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