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1. Introduction. Let a, d and k be positive integers with d > 1, k > 2,
gcd(a, d) = 1. Put ∆ = a(a+d) . . . (a+(k−1)d). Denote by P (x) and ω(x)
the greatest prime factor and the number of distinct prime divisors of x,
respectively. Put ω = ω(a, d, k) = ω(∆) and χ = a + (k− 1)d. In this paper
we derive lower bounds for ω as a function of χ and k. In [8] we proved
that ω ≥ π(k) where π(x) denotes the number of prime numbers ≤ x. This
bound is not bad for small a and d as we obviously have ω ≤ π(χ). For
a further study of cases with ω near to π(k), see Moree [5]. Since it has
not yet been disproved (and it is even conjectured to be true!) that there
are arbitrarily long arithmetical progressions d + 1, 2d + 1, . . . , (k − 1)d + 1
consisting of primes, we cannot expect to be able to prove anything better
than ω ≥ k − 1 for χ large.

In Section 2 we consider values of χ up to ek. By using combinatorial
methods we prove in Theorem 1 that ω ≥ bk log(χ/k)/ log χc where b c
denotes the integer part function. In Theorem 2 we show that the bound is
not far from the best possible in certain ranges. In Theorem 3 we obtain a
sharpening of Theorem 1 for values of χ larger than a constant power of k.

In Section 3 we apply estimates for linear forms in (p-adic) logarithms
of algebraic numbers. Corollary 4.2 states that ω ≥ k− 1 if log χ �ε k4/3+ε

and provides a characterization of the cases with ω = k− 1. This is derived
from Corollary 4.1. In Corollary 4.1 and Theorem 5 we obtain bounds of
the form ω ≥ k + (1− ε)πd(k) and ω ≥ k + πd(k)− 2 where πd(k) denotes
the number of primes ≤ k coprime to d. In Theorem 5 the condition even
becomes log log χ � k.

Finally, in Section 4, we assume that P (d) or P (a) is bounded from
above by a suitable power of log χ. In Theorem 6 we derive the inequality
ω ≥ k + (1− ε)πd(k) under the rather weak assumption that log χ exceeds
a constant power of log k (in place of k). The used method is similar to the
one applied in Section 3. For the place of the obtained results with respect
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to the existing literature we refer to the survey papers [9] or [10].

2. Bounds for ω if χ is small. We use the notation of the first
paragraph of the Introduction. Let G be the set of primes p with p ≤ k and
gcd(p, d) = 1. Then πd(k) = |G| where |A| denotes the cardinality of a set
A. For every p ∈ G we choose an f(p) ∈ {0, 1, . . . , k − 1} such that

ordp(a + f(p)d) = max
0≤j<k

ordp(a + jd).

We write H for the set of all i with 0 ≤ i < k such that P (a + id) ≤ k. We
denote by H0 the set of all elements of H which do not appear in the range
of f . Note that

(2.1) ω ≥ k + πd(k)− |H| ≥ k − |H0|.
It will turn out that the following simple and known estimations are very
useful.

Lemma 1. (a)
∏

j∈H0
(a + jd) ≤ (k − 1)!,

(b) lcmj∈H0(a + jd) < kπd(k).

P r o o f. (a) By counting the multiplicities of primes on both sides we
have ∏

j∈H0

(a + jd) ≤
∏
p<k

p
b k−1

p c+b k−1
p2 c+... = (k − 1)!.

(b) For every p ∈ G and j ∈ H0 we have gcd(a + jd, a + f(p)d) < k.

Theorem 1.

ω ≥
⌊
k

log(χ/k)
log χ

⌋
.

P r o o f. Put t = bk log(χ/k)/ log χc. We assume that t > 0. Suppose
ω ≤ t− 1. Then |H0| ≥ k − t + 1 in view of (2.1). Hence, by Lemma 1(a),

k−t∏
j=0

(a + jd) ≤ (k − 1)! ,

from which it follows that(
χ

k − 1

)k−t

(k − t)! ≤
k−t∏
j=1

j

(
a

k − 1
+ d

)
≤ (k − 1)!.

