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1. Introduction. Let D be a squarefree integer, and let h(D), C(D)
be the class number and classgroup of Q(

√
D), respectively. The theory of

genera, due to Gauss, readily determines the 2-rank of C(D), and in a series
of articles from the 1930’s, Rédei [17] develops the machinery necessary to
compute both the 4- and 8-ranks. For example, if p ≡ 1 mod 4 is a prime
integer, then 2-C(−p), the 2-Sylow subgroup of C(−p) has both 2-rank and
4-rank one, and, in fact, we have

(a) h(−p) ≡ 0 mod 8 iff (1−i | p) = 1 , i.e. iff 1−
√
−1 is a square mod p.

In 1969, Barrucand and Cohn [2] reinterpreted this result, using the arith-
metic of Q(

√
2, i) to show

(a′) h(−p) ≡ 0 mod 8 iff p = x2 + 32y2, for x, y ∈ Z .
In 1976, Pizer [16] used quaternion algebras to obtain, in various cases,
information on the sums of certain class numbers. In particular, he showed

(b) h(−p) + h(−2p) ≡ p− 1
2

mod 8 .

More recently, Williams [24] in 1981 was able to relate h(−p) to the fun-
damental unit εp of Q(

√
p). Specifically, given p ≡ 1 mod 8 and εp =

T + U
√
p > 1 with T ≡ 0 mod 4, U ≡ 1 mod 4, he improved the result

of Lehmer [14], Cohn and Cook [3], and Kaplan [12]: h(−p) ≡ T mod 8, to
a more refined

(c)
h(−p) ≡ T + (p− 1) mod 16 if h(−p) ≡ 0 mod 8 ,
h(−p) ≡ T + (p− 1) + 4(h(p)− 1) mod 16 if h(−p) ≡ 4 mod 8

essentially by manipulating the analytic class number formula.
In the literature of the past few years, a number of authors, perhaps most

notably Gras [9] and Pioui [15], but also Desnoux [8], Hardy and Williams
[10], Hikita [11], Stevenhagen [21] and Uehara [22] (among others) have
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shown through a variety of means that (a)–(c) are in fact part of a rather
broad family of results which can in many ways be expanded and refined.
For example, with a fairly simple computation one can show that the results
of [9] and [15] (themselves obtained through p-adic measure theory) imply
the following

Proposition (see Proposition 3.1 and Corollaries 3.1 and 3.2). Let P =
p1 . . . pk with pi ≡ 1 mod 8, k odd or k = 2, with (pi | pj) = −1 ∀i 6= j.
Then

(A) h(−P ) ≡ 0 mod 2k+2 iff (1− i |P ) = 1.
(B) h(−P ) + h(−2P ) ≡ 2k−2(P − 1) mod 2k+2.
(C) Let εP > 1 be the fundamental unit of Q(

√
P ). Then

h(P ) log2(εP )√
P

≡ 2k−1(P − 1) + h(−P ) mod 2k+3 .

(We note that (A) and (B) can be found in [13], (B) for the cases k = 1, 2
in [16]. That (C) in the case k = 1 is precisely Williams’ result (c) can be
seen by taking the 2-adic power series expansion for log2(x) [23].)

In this article we establish a uniform procedure for obtaining congruences
such as (A)–(C) by studying the cuspidal behavior of certain 2-adic modular
forms. Through it one can derive a family of results, similar in form and
refinement to those found in [9] and [15]. This is essentially the content of
[6], and is outlined in Sections 2 and 3. While it should be noted that the
method developed does suppress some fairly heavy machinery (for instance
Rappoport’s q-expansion principle), it does, however, succeed in reducing
our problem to some fairly simple computations. Finally, we note that
the arguments used are structured so that they may be lifted from Q to a
totally real number field K, to consider the relative class numbers of certain
CM extensions through Hilbert modular forms. As such, results analogous
to (A)–(C) are often attainable. This is done for a specific example in
Section 4.

2. We now recall several modular forms and their behavior at a certain
class of unramified cusps. Rappoport’s q-expansion principle, as mentioned
before, will be crucial to our arguments, and as such will be stated in the
form that will be needed.

We begin with a result of Deligne and Ribet [7], again weakened slightly
to fit our situation. Let K be a totally real number field of degree r over
Q. By OK , O∗K , and K̂∗ we shall mean, respectively, the integers, units and
ideles of K. Then

Theorem 2.1. Let k ≥ 1 be an integer , and let ε be an idele class
character of parity k and conductor f , f nontrivial if k = 2 and K = Q.
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Then there exists a modular form EKk,1,ε ∈ Mk(Γ00(f),C) (the space of
weight k, level f Hilbert forms with coefficients in the complex numbers)
whose q-expansion at the cusp determined by τ ∈ K̂∗ with τω = 1 at all
infinite places ω and i(τ) (ideal content) trivial , is given by the formula

ε(τ)
[
2−rL(1− k, ε) +

∑
µ�0

( ∑
A | (µ)

ε(A)NK/Q(A)k−1
)
qµ

]
+ C

where C is a constant depending on ε and τ , and by ε(A) and L(1 − k, ε),
we mean their values when ε is viewed as a ray class character and L(s, ε)
is the usual Dedekind L-function.

We add that in the cases we shall be considering, the contribution of C
will be identically 0.

Theorem 2.2. Let µ, ν � 0 be elements of K, and let L = K(
√
−µν) >

K. Moreover , let ε be the idele class character associated with L/K, ε :
K̂∗ → {1,−1}. Then, for suitable N > 1, a weight one modular form on
Γ00(N) exists whose q-expansion at the cusp described in Theorem 2.1 is
given by the series

ε(τ)
∑

x,y∈OK

qµx
2+νy2

.

