
ACTA ARITHMETICA
LXI.2 (1992)

The diophantine equation x2 + 19 = yn

by

J. H. E. Cohn (London)

We prove that the equation of the title has only the solutions x = 18,
y = 7, n = 3 and x = 22434, y = 55, n = 5 in positive integers x, y and
n ≥ 3.

Results are known for certain fixed values of n. Thus the impossibility
of other solutions when n = 3 is classical, when n = 5 was proved in [1] and
[3] and when n = 7 in [2]. The case n even is easily dismissed, since then 19
is to be expressed as the difference of two integer squares; this would imply
x = 9, giving no solution with n ≥ 3. Thus there is no loss of generality in
considering only n = p, an odd prime. For x odd, x2+19 ≡ 4 (mod 8), yield-
ing no solution. Thus x is even, y odd and

(x +
√
−19)(x−

√
−19) = yp ,

where in the field Q[
√
−19] with unique prime factorisation the factors on

the left hand side have no common factor. Thus for some rational integers
A and B with the same parity

x +
√
−19 = ( 1

2 (A + B
√
−19))p and y = 1

4 (A2 + 19B2) ,

since the only units of the field, ±1, can be absorbed into the power. Thus

2p = B

(p−1)/2∑
r=0

(
p

2r + 1

)
Ap−2r−1(−19B2)r .

If B is odd, then B = ±1, and then modulo p, we find

2 ≡ 2p ≡ B(−19B2)(p−1)/2 ≡ B (−19 | p) (mod p) ,

which is impossible unless p = 3. This then gives 8 = B(3A2 − 19B2),
whence A = 3, B = 1 and then x = 18, y = 7, n = 3.

Otherwise, A and B are both even, and substituting A = 2a, B = 2b
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gives

1 = b

(p−1)/2∑
r=0

(
p

2r + 1

)
ap−2r−1(−19b2)r ,

and so b = ±1, y = a2 + 19. Since y is odd, a is even and

±1 =
(p−1)/2∑

r=0

(
p

2r + 1

)
ap−2r−1(−19)r ,

and we may reject the lower sign modulo 4. Hence

(1) 1 =
(p−1)/2∑

r=0

(
p

2r + 1

)
ap−2r−1(−19)r .

Lemma 1. Let q be any odd prime dividing a, satisfying (1). Then

19q−1 ≡ 1 (mod q2) .

P r o o f. From (1) we see that (−19)(p−1)/2 ≡ 1 (mod q2), and in partic-
ular q 6= 19. If now qγ ‖ (p− 1) with γ ≥ 0, then every term except the last
on the right of (1) is divisible by qγ+2, and so qγ+2 divides 19p−1 − 1. Let
p − 1 = Hqγ . Then 19Hqγ ≡ 1 (mod qγ+2), which implies 19H ≡ 1
(mod q2). But by Fermat’s Theorem, 19q−1 ≡ 1 (mod q) and then if
K = (H, q − 1), 19K ≡ 1 (mod q). But 19H ≡ 1 (mod q2) and as H is
a multiple of K, but not of q, it follows that 19K ≡ 1 (mod q2). Since q− 1
is a multiple of K, the result follows.

A simple calculation shows that the only primes under 30000 which sat-
isfy the condition of the lemma are 3, 7, 13 and 43. In particular, none of
the primes 191, 229, 457 and 761 can divide a for any solution of (1).

Lemma 2. For any solution of (1), (p | 19) = 1, p 6≡ 1 (mod 19).

P r o o f. From (1), pap−1 ≡ 1 (mod 19), and so p is certainly a quadratic
residue modulo 19. Now suppose that 19% ‖ (p−1), say p−1 = 19%H. Then
(1) gives

1 ≡ pap−1 ≡ (p− 1)ap−1 + ap−1 (mod 19%+1)

and the first term on the right is divisible by precisely 19%, and so
19% ‖ (ap−1 − 1). But this is impossible, since unless aH − 1 is divisible
by 19 neither is ap−1 − 1, and if it is then p%+1 | (ap−1 − 1).

Lemma 3. For any solution of (1), 2 ‖ a and p ≡ 5 (mod 8).

P r o o f. We have already seen that a must be even. Suppose if possi-
ble that 4 | a. Then (1) would imply (−19)(p−1)/2 ≡ 1 (mod 16), whence
8 | (p− 1). Suppose that 2α ‖ a and 2β ‖ (p − 1) where α ≥ 2 and β ≥ 3.
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Then

(2) −(−19)(p−1)/2 + 1 = a2(−19)(p−3)/2

(
p

2

)
+ a4(−19)(p−5)/2

(
p

4

)
+ . . .