We infer from the above inequality that (χ/k)k−t ≤ kt−1, whence χk−t ≤
kk−1 and

t ≥ k − (k − 1)
log k

log χ
> k

(
1− log k

log χ

)
.

This contradicts the definition of t.
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The following result shows that Theorem 1 is not far from best possible
if χ < kc for some constant c.

Theorem 2. For every prime number d and every positive integer k > 2
there exists a positive integer a < d such that

ω ≤ k log
log χ

log k
+ c1

k

log k

where c1 is some absolute constant.

P r o o f. We shall use∑
p≤x

1
p

= log log x + C + O

(
1

log x

)
, x →∞,

where C is some absolute constant (see [4], pp. 350–351). Hence∑
k<p≤kd

⌊
kd

p

⌋
≤ kd

∑
k<p≤kd

1
p

= kd log
log(kd)
log k

+ O

(
kd

log k

)
.

The left side equals the number of positive integers ≤ kd which are divisible
by a prime number > k counted according to their multiplicities. We split
the integers from 1 to kd coprime to d into d− 1 arithmetical progressions
of length k with difference d. Hence there exists an integer a with 0 < a < d
such that ω = ω(a, d, k) satisfies

ω ≤ π(k) +
kd

d− 1
log

log(kd)
log k

+ O

(
k

log k

)
where the first term on the right side counts the prime factors ≤ k and the
others majorize the remaining prime factors. Note that (k − 1)d < χ < kd.
Hence

kd

d− 1
log

log(kd)
log k

= k log
log χ

log k
+ O

(
k

d
log

log(kd)
log k

)
+ O

(
k log

log(kd)
log((k − 1)d)

)
= k log

log χ

log k
+ O

(
k log d

d log k

)
+ O

(
1

log(kd)

)
.

R e m a r k. If log χ = (1 + o(1)) log k and χ/k → ∞, then according to
Theorem 1

(2.2) ω ≥ (1 + o(1))k
log(χ/k)

log k
, k →∞,

and by Theorem 2 there are instances with

(2.3) ω ≤ (1 + o(1))k
log(χ/k)

log k
.
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This implies that Theorem 1 cannot be improved on by any constant factor
> 1. The situation occurs when χ = (1 + o(1))k(log k)c (c > 1) whence

ω ≥ (1 + o(1))ck
log log k

log k

and if χ = (1 + o(1))ke(log k)δ

(0 < δ < 1), whence

ω ≥ (1 + o(1))k(log k)δ−1.

If χ = (1 + o(1))kc for some c > 1, then Theorem 1 implies ω �c k and
Theorem 2 the existence of cases with ω �c k, so that the ratio of upper
and lower bound is bounded.

If χ > exp(kδ) for some δ > 0, then the next theorem provides a better
lower bound than Theorem 1 does.

Theorem 3. Let t be any positive integer. If

(2.4)
log χ

log k
>

πd(k)
t

+
t + 1

2
,

then ω ≥ k − t.

In the proof we use the following version of Lemma 4 of [7].

Lemma 2. If a1, a2, . . . , an are any positive integers, then
n∏

j=1

aj ≤ lcm(a1, a2, . . . , an)
∏

1≤i<j≤n

gcd(ai, aj).

P r o o f. For any prime p choose aip such that p does not appear to a
higher power in the factorisation of any other number a1, a2, . . . , an. Then
the number of factors p dividing the left side is equal to the number of
factors p dividing

aip

∏
i 6=ip

gcd(ai, aip).

P r o o f o f T h e o r e m 3. Suppose that t < k and ω < k− t. Hence, by
(2.1), t < |H0|. Choose a subset J of positive elements of H0 with |J | = t.
By Lemma 2 we have∏

j∈J

(a + jd) ≤ lcmj∈J(a + jd)
∏

i,j∈J
i<j

gcd(a + id, a + jd).