Two other types of modular forms will also be considered. The first of
these is the generalized Eisenstein series, which is formed as follows. Let
χ1 and χ2 be ideal class characters with parity k ≥ 1 and relatively prime
conductors N1 and N2. Then we have a weight k, level N1N2, character
χ1χ2 modular form with q-expansion

EKk,χ1,χ2
= B +

∑
µ�0

( ∑
A | (µ)

χ1(µ/A)χ2(A)NK/Q(A)k−1
)
qµ .

If K = Q, then B = −L(0, χ1)L(1−k, χ2). For K 6= Q, the situation is a bit
more complicated, but we have already considered the case where χ1 is the
trivial character in Theorem 2.1, and by following Shimura’s construction
in [20, p. 654] we find that if χ1 and χ2 have nontrivial conductors, then
B = 0 (i.e. we have a semicusp form).

The second type of form we consider is purely cuspidal and is discussed
by Serre in [19] and by Rogawski and Tunnell in [18]. Here we assume that
K is again totally real, and, moreover, has narrow class number one. We
let GK = Gal(K/K) be the absolute Galois group of K. Then, if % is a
2-dimensional, irreducible, continuous and odd representation, % : GK →
GL2(C), the transform, under certain conditions, of L(s, %) is a weight one
cusp form of a certain prescribed type. More specifically, if a weakened
form of the Artin conjecture is true, and % is such a representation with



104 A. Costa

L(s, %) =
∑
β∈IK

aβNK/Q(β−s), then f(z) =
∑
µ�0 a(µ)q

µ is a weight one
cusp form of some determinable level and character.

For example, suppose K = Q, F/Q is quadratic with discriminant dF ,
σ a coset representative of GQ/GF , {χ, χσ} one-dimensional characters on
GF with χσ(γ) = χ(σγσ−1) ∀γ ∈ GF and % = IndF/Q(χ). Then we have
the following [19]

Theorem 2.3. Under the above conditions

(1) % is irreducible iff χ 6= χσ,
(2) the conductor of % is |dF |NF/Q(fχ), where fχ is the conductor of χ,
(3) the representation of GQ is odd iff either

(a) F is imaginary , or
(b) F is real and χ has mixed signature.

Thus if p ≡ 1 mod 8 is a prime integer, (p) = p′p′′ in IQ(i), we have
a modular form Fχp′ =

∑
n≥1 a

′
nq
n ∈ S1(Γ0(4p), ψ4χp), where by ψ4, χp

we mean the characters corresponding to Q(i)/Q, Q(
√
p)/Q respectively,

and by χp′ we mean the unique quadratic ray class character on IQ(i) of
conductor p′.

Finally, we consider p-adic forms Fk, k ≥ 0, on Γ00(N) of respective
weights k = 0, 1, 2, . . . (k = 0 meaning that the form is just a constant),
all but finitely many of them being 0. In addition we assume that there
exists a cusp α ∈ K̂∗ such that the coefficients of Fk,α, the q-expansion of
Fk at α, are rational for all k. Then, if αp is the p-component of α ∈ K̂∗,
αp ∈ K ⊗Qp, Nαp ∈ Qp and OK,p is the localization of OK at p, and if we
set

S(α) =
∑
k≥0

Nα−kp Fk,α ,

then we have the following version of Rappoport’s q-expansion principle [7].

Theorem 2.4. If S(α) has coefficients in OK,p for one α, then S(α) has
coefficients in OK,p for all α ∈ K̂∗, where p is any finite prime of K.

Corollary 2.1. If S(α) =
∑
k≥0Nα−kp Fk,α, T (α) =

∑
k≥0Nα−kp Gk,p

with Fk, Gk being weight k forms on Γ00(N), again with all but finitely
many of them being 0, then if S(α) ≡ T (α) mod pn holds for some α ∈ K̂∗,
it holds for all α ∈ K̂∗.

3. In this section K will always be assumed to be Q, and the following
additional notation will be considered in effect.

1. If n is a positive integer congruent to 1 (resp. 3) mod 4, then χn
(resp. ψn) is the unique even (resp. odd) quadratic Dirichlet, ideal, or idele
class character associated to Q(

√
n) (resp. Q(

√
−n)).
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2. ψ4 is the character associated to Q(i); ψ8 to Q(
√
−2); χ8 to Q(

√
2).

3. τ ∈ K̂∗ is such that i(τ) = 1 and τω = 1 at all infinite places ω.

We begin by considering the classical result: h(−r) ≡ 1 mod 2, for r
a prime, r ≡ 3 mod 4, recovering it by manipulating the coefficients of an
Eisenstein series. We let∑

n≥1

anq
n = E1,1,ψr − 1

2L(0, ψr) =
∑
n≥1

( ∑
d |n

ψr(d)
)
qn .

Now if n = rαn′, (r, n′) = 1, then we have

an =
∑
d |n′

ψr(d) = ψr(
√
n′) +

∑
d |n′

d<
√
n′

(ψr(d) + ψr(n′/d))

where ψr(
√
n′) = 0 if

√
n′ is not an integer. Therefore an ≡ 0 mod 2 if n′ is

not a square, and an ≡ 1 mod 2 if it a square. In other words,∑
n≥1

anq
n ≡

∑
n≥1

qn
2
+

∑
m≥1

qrm
2

mod 2

≡ 1
2

( ∑
n∈Z

qn
2
− 1 +

∑
m∈Z

qrm
2
− 1

)
mod 2 .