Now on the right hand side, every term is divisible by 2β+3. However,
192 ≡ 1 + 8 (mod 16) and we find easily by induction that

192β−1
≡ 1 + 2β+1 (mod 2β+2) ,

and so 2β+1 and no higher power of 2 divides the left hand side. Thus 2 ‖ a.
Then p ≡ 1 (mod 4), otherwise (p − 1)/2 is odd, and a2 ≡ 4 (mod 16)
whence from (1),

1 ≡ −19(p−1)/2 + 4
(

p

2

)
(mod 16) ,

and it is easily seen that whether p ≡ 3 or 7 (mod 8), the right hand side
is congruent to 9 modulo 16.

Now suppose that p ≡ 1 (mod 8); then in the above β ≥ 3. Now
194 ≡ 1 + 24 (mod 27) and we find easily by induction that for σ ≥ 2,
192σ ≡ 1 + 2σ+2 (mod 2σ+5). Hence we find (where p− 1 = 2β · k)

(−19)(p−1)/2 ≡ (1 + 2β+1)k ≡ 1 + k · 2β+1 (mod 2β+4) ,

a2(−19)(p−3)/2

(
p

2

)
= 2β+1k(2βk + 1)(a/2)2(−19)(p−3)/2

≡ −3k · 2β+1 (mod 2β+4) ,

a4(−19)(p−5)/2

(
p

4

)
= 1

32β+2k(22βk2 − 1)(2β−1k − 1)(a/2)4(−19)(p−5)/2

≡ −k · 2β+2 (mod 2β+4)

and all the other terms on the right hand side of (2) are multiples of 2β+4.
Thus substituting into (2) gives

−k · 2β+1 ≡ −3k · 2β+1 − k · 2β+2 ≡ −5k · 2β+1 (mod 2β+4) ,

which is impossible. This concludes the proof.
Next for p = 5 we find 1 = 5a4−190a2 +361 yielding only a = 6, whence

x = 22434, y = 55 and n = 5. We now complete the proof that there are no
solutions when p 6= 5. Define the function

(3) fm(a) =
(a +

√
−19)m − (a−

√
−19)m

2
√
−19

.

Then (1) takes the form fp(a) = 1 and we shall show that this cannot occur,
by showing it to be impossible modulo q for at least one prime q for any
particular a and p not already excluded by one of the lemmas above. If
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q ≡ 1 (mod 19) is a prime we find modulo q that

fm+q(a) ≡ fm+1(a) , for (−19)(q−1)/2 ≡ (−19 | q) = (q | 19) = +1

and so

(a +
√
−19)q ≡ aq + (−19)(q−1)/2

√
−19 ≡ a +

√
−19 ,

and similarly for the complex conjugate. Thus for fixed a, the sequence
{fm(a)} is periodic modulo q with period q − 1 or a factor thereof. Also
since fm(−a) = fm(a) for odd m and since fm(a + q) ≡ fm(a) (mod q),
in deciding whether fm(a) ≡ 1 (mod q) is possible, it suffices to consider
only odd values of m in the range 1 to q − 2 and values of a satisfying
0 ≤ a ≤ (q − 1)/2. In addition, if q is one of the primes which is known not
to divide a by virtue of the corollary to Lemma 1, we may exclude a = 0.
This finite set {fm(a)} of residues is most easily calculated from f0(a) = 0,
f1(a) = 1 and the recurrence relation

fm+2(a) = 2afm+1(a)− (a2 + 19)fm(a)

all of which follow from (3). For each such q, this gives a list of possi-
ble residues {m} modulo (q − 1) for p. From this list we may delete any
possible residue which would prevent p being a prime > 3. It will be ob-
vious that m = 1 always appears in the list, since f1(a) = 1, but if q ≡ 1
(mod 19), in view of Lemma 2, this and any other m ≡ 1 (mod 19) can
also be deleted. Again m = 5 will always appear, since 5 is a solution, but
whenever 5 | (q − 1) we can remove any other multiples of 5. Using the fact
that p ≡ 5 (mod 8) we find the following results from the primes mentioned
above:

q modulo p is congruent to one of:

191 760 5, 61, 149, 197, 277, 309, 397, 453, 461, 541,
557, 653, 669, 693, 701, 709 or 733

229 456 5, 61, 101, 149, 157, 277, 349 or 365

457 456 5, 61, 85, 125, 157, 197, 365 or 397

761 760 5, 93, 157, 197, 213, 237, 277, 349, 429, 501,
517, 541, 581, 613, 653, 701 or 733.

Combining the results from 229 and 457, we find that we must have p ≡ 5,
61, 157 or 365 (mod 456), and so in particular p ≡ 4 or 5 (mod 19). From
the other two we find that p ≡ 5, 197, 277, 541, 653, 701 or 733 (mod 760),
and of these p ≡ 5 (mod 760) is the only one which also satisfies p ≡ 4 or
5 (mod 19). But the only prime which satisfies p ≡ 5 (mod 760) is p = 5,
which concludes the proof.
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