Observe that a + jd ≥ χ/k for j ∈ J and that gcd(a + id, a + jd) ≤ k for
0 < i < j < k. Hence, by Lemma 1(b),

(χ/k)t ≤ kπd(k)k(t
2).
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This implies
log χ

log k
≤ πd(k)

t
+

t + 1
2

,

contradicting (2.4).

Since πd(k) ≤ π(k) < (1+ε)k/ log k for k ≥ k0(ε) according to the prime
number theorem, we have the following consequences:

If χ ≥ exp(kδ) ( 1
2 < δ < 1) then ω ≥ k − (1 + ε)k1−δ for k ≥ k0(δ, ε).

If χ ≥ exp(δk) (δ > 0) then ω ≥ k − bδ−1c − 1 for k ≥ k1(δ).
In particular, if χ ≥ exp((1 + ε)k) (ε > 0), then ω ≥ k− 1 for k ≥ k2(ε).

(If 1 and the primes p1, p2, . . . , pk−1 are in arithmetical progression, we take
a = 1 and d = p1 − 1 to observe that ω = k − 1.)

3. Bounds for ω if χ is large. The proofs in Sections 3 and 4 depend
on the theory of linear forms in logarithms. Let α1, . . . , αn be non-zero
algebraic numbers of heights not exceeding A1, . . . , An, respectively, where
Aj ≥ 3 for 1 ≤ j ≤ n. We put

Ω =
n∏

j=1

log Aj , Ω′ = Ω/ log An

and
K = Q(α1, . . . , αn), [K : Q] = D.

We start with the following estimate of Baker [1] on linear forms in
logarithms.

Lemma 3. There exist effectively computable absolute constants c2 and
c3 such that the inequalities

0 < |αb1
1 . . . αbn

n − 1| < exp(−(c2nD)c3nΩ log Ω′ log B)

have no solution in rational integers b1, . . . , bn of absolute values not exceed-
ing B with B ≥ 2.

Next, we state an estimate of Yu [11, Corollary of Theorem 2] on p-adic
linear forms in logarithms.

Lemma 4. Let p and q be positive prime numbers. Let p be a prime ideal
of K satisfying p | p and

(3.1) ordp(αj) = 0 for 1 ≤ j ≤ n

and
p(pfp − 1) 6≡ 0 (mod q)

where fp is given by
NK/Qp = pfp .
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Assume that

(3.2) [K(α1/q
1 , . . . , α1/q

n ) : K] = qn.

There exists an effectively computable absolute constant c4 such that

ordp(αb1
1 . . . αbn

n − 1) ≤ (qnD)c4npDΩ(log B)2

for all rational integers b1, . . . , bn with absolute values at most B (≥ 2) such
that αb1

1 . . . αbn
n 6= 1.

Finally, we state an application of the theory of linear forms in logarithms
for the proofs of Theorems 5, 7 and 7′. Let F (X, Y ) ∈ Z[X, Y ] be a binary
form with at least three distinct linear factors in its factorisation over C. We
denote by L the splitting field of F and we write l, RL and hL, respectively,
for the degree, regulator and class number of L. Let H(F ) be the maximum
of the absolute values of the coefficients of F . Let p1, . . . , ps be distinct prime
numbers and A some non-zero rational integer. Then Győry [3] proved

Lemma 5. All solutions of the Thue–Mahler equation

F (x, y) = Apz1
1 . . . pzs

s

in integers x, y, z1, . . . , zs with gcd(x, y) = 1, z1 ≥ 0, . . . , zs ≥ 0 satisfy

log(max(|x|, |y|)) ≤ c5(s + 1)c6(s+1)P 2l(1 + log(|A|H(F )))

where c5 and c6 are effectively computable numbers such that c5 depends
only on l, RL, hL and c6 only on l.