But since (
∑
n∈Z q

n2 − 1)(
∑
m∈Z q

rm2 − 1) ≡ 0 mod 4, we have∑
n≥1

anq
n ≡ 1

2

( ∑
n,m∈Z

qn
2+rm2

− 1
)

mod 2

or

E1,1,ψr − 1
2L(0, ψr) ≡ 1

2

∑
n,m∈Z

qn
2+rm2

− 1
2 mod 2 .

Now this congruence should, by Corollary 2.1, hold for every Fourier coef-
ficient, at any unramified cusp. In particular, if τ ∈ Q̂∗ and τω = 1 at all
places ω 6= r with τr a nonsquare unit modulo r, we would have

E1,1,ψr
|τ − 1

2L(0, ψr)|τ ≡ 1
2

∑
n,m∈Z

qn
2+rm2

|τ − 1
2 |τ mod 2 .

Now if we simply consider the constant coefficients, we find from Theorems
2.1 and 2.2 that

1
2 (ψr(τ)− 1)L(0, ψr) ≡ 1

2 (ψr(τ)− 1) mod 2 .

But here ψr(τ) = −1, from which we conclude h(−r) = L(0, ψr) ≡ 1 mod 2.
Similarly, for p ≡ 1 mod 4, a prime, we may determine the parity of h(−p)
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by considering

E1,1,ψ4χp − 1
2L(0, ψ4χp)

≡ 1
2

( ∑
n,m∈Z

qn
2+pm2

− 1
)

+ 1
2

( ∑
n,m∈Z

q2n
2+2pm2

− 1
)

mod 2 .

Selecting τ with τp a nonsquare unit, and τω = 1 otherwise, we obtain
h(−p) = L(0, ψ4χp) ≡ 0 mod 2.

To determine h(−p) modulo 4, we consider an modulo 4 where∑
n≥1

anq
n = E1,1,ψ4χp

− 1
2L(0, ψ4χp) + E1,ψ4,χp

.

If n = 2αpβn′, we have

an =
∑
d |n′

ψ4χp(d) +
∑
d |n′

ψ4(pβd)χp(2αn′/d)

=
∑
d |n′

ψ4χp(d)(1 + ψ4(p)βχp(2)αχp(n′))

=
∑
d |n′

ψ4χp(d)(1 + χp(2)αχp(n′)) .

As before, if n′ is not a square, we have an ≡ 0 mod 4, implying

∑
n≥1

anq
n ≡



∑
n,m∈Z

qn
2+pm2

− 1 mod 4 if p ≡ 5 mod 8,( ∑
n,m∈Z

qn
2+pm2

− 1
)

+
( ∑
n,m∈Z

q2n
2+2pm2

− 1
)

mod 4

if p ≡ 1 mod 8 .
Choosing τ as before, we obtain

h(−p) ≡
{

2 mod 4 if p ≡ 5 mod 8,
0 mod 4 if p ≡ 1 mod 8.

To determine h(−p) modulo 8, for p ≡ 1 mod 8, we consider the two-
dimensional irreducible representations induced from the quadratic char-
acters modulo p′ and p′′ on the ideals of Q(i), where (p) = p′p′′ in IQ(i).
By Theorem 2.3 we have two cusp forms Fχp′ , Fχp′′ and if L(s, χp′) =∑
n≥1 a

′
nq
n and Fχp′′ =

∑
n≥1 a

′′
nq
n, we consider an modulo 8, where∑

n≥1

anq
n = E1,1,ψ4χp

− 1
2L(0, ψ4χp) + Fχp′ + Fχp′′ .

If n = 2αpβn′, then

an =
( ∑
d |n′

ψ4χp(d)(1 + χp(n′))
)

+ (a′n + a′′n) .
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Clearly, if n′ = l2k1+1
1 l2k2+1

2 n′′ for distinct odd primes li 6= p, then both
summands are congruent to 0, i.e.∑

d |n′

ψ4χp(d)(1 + χp(n′))

=
∑
d |n′′

ψ4χp(d)
∑

d | l2k1+1
1

ψ4χp(d)
∑

d | l2k2+1
2

ψ4χp(d)(1 + χp(n′′)) ,

each of the last three factors on the right being even, while similarly

a′n = a′2αpβa
′
l
2k1+1
1

a′
l
2k2+1
2

a′n′′ ≡ 0 mod 4

by multiplicativity and the fact that a
l
2ki+1
i

≡ 0 mod 2 (i.e. in IQ(i) there

are an even number of ideals having norm l2ki+1
i ). Hence a′n = ±a′′n and

a′n + a′′n ≡ 0 mod 8.
Likewise, if n′ = l2k+1(n′′)2, then an ≡ 0 mod 8 again since

(∗)
∑
d |n′

ψ4χp(d)(1 + χp(n′))

=
∑
d |n′′

ψ4χp(d)
∑

d | l2k+1

(1 + χp(l))

=
∑

d | (n′′)2

ψ4χp(d)((k + 1)(1 + ψ4χp(l)))(1 + χp(l))

≡ (1 + ψ4(l))(1 + χp(l))(k + 1) mod 8

while, since χp′(p′′) = χp′′(p′) (if F = Q(i) and F (γ′)/F is the quadratic
extension corresponding to χp′ , then, if γ′′ is the conjugate of γ′ over Q,
F (γ′′)/F will correspond to χp′′ . But clearly, γ′ will be a square mod p′′

iff γ′′ is a square mod p′), and χp′(1 + i) = χp′′(1 − i) = χp′′(1 + i) (as
p ≡ 1 mod 8, and 1 + i is a uniformizer for the dyadic prime of F ), we have

a′n + a′′n = a′2αpβa
′
l2k+1a

′
(n′′)2 + a′′2αpβa

′′
l2k+1a

′′
(n′′)2

= (a′2αpβa
′
l2k+1 + a′′2αpβa

′′
l2k+1)a′(n′′)2 since a′m2 = a′′m2

= a′2αpβa
′
(n′′)2(a

′
l2k+1 + a′′l2k+1) .

