The diophantine equation $x^{2}+19=y^{n}$

by

J. H. E. Cohn (London)

We prove that the equation of the title has only the solutions $x=18$, $y=7, n=3$ and $x=22434, y=55, n=5$ in positive integers x, y and $n \geq 3$.

Results are known for certain fixed values of n. Thus the impossibility of other solutions when $n=3$ is classical, when $n=5$ was proved in [1] and [3] and when $n=7$ in [2]. The case n even is easily dismissed, since then 19 is to be expressed as the difference of two integer squares; this would imply $x=9$, giving no solution with $n \geq 3$. Thus there is no loss of generality in considering only $n=p$, an odd prime. For x odd, $x^{2}+19 \equiv 4(\bmod 8)$, yielding no solution. Thus x is even, y odd and

$$
(x+\sqrt{-19})(x-\sqrt{-19})=y^{p},
$$

where in the field $\mathbb{Q}[\sqrt{-19}]$ with unique prime factorisation the factors on the left hand side have no common factor. Thus for some rational integers A and B with the same parity

$$
x+\sqrt{-19}=\left(\frac{1}{2}(A+B \sqrt{-19})\right)^{p} \quad \text { and } \quad y=\frac{1}{4}\left(A^{2}+19 B^{2}\right)
$$

since the only units of the field, ± 1, can be absorbed into the power. Thus

$$
2^{p}=B \sum_{r=0}^{(p-1) / 2}\binom{p}{2 r+1} A^{p-2 r-1}\left(-19 B^{2}\right)^{r}
$$

If B is odd, then $B= \pm 1$, and then modulo p, we find

$$
2 \equiv 2^{p} \equiv B\left(-19 B^{2}\right)^{(p-1) / 2} \equiv B(-19 \mid p)(\bmod p)
$$

which is impossible unless $p=3$. This then gives $8=B\left(3 A^{2}-19 B^{2}\right)$, whence $A=3, B=1$ and then $x=18, y=7, n=3$.

Otherwise, A and B are both even, and substituting $A=2 a, B=2 b$
gives

$$
1=b \sum_{r=0}^{(p-1) / 2}\binom{p}{2 r+1} a^{p-2 r-1}\left(-19 b^{2}\right)^{r},
$$

and so $b= \pm 1, y=a^{2}+19$. Since y is odd, a is even and

$$
\pm 1=\sum_{r=0}^{(p-1) / 2}\binom{p}{2 r+1} a^{p-2 r-1}(-19)^{r},
$$

and we may reject the lower sign modulo 4. Hence

$$
\begin{equation*}
1=\sum_{r=0}^{(p-1) / 2}\binom{p}{2 r+1} a^{p-2 r-1}(-19)^{r} . \tag{1}
\end{equation*}
$$

Lemma 1. Let q be any odd prime dividing a, satisfying (1). Then

$$
19^{q-1} \equiv 1\left(\bmod q^{2}\right) .
$$

Proof. From (1) we see that $(-19)^{(p-1) / 2} \equiv 1\left(\bmod q^{2}\right)$, and in particular $q \neq 19$. If now $q^{\gamma} \|(p-1)$ with $\gamma \geq 0$, then every term except the last on the right of (1) is divisible by $q^{\gamma+2}$, and so $q^{\gamma+2}$ divides $19^{p-1}-1$. Let $p-1=H q^{\gamma}$. Then $19^{H q^{\gamma}} \equiv 1\left(\bmod q^{\gamma+2}\right)$, which implies $19^{H} \equiv 1$ $\left(\bmod q^{2}\right)$. But by Fermat's Theorem, $19^{q-1} \equiv 1(\bmod q)$ and then if $K=(H, q-1), 19^{K} \equiv 1(\bmod q)$. But $19^{H} \equiv 1\left(\bmod q^{2}\right)$ and as H is a multiple of K, but not of q, it follows that $19^{K} \equiv 1\left(\bmod q^{2}\right)$. Since $q-1$ is a multiple of K, the result follows.

A simple calculation shows that the only primes under 30000 which satisfy the condition of the lemma are $3,7,13$ and 43 . In particular, none of the primes 191, 229, 457 and 761 can divide a for any solution of (1).