We recall that H is the set of all i with 0 ≤ i < k such that P (a+id) ≤ k.
We write H ′ for the set of all a + id with i ∈ H. Let

(3.3) K = min(k(πd(k))−1, (πd(k))1/2).

We observe that K = 0 whenever πd(k) = 0 and

(3.4) K ≤ k1/3.

We prove

Lemma 6. Let ε > 0. There exist effectively computable numbers C1, C2

and C3 depending only on ε such that for

k ≥ C1, πd(k) ≥ C2 and log χ ≥ Kk(log k)C3 ,

we have
|H ′| ≤ επd(k).

P r o o f. We assume that 0 < ε < 1. We write C4, C5, . . . , C13 for effec-
tively computable positive numbers depending only on ε. We may assume
that k ≥ C4 and πd(k) ≥ C4 with C4 sufficiently large. For every p ∈ G,
we choose an F (p) ∈ H ′ such that p does not appear to a higher power in
the factorisation of any other element of H ′. Let H1 be the set of all the
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elements of H ′ which do not appear in the image of F more than bε−1c =: τ
times. We write H2 for the complement of H1 in H ′. We suppose that

(3.5) |H ′| > 2επd(k).

We observe that

(3.6) |H ′| = |H1|+ |H2|
and

(3.7) ε−1|H2| < (τ + 1)|H2| ≤ πd(k).

By (3.6), (3.5) and (3.7), we derive that

(3.8) |H1| > επd(k).

For a + jd ∈ H1, we write

(3.9) a + jd = mjp
aj,1
j,1 . . . p

aj,τj

j,τj
=: mjsj

where τj ≤ τ, pj,i ∈ G, F (pj,i) = a + jd, aj,i and mj are positive integers
such that the primes pj,1, . . . , pj,τj do not appear in the factorisation of mj .
The factorisation in (3.9) is such that, if pb |mj for some prime p and some
positive integer b, then pb | a + id for some i 6= j, whence pb < k. We put
|v1| = |H1| and v = bv1/2c. We order mj with a+jd ∈ H1 in the decreasing
order

(3.10) mj1 ≥ mj2 ≥ . . . ≥ mjv ≥ . . . ≥ mjv1
.

We write

(3.11) Mν = mjν
, Sν = sjν

for 1 ≤ ν ≤ v1.

We observe from the definition of H1 that

(3.12) lcm(M1, . . . ,Mv1) ≤ kπd(k).

Further, we see from the proof of Lemma 1(a) that

(3.13)
v1∏

ν=1

Mν ≤ kk.

Now, we apply Lemma 2 with n = b
√

πd(k)c and aν = Mν for 1 ≤ ν ≤ n
to conclude from (3.10) and (3.12) that

(3.14) Mn
n ≤ kπd(k)k(n

2).

Then, we observe from (3.10) and (3.14) that

(3.15) log Mv ≤ log Mn ≤ C5(πd(k))1/2 log k.

Writing

(3.16) jνi
= Ji for i = 1, 2, 3,
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we see from (3.8) and (3.13) that there are three distinct integers ν1, ν2, ν3

between v and v1 such that a + J1d, a + J2d, a + J3d are elements of H1

satisfying

(3.17) log max(Mν1 ,Mν2 ,Mν3) ≤ C6k(πd(k))−1 log k.

By (3.17), (3.10), (3.15) and (3.3), we conclude that

(3.18) log max(Mν1 ,Mν2 ,Mν3) ≤ C7K log k.

We denote by U the maximum of exponents of primes pj,i in (3.9) with
j = J1, J2, J3. Without loss of generality, we may assume that U = aJ3,1.
Further, we write p = pJ3,1. We have

(3.19) (J1 − J2)(a + J3d) + (J2 − J3)(a + J1d) + (J3 − J1)(a + J2d) = 0.