Now if l ≡ 3 mod 4 (or ψ4(l) = −1), then, as Fχp′ is the transform of the
L-function

L(s, IndF/Q(χp′)) =
∑
A∈IF

χp′(A)NF/Q(A)−s ,

we have a′l2k+1 = a′′l2k+1 = 0. Likewise, if χp(l) = −1, we have a′l2k+1 =
−a′′l2k+1 , since χp′(l′l′′) = χp′(l) = χp(l) = −1. If χp(l) = ψ4(l) = 1 then
χp′(l′) = χp′(l′′) = χp′′(l′) = χp′′(l′′), hence

a′l2k+1 + a′′l2k+1 = 2(2k + 2)χp′(l′)
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since the 2k + 2 ideals, l′j l′′2k+1−j , j = 0 to 2k + 1, each have norm equal
to l2k+1, and their images under χp′ and χp′′ are identically one or negative
one. This, combined with (∗), gives us an ≡ 0 mod 8.

Finally, if n′ = n′′2 =
∏t
i=1 l

2ki
i and 0 ≤ s ≤ t, with χp(li) = 1 iff i > s,

we have ∑
d |n′

ψ4χp(d)(1 + χp(n′)) = 2
t∏
i=1

( ∑
d | l2ki

i

ψ4χp(d)
)

= 2
t∏
i=1

(ki + 1 + kiψ4χp(li)) ,

while, since a′n′′2 = a′′n′′2 ,

a′n + a′′n = a′2αpβ (a′n′′2 + a′′n′′2) = 2a′2αpβa
′
n′′2 = 2a′2αpβ

t∏
i=1

a′
l
2ki
i

= 2a′2αpβ

s∏
i=1

χp(li)ki

t∏
j=s+1

(kj + 1 + kjχp(lj))

(since, if χp(l) = 1, the ideals of Q(i) with norm l
2kj

j are simply those of the

form l
′2kj−h
j l′′hj , h = 1, . . . , 2kj). Now

ki + 1− kiχp(li) = ki(1− χp(li)) + 1 ≡ χp(li)ki mod 4 ,

hence
an ≡ 2 + 2a′2αpβ ≡ 2 + 2χp′(1 + i)αχp′(p′′)β .

But if p = a2 + b2, a odd and p′ = (a+ bi), then χp′(p′′) = (a− bi | a+ bi) =
(2a | p) = (a | p) = (p | a) (by reciprocity) = (a2 + b2 | a) = (b2 | a) = 1.
Therefore, we have shown

∑
n≥1

anq
n ≡


2
( ∑
n,m∈Z

qn
2+pm2

− 1 +
∑
n,m∈Z

q2n
2+2pm2

− 1
)

mod 8

if (1− i | p) = 1,
2
( ∑
n,m∈Z

qn
2+pm2

− 1
)

mod 8 if (1− i | p) = −1 .

Using the same basic techniques, we find that the following generalization
is possible.

Proposition 3.1. Let P = p1p2 . . . pk be the product of prime integers
with pi ≡ 1 mod 8 ∀i, with (pi | pj) = −1 ∀i, j and k = 2 or k odd. Then
2k+1 divides both h(−P ) and h(−2P ), and

(A) h(−P ) ≡ 0 mod 2k+2 iff (1− i |P ) = 1.
(B) h(−2P ) ≡ 0 mod 2k+2 iff (

√
−2 |P ) = 1.
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P r o o f. (A) We have already discussed the case k = 1 at the beginning
of this section. We proceed then to the case k = 2.

For j = 1, 2, . . . , k we again let χp′
j
, χp′′

j
be the unique quadratic charac-

ters on the ideals of Q(i), of respective conductors p′j , p
′′
j , and consider∑

n≥1

anq
n = E1,1,ψ4χp1p2

− L(0, ψ4χp1p2) + E1,ψ4,χp1p2

+ E1,χp1 ,ψ4χp2
+ E1,χp2 ,ψ4χp1

,∑
n≥1

bnq
n = Fχp′

1
p′
2

+ Fχp′
1

p′′
2

+ Fχp′′
1

p′
2

+ Fχp′′
1

p′′
2
.

∑
n≥1

cnq
n =

∑
n≥1

(an + bn)qn .

Reducing cn modulo 16, we find that, if n = 2αpβ1
1 pβ2

2 , cn ≡ 0 mod 16 if n′

is not a square. If n′ is a square, then we have

cn ≡ (1 + (−1)β1+β2)2

+ χp1p2(1 + i)α((χp′
1
+ χp′′

1
)(χp′

2
+ χp′′

2
))[pβ1

1 pβ2
2 ]

where χd′ [d] = χd′(d′′), d = d′d′′ in Q(i). (For example, χp′
1p

′′
2
[p1p2] =

χp′
1p

′′
2
(p′′1p

′
2).) Now if β1 6≡ β2 mod 2, say β1 ≡ 1 mod 2, then clearly an = 0.