Lemma 2. For any solution of $(1),(p \mid 19)=1, p \not \equiv 1(\bmod 19)$.
Proof. From (1), $p a^{p-1} \equiv 1(\bmod 19)$, and so p is certainly a quadratic residue modulo 19 . Now suppose that $19^{\varrho} \|(p-1)$, say $p-1=19^{\varrho} H$. Then (1) gives

$$
1 \equiv p a^{p-1} \equiv(p-1) a^{p-1}+a^{p-1}\left(\bmod 19^{\varrho+1}\right)
$$

and the first term on the right is divisible by precisely 19°, and so $19^{\varrho} \|\left(a^{p-1}-1\right)$. But this is impossible, since unless $a^{H}-1$ is divisible by 19 neither is $a^{p-1}-1$, and if it is then $p^{\varrho+1} \mid\left(a^{p-1}-1\right)$.

Lemma 3. For any solution of (1), $2 \| a$ and $p \equiv 5(\bmod 8)$.
Proof. We have already seen that a must be even. Suppose if possible that $4 \mid a$. Then (1) would imply $(-19)^{(p-1) / 2} \equiv 1(\bmod 16)$, whence $8 \mid(p-1)$. Suppose that $2^{\alpha} \| a$ and $2^{\beta} \|(p-1)$ where $\alpha \geq 2$ and $\beta \geq 3$.

Then
(2) $-(-19)^{(p-1) / 2}+1=a^{2}(-19)^{(p-3) / 2}\binom{p}{2}+a^{4}(-19)^{(p-5) / 2}\binom{p}{4}+\ldots$

Now on the right hand side, every term is divisible by $2^{\beta+3}$. However, $19^{2} \equiv 1+8(\bmod 16)$ and we find easily by induction that

$$
19^{2^{\beta-1}} \equiv 1+2^{\beta+1}\left(\bmod 2^{\beta+2}\right)
$$

and so $2^{\beta+1}$ and no higher power of 2 divides the left hand side. Thus $2 \| a$. Then $p \equiv 1(\bmod 4)$, otherwise $(p-1) / 2$ is odd, and $a^{2} \equiv 4(\bmod 16)$ whence from (1),

$$
1 \equiv-19^{(p-1) / 2}+4\binom{p}{2}(\bmod 16)
$$

and it is easily seen that whether $p \equiv 3$ or $7(\bmod 8)$, the right hand side is congruent to 9 modulo 16 .

Now suppose that $p \equiv 1(\bmod 8)$; then in the above $\beta \geq 3$. Now $19^{4} \equiv 1+2^{4}\left(\bmod 2^{7}\right)$ and we find easily by induction that for $\sigma \geq 2$, $19^{2^{\sigma}} \equiv 1+2^{\sigma+2}\left(\bmod 2^{\sigma+5}\right)$. Hence we find (where $p-1=2^{\beta} \cdot k$)

$$
\begin{aligned}
(-19)^{(p-1) / 2} & \equiv\left(1+2^{\beta+1}\right)^{k} \equiv 1+k \cdot 2^{\beta+1}\left(\bmod 2^{\beta+4}\right) \\
a^{2}(-19)^{(p-3) / 2}\binom{p}{2} & =2^{\beta+1} k\left(2^{\beta} k+1\right)(a / 2)^{2}(-19)^{(p-3) / 2} \\
& \equiv-3 k \cdot 2^{\beta+1}\left(\bmod 2^{\beta+4}\right) \\
a^{4}(-19)^{(p-5) / 2}\binom{p}{4} & =\frac{1}{3} 2^{\beta+2} k\left(2^{2 \beta} k^{2}-1\right)\left(2^{\beta-1} k-1\right)(a / 2)^{4}(-19)^{(p-5) / 2} \\
& \equiv-k \cdot 2^{\beta+2}\left(\bmod 2^{\beta+4}\right)
\end{aligned}
$$

and all the other terms on the right hand side of (2) are multiples of $2^{\beta+4}$. Thus substituting into (2) gives

$$
-k \cdot 2^{\beta+1} \equiv-3 k \cdot 2^{\beta+1}-k \cdot 2^{\beta+2} \equiv-5 k \cdot 2^{\beta+1}\left(\bmod 2^{\beta+4}\right)
$$

which is impossible. This concludes the proof.
Next for $p=5$ we find $1=5 a^{4}-190 a^{2}+361$ yielding only $a=6$, whence $x=22434, y=55$ and $n=5$. We now complete the proof that there are no solutions when $p \neq 5$. Define the function

$$
\begin{equation*}
f_{m}(a)=\frac{(a+\sqrt{-19})^{m}-(a-\sqrt{-19})^{m}}{2 \sqrt{-19}} \tag{3}
\end{equation*}
$$