By (3.19), (3.9), (3.16) and (3.11),

(3.20) −(J1 − J2)Mν3Sν3 = (J2 − J3)Mν1Sν1 − (J1 − J3)Mν2Sν2 .

We write

(3.21) M ′
ν1

= Mν1/gcd(Mν1 , Sν2), M ′
ν2

= Mν2/gcd(Mν2 , Sν1),

(3.22) S′
ν1

= Sν1/gcd(Mν2 , Sν1), S′
ν2

= Sν2/gcd(Mν1 , Sν2).

We notice that

(3.23) gcd(M ′
ν1

M ′
ν2

, S′
ν1

S′
ν2

) = 1.

Now, we derive from (3.20), (3.21), (3.22) and (3.18) that

(3.24) U = ordp(Sν3) ≤ ordp(Ω) + C8K log k

where

(3.25) Ω =
S′

ν1

S′
ν2

·
(J2 − J3)M ′

ν1

(J1 − J3)M ′
ν2

− 1.

By (3.11), (3.16) and (3.9), we write S′
ν1

/S′
ν2

as a power product of primes

(3.26) pJi,µ with i = 1, 2, 1 ≤ µ ≤ τJi
, ordpJi,µ

(S′
ν1

S′
ν2

) 6= 0

whose exponents, in absolute values, do not exceed aJi,µ, respectively. We
denote by SJ1,J2 the set of non-zero integers composed of primes (3.26).

Now, we show that

(3.27) U ≤ Kk(log k)C9(log log χ)2.

For this, we shall derive from Lemma 4 that

(3.28) ordp(Ω) ≤ Kk(log k)C10(log log χ)2.

Then we combine (3.24) and (3.28) to conclude (3.27). For showing (3.28),
we may assume that

(3.29) ordp(Ω + 1) = 0.
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Further, we notice that p is different from the primes (3.26). Consequently,
we derive from (3.29) and (3.25) that

ordp

(
(J2 − J3)M ′

ν1

(J1 − J3)M ′
ν2

)
= 0.

Therefore, the assumption (3.1) in Lemma 4 is satisfied.
Let q be a prime between (log k)2 and 2(log k)2 such that q - p(p − 1).

This choice is possible, since∏
(log k)2<q<2(log k)2

q > 2(log k)2 > k(k − 1) ≥ p(p− 1).

We first assume that

(3.30)
(J2 − J3)M ′

ν1

(J1 − J3)M ′
ν2

µ with µ ∈ SJ1,J2

is a qth power of a rational number. Then we derive from (3.23), q ≥
(log k)2 and the fact that every prime power factor of some Mν is less
than k that the numerator and the denominator of the reduced fraction of
(J2−J3)M ′

ν1
/(J1−J3)M ′

ν2
are elements of SJ1,J2 . Now, we take α1, . . . , αn

in Lemma 4 as distinct primes from (3.26) and we observe that the assump-
tion (3.2) is satisfied. Finally, we apply Lemma 4 with n = ω(S′

ν1
S′

ν2
) ≤ 2τ ,

D = 1, p ≤ k, q ≤ 2(log k)2, A1 = A2 = . . . = An = k and B = 2 log χ to
conclude that

ordp(Ω) ≤ k(log k)C11(log log χ)2

which implies (3.28).
Next, we assume that (3.30) is not a qth power of a rational number.

Now we apply Lemma 4 with α1, . . . , αn−1 as primes from (3.26) and αn =
(J2−J3)M ′

ν1
/(J1−J3)M ′

ν2
. By a result of Baker and Stark (see [2, Lemma

3]), the assumption (3.2) is satisfied. We take in Lemma 4

n = ω(S′
ν1

S′
ν2

) + 1 ≤ 2τ + 1, D = 1, p ≤ k, q ≤ 2(log k)2,
B = 2 log χ, A1 = A2 = . . . = An−1 = k, log An = C7K log k,

as we can by (3.18), (3.21), (3.22) and we conclude (3.28) in this case too.
Finally, we combine (3.9) with j = max(J1, J2, J3), (3.18) and (3.27) to

obtain

log χ < log k + log(a + jd) ≤ Kk(log k)C12(log log χ)2 ,

which implies that log χ < Kk(log k)C13 .