Moreover, we have cn ≡ 0 mod 16, since

χp′
1p

′
2
(p′′1) = χp′

1
(p′′1)χp′

2
(p′′1)

= χp′′
1
(p′1)χp′

2
(p′1)(−1) since χp′

2
(p1) = −1 by assumption

= −χp′′
1 p

′
2
(p′1)

implies that bn’s contribution is cancelled out as well. This is likewise the
case for β1 ≡ 0, β2 ≡ 1 mod 2. If both β1, β2 ≡ 1 mod 2, then we have

χp′
1p

′
2
(p′′1p

′′
2) = χp′

1p
′′
2
(p′′1p

′
2) = χp′′

1 p
′
2
(p′1p

′′
2) = χp′′

1 p
′′
2
(p′1p

′
2)

= χp′
1
(p′′1)χp′

1
(p′′2)χp′′

2
(p′2)χp′′

2
(p′1) = χp′

1
(p′′2)χp′′

2
(p′1)

= (α′1, α
′′
2)p′

1
(α′1, α

′′
2)p′′

2

((γ, δ)ω the Hilbert symbol over F = Q(i))

=
∏

ω-p′
1p

′′
2

(α′1, α
′′
2)ω .

But this is equal to one, since F (
√
α′1)/F , F (

√
α′′2)/F are unramified

outside p′1, p
′′
2 . Hence, in this case, cn ≡ 4(1 + χP (1 + i)α) mod 16.

Similarly, if β1 ≡ β2 ≡ 0 mod 2, we find immediately that again
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cn ≡ 4(1 + χP (1 + i)α) mod 16. Putting this all together yields

∑
n≥1

cnq
n ≡


4
( ∑
n,m∈Z

qn
2+Pm2

− 1
)

mod 16 if χP (1 + i) = −1 ,

4
( ∑
n,m∈Z

qn
2+Pm2

− 1 +
∑
n,m∈Z

q2n
2+2Pm2

− 1
)

mod 16

if χP (1 + i) = 1 ,

which gives us our result for k = 2. For k > 1, k odd, we make a similar
argument, considering cn modulo 2k+2 where∑

n≥1

anq
n =

∑
S⊂{1,...,k}

S 6=∅

E1,ψ4χPSc ,χPS
+ E1,1,ψ4χP

− 1
2L(0, ψ4χP ) ,

∑
n≥1

bnq
n =

∑
S⊂{1,...,k}

S 6=∅

FχP ′
S

P ′′
Sc
,

∑
n≥1

cnq
n =

∑
n≥1

(an + bn)qn ,

where for a subset T ∈ {1, . . . , k}, χP ′
T
P ′′

T c
=

∏
j∈T χp′

j

∏
i 6∈T χp′′

i
and χPT

=∏
j∈T χpj . Reducing to the case of n = 2α

∏k
i=1 p

βi

i n
′, with n′ a square, we

have

an =
∑
d |n′

ψ4χP (d)(1 + (−1)Σ
k

i=1βi+β1χp1(n
′)) . . .

. . . (1 + (−1)Σ
k

i=1βi+βkχpk
(n′)) .

As in the case k = 2 we then have, modulo 2k+2,

cn = (1 + (−1)Σβi+β1) . . . (1 + (−1)Σβi+βk)

+ χP (1 + i)α
( k∏
j=1

(χp′
j
+ χp′′

j
)
)
[pβ1

1 . . . pβk

k ] .

Now if some βh 6≡ βj mod 2, then cn ≡ 0 mod 2k+2, since an’s contribution
will be zero (i.e. (

∑
βi + βh) + (

∑
βi + βj) 6≡ 0 mod 2, and so the terms

cannot both be even), and, we claim, bn’s vanish as well. But this is clear,
for if β1 ≡ . . . ≡ βs ≡ 0 mod 2, and βs+1 ≡ . . . ≡ βk ≡ 1 mod 2 (1 ≤ s < k),
then we have

χp′
1p

′
2...p

′
k

( k∏
i=s+1

p′′i

)
= (−1)k−sχp′′

1 p
′
2...p

′
k

( k∏
i=s+1

p′′i

)

= (−1)k−s−1χp′
1p

′′
2 ...p

′′
k

( k−1∏
i=s+1

p′′i p
′
k

)
since k is odd, and our terms again pair off and cancel. Using the fact that
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χp′
i
(p′′j ) = χp′′

j
(p′i) as in the case k = 2, we are left with

∑
n≥1

cnq
n ≡


2k

( ∑
n,m∈Z

qn
2+Pm2

− 1
)

mod 2k+2 if (1 + i |P ) = −1 ,

2k
( ∑
n,m∈Z

qn
2+Pm2

−1+
∑
n,m∈Z

q2n
2+2Pm2

−1
)

mod 2k+2

if (1 + i |P ) = 1 .
Hence the result.

To prove (B), we proceed in a nearly identical manner, this time consid-
ering cn modulo 2k+2 where∑

n≥1

anq
n =

∑
S⊂{1,...,k}

S 6=∅

E1,ψ8χPSc ,χPS
+ E1,1,ψ8χP

− 1
2L(0, ψ8χP ) ,

∑
n≥1

bnq
n =

∑
S⊂{1,...,k}

S 6=∅

FχP ′
S
χP ′′

Sc
,

∑
n≥1

cnq
n =

∑
n≥1

(an + bn)qn

with pj = p′jp
′′
j in F = Q(

√
−2 ), and where χp′

j
, χp′′

j
are, respectively, the

unique quadratic ray class characters over F of conductors p′j , p
′′
j . If n =

2α
∏k
j=1 p

βj

j n
′ we again find that if n′ is not a square, then cn ≡ 0 mod 2k+2.