Then (1) takes the form $f_{p}(a)=1$ and we shall show that this cannot occur, by showing it to be impossible modulo q for at least one prime q for any particular a and p not already excluded by one of the lemmas above. If
$q \equiv 1(\bmod 19)$ is a prime we find modulo q that

$$
f_{m+q}(a) \equiv f_{m+1}(a), \quad \text { for }(-19)^{(q-1) / 2} \equiv(-19 \mid q)=(q \mid 19)=+1
$$

and so

$$
(a+\sqrt{-19})^{q} \equiv a^{q}+(-19)^{(q-1) / 2} \sqrt{-19} \equiv a+\sqrt{-19}
$$

and similarly for the complex conjugate. Thus for fixed a, the sequence $\left\{f_{m}(a)\right\}$ is periodic modulo q with period $q-1$ or a factor thereof. Also since $f_{m}(-a)=f_{m}(a)$ for odd m and since $f_{m}(a+q) \equiv f_{m}(a)(\bmod q)$, in deciding whether $f_{m}(a) \equiv 1(\bmod q)$ is possible, it suffices to consider only odd values of m in the range 1 to $q-2$ and values of a satisfying $0 \leq a \leq(q-1) / 2$. In addition, if q is one of the primes which is known not to divide a by virtue of the corollary to Lemma 1, we may exclude $a=0$. This finite set $\left\{f_{m}(a)\right\}$ of residues is most easily calculated from $f_{0}(a)=0$, $f_{1}(a)=1$ and the recurrence relation

$$
f_{m+2}(a)=2 a f_{m+1}(a)-\left(a^{2}+19\right) f_{m}(a)
$$

all of which follow from (3). For each such q, this gives a list of possible residues $\{m\}$ modulo $(q-1)$ for p. From this list we may delete any possible residue which would prevent p being a prime >3. It will be obvious that $m=1$ always appears in the list, since $f_{1}(a)=1$, but if $q \equiv 1$ $(\bmod 19)$, in view of Lemma 2 , this and any other $m \equiv 1(\bmod 19)$ can also be deleted. Again $m=5$ will always appear, since 5 is a solution, but whenever $5 \mid(q-1)$ we can remove any other multiples of 5 . Using the fact that $p \equiv 5(\bmod 8)$ we find the following results from the primes mentioned above:

q	modulo	p is congruent to one of:
191	760	$5,61,149,197,277,309,397,453,461,541$,
		$557,653,669,693,701,709$ or 733
229	456	$5,61,101,149,157,277,349$ or 365
457	456	$5,61,85,125,157,197,365$ or 397
761	760	$5,93,157,197,213,237,277,349,429,501$,
		$517,541,581,613,653,701$ or 733.

Combining the results from 229 and 457 , we find that we must have $p \equiv 5$, 61,157 or $365(\bmod 456)$, and so in particular $p \equiv 4$ or $5(\bmod 19)$. From the other two we find that $p \equiv 5,197,277,541,653,701$ or $733(\bmod 760)$, and of these $p \equiv 5(\bmod 760)$ is the only one which also satisfies $p \equiv 4$ or $5(\bmod 19)$. But the only prime which satisfies $p \equiv 5(\bmod 760)$ is $p=5$, which concludes the proof.

References

[1] J. Blass, A note on Diophantine equation $Y^{2}+k=X^{5}$, Math. Comp. 30 (1976), 638-640.
[2] J. Blass and R. Steiner, On the equation $y^{2}+k=x^{7}$, Utilitas Math. 13 (1978), 293-297.
[3] B. M. E. Wren, $y^{2}+D=x^{5}$, Eureka 36 (1973), 37-38.

DEPARTMENT OF MATHEMATICS
ROYAL HOLLOWAY AND BEDFORD NEW COLLEGE
EGHAM, SURREY TW20 0EX, ENGLAND
E-mail: UHAH206@UK.AC.RHBNC.VAX

Received on 17.6.1991
and in revised form on 15.10.1991