If πd(k) < C2, we have

Lemma 7. Let θ > 0. There exist effectively computable numbers C14

and C15 depending only on θ such that for

k ≥ C14, πd(k) ≤ θ and log χ ≥ k(log k)C15 ,
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we have
|H ′| ≤ 2.

P r o o f. Let J1, J2 and J3 be distinct integers between 0 and k− 1 such
that a + Jid ∈ H ′ for i = 1, 2, 3. Then

P (a + Jid) ≤ k, ω(a + Jid) ≤ θ for i = 1, 2, 3.

Now, we apply Lemma 4 as in the proof of Lemma 6 to conclude that
log χ < k(log k)C16 .

We combine Lemmas 6 and 7 to derive the following result:

Theorem 4. Let ε > 0. There exist effectively computable numbers C17

and C18 depending only on ε such that for

k ≥ C17 and log χ ≥ Kk(log k)C18 ,

we have

(3.31) ω ≥ k + min((1− ε)πd(k), πd(k)− 2).

P r o o f. Let ε > 0. We may assume that πd(k) > 0 and k exceeds a
sufficiently large effectively computable number depending only on ε. Then
we combine Lemmas 6 and 7 to conclude that

|H ′| ≤ max(επd(k), 2).

Observe that |H| = |H ′|. Thus (3.31) follows from (2.1).

We combine Theorem 4 and (3.4) to obtain

Corollary 4.1. Let ε > 0. There exist effectively computable numbers
C19 and C20 depending only on ε such that for

k ≥ C19 and log χ ≥ k4/3(log k)C20 ,

we have
ω ≥ k + min((1− ε)πd(k), πd(k)− 2).

Corollary 4.2. There exist effectively computable absolute constants
C21 and C22 such that

k ≥ C21, log χ ≥ k4/3(log k)C22 , ω < k

imply that
ω = k − 1

and at least one of the following possibilities holds:

(i) a = 1 and a + d, a + 2d, . . . , a + (k − 1)d are all powers of primes
≥ k,

(ii) a < k and there exists j with 0 < j < k such that a and a + jd are
powers of the same prime p < k and the p-free part of any other term in the
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arithmetical progression {a, a + d, . . . , a + (k − 1)d} is a power of a prime
≥ k.

P r o o f. In view of Corollary 4.1, we may assume that πd(k) ∈ {0, 1}.
First, we turn to the case that πd(k) = 0. Then, since gcd(a, d) = 1, we
observe that a + d, a + 2d, . . . , a + (k− 1)d are composed of primes ≥ k and
these prime factors have to be distinct. Hence ω = k − 1, a = 1 and every
other term of the AP (Arithmetical Progression) is the power of a prime
≥ k.

Thus, we may assume that πd(k) = 1. Then we observe that there are
at least two terms of the AP which are powers of the same prime p < k with
gcd(p, d) = 1. Suppose that a + id and a + jd are powers of p with i < j.
Then a + id | a + jd, whence a + id | (j − i) by gcd(a, d) = 1. It follows that
a+ id < k. Thus a < k, which, together with log χ ≥ k4/3(log k)C22 , implies
that d > k. Consequently, we notice from a + id < k that i = 0. Thus, we
conclude that there exists precisely one j with 0 < j < k such that a and
a + jd are powers of p. Furthermore, since πd(k) = 1, the remaining k − 2
terms of the AP contribute their own primes ≥ k. Therefore ω ≥ k − 1.
Further, since ω < k and πd(k) = 1, we derive that ω = k − 1, each of the
k − 2 terms of the AP contributes precisely one prime ≥ k and there is no
contribution other than p from primes < k.