If n′ is a square, then

cn ≡ (1 + (−1)Σ
k

i=1βi+β1) . . . (1 + (−1)Σ
k

i=1βi+βk)

+ χP (
√
−2)α

k∏
j=1

(χp′
j
+ χp′′

j
)[pβ1

1 . . . pβk

k ] .

Once again, we have cn ≡ 0 mod 2k+2 unless βi ≡ βj mod 2, ∀i, j. In this
case, we use Hilbert symbols to show that χp′

i
(p′′j ) = χp′′

j
(p′i), yielding

cn ≡ 2k(1 + χP (
√
−2)α)

k∏
j=1

χp′
j
(p′′j )

βj .

But χp′
j
(p′′j ) = χp′

j
(
√
−2), since, if p′j = a − b

√
−2, p′′j = a + b

√
−2 with

a2 + 2b2 = pj , a, b ∈ Z, b = 2cj b′, b′ odd, then

(
√
−2 | a− b

√
−2)(a+ b

√
−2 | a− b

√
−2)

= (a
√
−2− 2b | a− b

√
−2)

= (b | a− b
√
−2)(ab

√
−2− 2b2 | a− b

√
−2)

= (b′ | pj)(a2 − 2b2 | a− b
√
−2)

= (pj | b′)(a2 − 2b2 | pj) = (a2 | b′)(2a2 | pj) = 1 .
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Therefore, since k is odd, we have cn ≡ 2k(1 + χP (
√
−2)α+1), implying

∑
n≥1

cn ≡


2k

( ∑
n,m∈Z

qn
2+2Pm2

− 1
)

mod 2k+2 if (
√
−2 |P ) = −1 ,

2k
( ∑
n,m∈Z

qn
2+2Pm2

− 1 +
∑
n,m∈Z

q2n
2+Pm2

− 1
)

mod 2k+2

if (
√
−2 |P ) = 1 .

Choosing an appropriate cusp then gives us our result.

Corollary 3.2. Let P be as in Proposition 3.1. Then

h(−P ) + h(−2P ) ≡ 2k−2(P − 1) mod 2k+2 .

P r o o f. Since P ≡ 1 mod 8, (
√
−2 |P ) = (

√
2 |P ). Now (1 + i |

√
2) =

eπi/4 is a primitive 8th root of unity, and therefore, (1 + i |P ) = (
√
−2 |P )

iff P ≡ 1 mod 16, that is, iff 2k−2(P − 1) ≡ 0 mod k+2.

Corollary 3.3. Let P be as in Proposition 3.1. Then

h(P ) log2(εP )√
P

≡ h(−P ) + 2k−1(P − 1) mod 2k+3 .

P r o o f. Using Amice–Fresnel’s [1] residue formula, we have

2h(P ) log2(εP )√
P

=
(

1− χP (2)
2

)−1

L2(1, χP ) .

Since χP (2) = 1 here, this, by the continuity of 2-adic L-functions [23],
implies

h(P ) log2(εP )√
P

= L2(1, χP ) ≡ L2(1− 2k+3, χP ) mod 2k+3 .

From Corollary 3.2, 2L(0, ψ4χP ) + 2L(0, ψ8χP ) ≡ 2k−1(P − 1) mod 2k+3.
Thus, we need only show

L(1− 2k+3, χP ) ≡ 3L(0, ψ4χP ) + 2L(0, ψ8χP ) mod 2k+3 .

To this end, we consider dn modulo 2k+3, where∑
n≥1

anq
n = E2k+3,1,χP

− 1
2L(1− 2k+3, χP ) +

∑
S⊂{1,...,k}

S 6=∅

E2k+3,χPS
,χPSc

,

∑
n≥1

bnq
n = E1,1,ψ4χP

− 1
2L(0, ψ4χP ) +

∑
S⊂{1,...,k}

S 6=∅

E1,ψ4χPSc ,χPS
,
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n≥1

cnq
n = E1,1,ψ8χP

− 1
2L(0, ψ8χP ) +

∑
S⊂{1,...,k}

S 6=∅

E1,ψ8χPSc ,χPS
,

∑
n≥1

dnq
n =

∑
n≥1

(an − 3bn − 2cn)qn .

Now if n = 2α
∏k
j=1 p

βj

j n
′, we have

an ≡
∑
d |n′

χP (d)d2k+3−1(1 + pβ1
1 (−1)kβ1+Σβjχp1(n

′)) . . .

. . . (1 + pβk

k (−1)kβk+Σβjχpk
(n′)) ,

bn =
∑
d |n′

ψ4χP (d)(1 + (−1)kβ1+Σβjχp1(n
′)) . . .

. . . (1 + (−1)kβk+Σβjχpk
(n′)) ,

cn =
∑
d |n′

ψ8χP (d)(1 + (−1)kβ1+Σβjχp1(n
′)) . . .

. . . (1 + (−1)kβk+Σβjχpk
(n′)) .

If n′ is not a square, then, since by assumption pj ≡ 1 mod 8 ∀j, we have

an ≡
∑
d |n′

χP (d)(d− 3ψ4(d)− 2ψ8(d))
k∏
h=1

(1 + (−1)kβh+Σβjχph
(n′)) .

We note, however, that for d odd, d− 3ψ4(d)− 2ψ8(d) ≡ 4 mod 8, implying

an ≡ 4
∑
d |n′

χP (d)(1 + (−1)kβ1+Σβjχp1(n
′)) . . .