As an immediate consequence of Corollary 4.2, we derive that ω ≥ k
whenever k ≥ C21, log χ ≥ k4/3(log k)C22 and a ≥ k. We close this section by
improving the estimate (3.31) of Theorem 4 if χ is much larger as compared
with k.

Theorem 5. There exist effectively computable absolute constants C23

and C24 such that for

k ≥ C23 and log log χ ≥ C24k,

we have
ω ≥ k + πd(k)− 2.

P r o o f. It is enough to prove that |H ′| ≤ 2. Let J1, J2 and J3 be distinct
integers between 0 and k − 1 such that

P (a + Jid) ≤ k for i = 1, 2, 3 .

Then we apply Lemma 5 to the binary form

(a + J1d)(a + J2d)(a + J3d).

We conclude that

log χ < log k + log(a + d) ≤ Ck
25

for some effectively computable absolute constant C25.
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4. Bounds for ω if P (d) or P (a) is small. We write ωk(d) for the
number of prime divisors of d not exceeding k. We start this section with
the following result.

Lemma 8. (a) Let ε > 0. There exist effectively computable numbers
C25, C26 and C27 depending only on ε such that for

k ≥ C25, πd(k) ≥ C26, log χ ≥ (log k)C27

and

(4.1) P (d) < (log χ)1/2−ε,

we have
ω ≥ k + (1− ε)πd(k).

(b) The assertion of Lemma 8(a) is also valid if (4.1) is replaced by

(4.2) P (a) < (log χ)1/2−ε, ωk(d) ≤ (1− ε)π(k).

P r o o f. We denote by C28, C29, . . . , C34 effectively computable positive
numbers depending only on ε. We may assume that k ≥ C28 and πd(k) ≥
C28 where C28 is sufficiently large. Further, we may suppose that

(4.3) ω < k + (1− ε)πd(k).

By taking C28 sufficiently large, we have

(4.4) (1− ε)πd(k) < πd(k)− 2.

Now, we apply Corollary 4.1 to derive from (4.3) and (4.4) that (4.1) implies

ωk(d) ≤ P (d) ≤ (1− ε)π(k).

Therefore, both under (4.1) and under (4.2),

πd(k) ≥ π(k)− ωk(d) ≥ επ(k) ,

which, together with (3.3), implies that

(4.5) K ≤ (2 log k)/ε.

By (4.3), we have

(4.6) |H ′| > επd(k).

Instead of (3.19), the proofs of Lemma 8(a) and (b) depend on the following
relations: For distinct integers J1 and J2 between 0 and k − 1,

(J1 − J2)d = (a + J1d)− (a + J2d) ,(4.7)
−(J1 − J2)a = J2(a + J1d)− J1(a + J2d) .(4.8)

(a) As in the proof of Lemma 6, we apply Lemma 4 to (4.7) for deriving
from (4.6) and (4.5) that

(4.9) ordp(d) ≤ p(log k)C29(log log χ)2.
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Now, we combine (4.9) and (4.1) for obtaining

(4.10) log d ≤ (log χ)1−ε(log k)C29(log log χ)2.

On the other hand, we apply Lemma 3 via (4.7) for deriving that

(4.11) log d ≥ log χ− (log k)C30 .

By (4.10) and (4.11), we find that log χ ≤ (log k)C31 .

(b) Instead of (3.19), we apply Lemmas 3 and 4 to (4.8) as in the proof
of Lemma 8(a). We obtain

log a ≤ (log χ)1−ε(log k)C32(log log χ)2

and

log a ≥ log χ− (log k)C33 .

We combine these estimates to obtain log χ ≤ (log k)C34 .

Lemma 9. (a) Let ε > 0 and θ > 0. There exist effectively computable
numbers C35 and C36 depending only on ε and θ such that for

k ≥ C35, πd(k) ≤ θ, log χ ≥ (log k)C36

and (4.1), we have

|H ′| ≤ 1.

(b) The assertion of Lemma 9(a) is also valid if (4.1) is replaced by

(4.12) P (a) < (log χ)1/2−ε.

P r o o f. Let J1 and J2 be distinct integers between 0 and k − 1 such
that a + Jid ∈ H ′ for i = 1, 2. Then P (a + Jid) ≤ k and ω(a + Jid) ≤ θ
for i = 1, 2, since πd(k) ≤ θ. Now, we apply Lemmas 3 and 4 via (4.7) and
(4.8) to conclude the proof of Lemma 9.

We combine Lemmas 8 and 9 to obtain the following result.

Theorem 6. (a) Let ε > 0. There exist effectively computable numbers
C37 and C38 depending only on ε such that for

k ≥ C37, log χ ≥ (log k)C38

and (4.1), we have

(4.13) ω ≥ k + min((1− ε)πd(k), πd(k)− 1).

(b) The assertion of (a) is also valid if (4.1) is replaced by (4.2).

If P (d) or P (a) is small, we apply Theorem 6 to obtain the following
refinement of Corollary 4.2.
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Corollary 6.1. (a) There exist effectively computable absolute con-
stants C39 and C40 such that

(4.14) k ≥ C39, log χ ≥ (log k)C40 , ω < k

and (4.1) imply that ω = k− 1, a = 1 and a + d, a + 2d, . . . , a + (k− 1)d are
all powers of primes ≥ k.

(b) The assertion of (a) is also valid if (4.1) is replaced by (4.2).

P r o o f. By Theorem 6, we observe from (4.13) and (4.14) that ω = k−1
and πd(k) = 0. Then, as in the proof of Corollary 4.2, we derive that a = 1
and a + d, a + 2d, . . . , a + (k − 1)d are all powers of primes ≥ k.

If d = 1 and χ is large with respect to k, Pólya [6] derived from the Thue–
Siegel theorem that ω ≥ k + π(k)− 1. We extend this result by sharpening
(4.13) whenever χ is much larger than k and P (d).

For this, we prove

Theorem 7. Let ε > 0. There exist effectively computable numbers C41

and C42 depending only on ε such that for

k ≥ C41, ω ≤ k + πd(k)− 2

and (4.1), we have

(4.15) log log χ ≤ C42(ω(d) log ω(d) + k).

P r o o f. Since ω ≤ k + πd(k)− 2, we observe that |H ′| ≥ 2. Let J1 and
J2 be distinct integers between 0 and k − 1 such that P (a + J1d) ≤ k and
P (a + J2d) ≤ k. Now, we apply Lemma 5 to the binary form

(4.16) Y (X + J1Y )(X + J2Y ) with X = a, Y = d

to conclude (4.15).

As an immediate consequence of Theorem 7, we obtain the following
extension of a result of Pólya already mentioned.

Corollary 7.1. There exist effectively computable absolute constants
C43 and C44 such that for

k ≥ C43, log log χ ≥ C44(k + P (d)),

we have

ω ≥ k + πd(k)− 1.

We write

ω′ = ω((a + d) . . . (a + (k − 1)d)).

We obtain an analogue of Theorem 7 with (4.1) replaced by (4.12).
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Theorem 7′. Let ε > 0. There exist effectively computable numbers C45

and C46 depending only on ε such that for

k ≥ C45, ω′ ≤ k + πd(k − 1)− 3

and (4.12), we have

log log χ ≤ C46(ω(a) log(ω(a) + 1) + k).

P r o o f. The proof is similar to the proof of Theorem 7; instead of (4.16),
we apply Lemma 5 to the binary form

X(X + J1Y )(X + J2Y ) with X = a, Y = d.

It is clear that Theorem 7′ implies the following result.

Corollary 7.1′. There exist effectively computable absolute constants
C47 and C48 such that for

k ≥ C47, log log χ ≥ C48(k + P (a)),

we have
ω′ ≥ k + πd(k − 1)− 2.
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