. . . (1 + (−1)kβk+Σβjχpk
(n′)) ≡ 0 mod 2k+3 .

If n′ is a square, then, if S ⊂ {1, . . . , k} is the set of indices such that
pi ≡ 9 mod 16 and βi ≡ 1 mod 2 iff i ∈ S, then

an ≡
∑
d |n′

χP (d)(d− 3ψ4(d)− 2ψ8(d))
k∏
h=1

(1 + (−1)kβh+Σβjχph
(n′))

+ (∗)8
∑
i∈S

∑
d |n′

χP (d)d
∏
h6=i

(1 + (−1)kβh+Σβj ) .

If k = 2, then clearly the contribution from (∗) will be congruent to 0.
Similarly, if k is odd, the contribution from the ith auxiliary term will
likewise be congruent to 0 unless the simultaneous system of k−1 equations
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in F2 holds for each i ∈ S
0β1 + β2 + . . .+ 0βi + . . .+ βk−1 + βk ≡ 1 ,
β1 + 0β2 + . . .+ 0βi + . . .+ βk−1 + βk ≡ 1 ,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
β1 + β2 + . . .+ 0βi + . . .+ βk−1 + 0βk ≡ 1 .

But we see immediately that adding equation h to equation j produces
βh ≡ βj . The fact that k is odd thus implies βh ≡ 1 ∀h. Again using the
identity d− 3ψ4(d)− 2ψ8(d) ≡ 4 mod 8 leads us to conclude∑
n≥1

anq
n ≡ 2k+1

( ∑
n,m∈Z

qn
2+2m2

− 1 +A
∑
n,m∈Z

qPn
2+2Pm2

− 1
)

mod 2k+3

where A = 1 + the number of elements in S. Choosing an appropriate cusp
gives us our result. A similar proof yields

Corollary 3.4. Let P be as in Proposition 3.1. Then

h(2P ) log2(ε2P )√
2P

≡ h(−2P ) + 2k−1(P − 1) mod 2k+3 .

4. In this section we will be assuming thatK = Q(
√

2) and our forms will
be Hilbert modular forms over that field. Moreover, we will be assuming the
Artin conjecture for representations ofGK . For a prime integer p ≡ 1 mod 8,
we let p′ ∈ K be a totally positive representative of a prime ideal of K
dividing p, and let τ = 2+

√
2, ε = 1+

√
2 be, respectively, a representative

for the unique dyadic prime of K, and K’s fundamental unit. We note that
if ζn is a primitive nth root of unity, n a positive integer, then K(i) =
Q(ζ8) and K(

√
τ) = K(ζ16 + ζ16) = Q(ζ16)+, the maximum totally real

subextension of Q(ζ16).
If we make the additional assumption that ε is a square modulo p

(or, equivalently, by 3.1, 8 |h(−p) since 1+
√

2
1+i = ( 1−i+

√
2

2 )2), the extension
K(
√
p′)/K will be ramified only at p′, corresponding to the unique quadratic

ray class character χp′ of conductor p′. Likewise, corresponding to the ex-
tensions K(i)/K and K(

√
−τ)/K we have quadratic ray class characters

which we shall denote (respectively) by ψ1 and ψ2. Finally, for d ∈ K, we
let h(d) be the class number of K(

√
d) and show the following analog to

(a)–(c) of Section 1.

Proposition 4.1. Let p, p′ be as above. Then

(A) h(−p′) ≡


0 mod 2 ,
0 mod 4 iff p ≡ 1 mod 16,
0 mod 8 iff p ≡ 1 mod 16 and (1 + ζ8 | p) = 1 ,
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(A′) h(−τp′) ≡


0 mod 2 ,
0 mod 4 iff p ≡ 1 mod 16 ,
0 mod 8 iff p ≡ 1 mod 16 and (

√
−τ | p) = 1 .

If p ≡ 1 mod 16 then

(B) h(−p′) + h(−τp′) ≡ 1
4 (p− 1) mod 8,

(C)
h(p′)R2(K(

√
p′))√

8p log2(ε)
≡ h(−p′) mod 16,

where, for a number field E, R2(E) is the 2-adic regulator of E.

P r o o f. (A) Here we proceed as at the beginning of Section 3. To show
h(−p′) ≡ 0 mod 2, we consider aµ modulo 2, where∑

µ�0

aµq
µ = EK1,1,ψ1χp′ − 1

4L(0, ψ1χp′) .

If µ = ταp
′βµ′, we once again find that

aµ =
∑
A |µ

ψ1χp′(A) =
∑
A |µ′

ψ1χp′(A) ≡
{

0 mod 2 if µ′ is not a square,
1 mod 2 if µ′ is a square,

leading us to conclude∑
µ�0

aµq
µ ≡ 1

2

( ∑
µ,ν∈OK

qµ
2+p′ν2

− 1 +
∑

µ,ν∈OK

qτν
2+τp′ν2

− 1
)

mod 2 .

As before, choosing an appropriate cusp (for example, τω = 1 at all places ω
except p′, where it is a nonsquare unit) yields L(0, ψ1χp′) ≡ 0 mod 4. But
L(0, ψ1χp′) = 2h(−p′).

To determine the 4-divisibility of h(−p′), we consider aµ mod 4 where∑
µ�0

aµq
µ = EK1,1,ψ1χp′ − 1

4L(0, ψ1χp′) + EK1,ψ1,χp′

and find, for µ = ταp′βµ′,

aµ =
∑
A |µ′

ψ1χp′(A)(1 + ψ1(p′)βχp′(τ)αχp′(µ′)) .

But ψ1(p′) = 1, since p ≡ 1 mod 8, leaving

∑
µ�0

aµq
µ ≡



( ∑
µ,ν∈OK

qµ
2+p′ν2

− 1 +
∑

µ,ν∈OK

qτµ
2+τp′ν2

− 1
)

mod 4

if χp′(τ) = 1 ,( ∑
µ,ν∈OK

qµ
2+p′ν2

− 1
)

mod 4 if χp′(τ) = −1 .

Now since K(
√
τ) = Q(ζ16)+, it follows that χp′(τ) = 1 iff p ≡ 1 mod 16.

Hence the result.
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Finally, to determine h(−p′) modulo 8, we let F = K(i) and note that
the units of OF and OK are the same up to roots of unity ([5, 13.6] for
example). If p ≡ 1 mod 16 and χp(ε) = 1, then we will have quadratic ray
class characters χ%′ , χ%′′ on the ideals of F of respective prime conductors
%′, %′′, where p′ = %′%′′. We let Fχ%′ , Fχ%′′ be the corresponding Hilbert
forms, and consider aµ mod 8 where∑

µ�0

aµq
µ = EK1,1,ψ1χp′ − 1

4L(0, ψ1χp′) + EK1,ψ1,χp′ + Fχ%′ + Fχ%′′ .

Our arguments from here on are precisely identical to those used over Q. We
need only demonstrate that χ%′(%′′) = χ%′′(%′) = 1. But this computation is
greatly facilitated by the well known fact that Q(ζ8) (as well as Q(ζ16)[23,
p. 352]) has class number one. We let %′ = a − bi, %′′ = a + bi, where
τa, τb ∈ OF = Z(ζ8), and observe that

(a+ bi | a− bi) = (2a | p′) = (τa | p′) since p ≡ 1 mod 16

= (τa, p′)p′ =
∏
ω - p′

(τa, p′)ω

=
∏
ω - τp′

(a′, p′)ω where τa = ταa′

=
∏
ω - τp′

(a′, b2)ω = 1 .

Noting that 1+ ζ8 serves as a uniformizer for the unique dyadic prime of F ,
we find

∑
µ�0

aµq
µ ≡


2
( ∑
µ,ν∈OK

qµ
2+p′ν2

− 1 +
∑

µ,ν∈OK

qτµ
2+τp′ν2

− 1
)

mod 8

if χp(1 + ζ8) = 1 ,

2
( ∑
µ,ν∈OK

qµ
2+p′ν2

− 1
)

mod 8 if χp(1 + ζ8) = −1 .

Thus we have shown (A). To show (A′), our argument is essentially the same.
In this instance, we replace ψ1 with ψ2, observing that ψ2(p′) = 1 iff p′ splits
to K(

√
τ) = Q(ζ16)+, that is, iff p ≡ 1 mod 16. Moreover, for F we choose

K(
√
−τ), noting that here,

√
−τ serves as a uniformizer for the unique

dyadic prime of F . Therefore, we need only show that χ%′(%′′) = χ%′(
√
−τ),

where %′ = a−
√
−τb, %′′ = a+

√
−τb, with a, b ∈ OK since a simple check

verifies that OF = OK [
√
−τ ]. But this may be accomplished as follows. We

consider

χ%′(
√
−τ%′′) = (a

√
−τ − τb | a−

√
−τb) = (b | p′)(ab

√
−τ − τb2 | a−

√
−τb)

= (b, p′)p′(2a2 | p′) =
∏
ω | b

(b, p′)ω
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=
∏
ω | bτ

(b, p′)ω since p ≡ 1 mod 16

=
∏
ω | bτ

(b, a2)ω = 1 .

To prove (B), we need only make the brief computation

1 + ζ8√
τ

=
2+
√

2
2 +

√
2

2 i√
2 +

√
2

= ζ16 .

Part (C) follows from Colmez’s residue formula for p-adic zeta functions
[4] once we have shown that L(1, χp′) ≡ L(−31, χp′) ≡ L(0, ψ1χp′) mod 32.
To this end, we consider cµ modulo 16 where∑

µ�0

aµq
µ = EK31,1,χp′ − L(−31, χp′) + EK31,χp′ ,1 ,∑

µ�0

bµq
µ = EK1,1,ψ1χp′ − L(0, ψ1χp′) + EK1,χp′ ,ψ1

,

∑
µ�0

cµq
µ =

∑
µ�0

(aµ − bµ)qµ .

As p ≡ 1 mod 16 by assumption, we have

cµ ≡
∑
A |µ′

χp′(A)(NA31 − ψ1(A))(1 + χp′(µ′))

≡ 0 mod 16 since N (A)31 − ψ1(A) ≡ 0 mod 8 .

Choosing an appropriate cusp gives us our result.

In conclusion, the author wishes to thank Drs. T. Chinburg, P. Conner
and J. Hurrelbrink for their advice and support.

References

[1] Y. Amice et J. Fresne l, Fonctions zêta p-adiques des corps de nombres abéliens
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[13] —, Sur le 2-groupe des classes d’idéaux des corps quadratiques, J. Reine Angew.

Math. 284 (1976), 313–363.
[14] E. Lehmer, On the quadratic character of some quadratic surds, ibid. 250 (1971),

42–48.
[15] R. Piou i, Mesures de Haar p-adiques et interprétation arithmétique de 12L2(χ, s)−

1
2L2(χ, t), s, t ∈ Q2 (χ quadratique), Ph.D. thesis, Université de Franche-Comté,
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