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1. Introduction. Let r ≥ 2 be a fixed integer and let θ = 0.a1a2 . . . be
the r-adic expansion of a real number θ with 0 < θ < 1. Let N(θ; b1 . . . bl;n)
denote the number of a given block b1 . . . bl ∈ {0, 1, . . . , r− 1}l appearing in
the first n digits a1a2 . . . an. Then θ is said to be normal to the base r if,
for every fixed l ≥ 1,

(1) Rn(θ) = Rn,l(θ) = sup
b1...bl

∣∣∣∣ 1
n

N(θ; b1 . . . bl;n)− 1
rl

∣∣∣∣ = o(1)

as n →∞, where the supremum is taken over all b1 . . . bl ∈ {0, 1, . . . , r−1}l.
Historical surveys on the study of normal numbers can be found in, e.g., [6].

Let g(t) be a polynomial of t with real coefficients such that g(t) > 0 for
t > 0. We define a real number

θr = θr(g) = 0.a11a12 . . . a1k(1)a21a22 . . . a2k(2)a31 . . .

to be the infinite r-adic fraction obtained from the r-adic expansion [g(n)] =
an1an2 . . . ank(n) of the integral part of g(n), which will be written simply as

θr = 0.[g(1)][g(2)][g(3)] . . .

Let N(g(n); b1 . . . bl) denote the number of a given block b1 . . . bl appearing
in the r-adic expansion of [g(n)].

If g(t) is a nonconstant polynomial with rational coefficients all of whose
values for t = 1, 2, 3, . . . are positive integers, Davenport and Erdős [3]
proved that Rn(θ10(g)) = o(1), namely, θ10(g) is normal to the base 10.
They did not give explicit estimates for Rn(θr(g)). Schoißengeier [11] showed
that Rn(θr(g)) = O((log log n)4+ε/ log n). Later, Schiffer [10] improved it
by giving the best possible result Rn(θr(g)) = O(1/ log n). In the case of
polynomials with real , but not necessarily rational , coefficients, we proved
in [9] that Rn(rr(g)) = O((log log n)/ log n), which will be replaced in this
paper by O(1/ log n).
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Theorem. Let g(t) be any nonconstant polynomial with real coefficients
such that g(t) > 0 for all t > 0. Then for any block b1 . . . bl ∈ {0, 1, . . .
. . . , r − 1}l, we have∑

n≤x

N(g(n); b1 . . . bl) =
1
rl

x logr g(x) + O(x)

as x →∞, where the implied constant depends possibly on g, l, and r.

Noting that the number of digits in the r-adic expansion of
0.[g(1)][g(2)] . . . [g(n)] is

(2) n logr g(n) + O(n) �� n log n

with logr y = log y/ log r, we obtain

Corollary. For any g(t) as in the theorem, we have

(3) Rn(θr(g)) = O

(
1

log n

)
as n →∞. In particular , θr(g) is normal to the base r.

R e m a r k 1. Let us consider a more general function of the following
form:

(4) h(t) = αtβ + α1t
β1 + . . . + αdt

βd ,

where α’s and β’s are real numbers with β > β1 > . . . > βd ≥ 0. We
assume that h(t) > 0 for t > 0. If h(t) is not a polynomial, we proved in [8]
that Rn(θr(h)) = O(1/ log n). Combining this with our result in the present
paper, we have Rn(θr(h)) = O(1/ log n) for all functions h(t) given above;
in particular, the number θr(h) is normal to the base r for all h(t).

R e m a r k 2. Our method of the proof in [9], which is quite different
from that of Schiffer [10], made use of an estimate of Weyl sums in a some-
what unusual manner and of simple remarks on diophantine approximation.
In this paper, we further develop this method by employing inductive ar-
guments and we obtain the improved results. As for the proof of the re-
sult in [8], tricky estimates for exponential sums of Vinogradov type were
used.

2. Lemmas

Lemma 1 ([9], Corollary of Lemma). Let p(t) be a polynomial with real
coefficients and the leading term γtk, where γ 6= 0 and k ≥ 1. Let Q ≥ 2
and let A/B be a rational number with (A,B) = 1 such that

(5) (log Q)h � B � Qk(log Q)−h ,
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and
|γ −A/B| ≤ B−2 ,

where h ≥ (k − 1)2 + 2kG with G > 0. Then∣∣∣ ∑
1≤n≤Q

e(p(n))
∣∣∣ � Q(log Q)−G ,

where e(t) = e2πit.

Lemma 2. Let f(t) be a polynomial of the form

f(t) = β0t
k0 + β1t

k1 + . . . + βdt
kd ,

where k0 > k1 > . . . > kd ≥ 1 and β0, . . . , βd are nonzero real numbers. Let
G > 0 be any constant and X ≥ 2. Let s be an integer with 0 ≤ s ≤ d,
let Hi, Ki (i = 0, 1, . . . , s− 1) be any positive constants, and let H∗

s , K∗
s be

constants such that

H∗
s ≥ 2ks+1(G + max

0≤i<s
Hi + 1) + ks

s−1∑
i=0

Ki ,

K∗
s ≥ 2ks+1(G + max

0≤i<s
Hi + 1) + 2ks

s−1∑
i=0

Ki .

Suppose that there are rational numbers Ai/Bi (0 ≤ i < s) such that

1 ≤ Bi ≤ (log X)Ki and
∣∣∣∣βi −

Ai

Bi

∣∣∣∣ ≤ (log X)Hi

BiXki
(0 ≤ i < s)

and that there is no rational number As/Bs with (As, Bs) = 1 such that

1 ≤ Bs ≤ (log X)K∗
s and

∣∣∣∣βs −
As

Bs

∣∣∣∣ ≤ (log X)H∗
s

BsXks
.

Then, for any real P and Q with |P | � Q ≤ X,∣∣∣ ∑
P<n≤P+Q

e(f(n))
∣∣∣ � X(log X)−G .

P r o o f. We may assume P = 0 and

(6) X(log X)−G ≤ Q ≤ X .

If s = 0, the inequality follows immediately from Lemma 1. We put p(t) =
f(t), so that γ = β0 and k = k0. Since s = 0, max0≤i<s Hi =

∑s−1
i=0 Ki = 0.

We choose, by the well-known argument, a rational number A/B with
(A,B) = 1 such that

1 ≤ B ≤ Xk

(log X)H∗
0

and
∣∣∣∣γ − A

B

∣∣∣∣ ≤ (log X)H∗
0

BXk
(≤ B−2) ,
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where H∗
0 ,K∗

0 ≥ 2k+1(G + 1). Then by the assumption, we have B ≥
(log X)K∗

0 . These inequalities as well as (6) imply (5) with h = (k−1)2+2kG.
Therefore we obtain∣∣∣ ∑

1≤n≤Q

e(f(n))
∣∣∣ � Q(log Q)−G � X(log X)−G .

Let s ≥ 1. We denote by D the least common multiple of B0, . . . , Bs−1

and by N the integer defined by DN ≤ Q < D(N + 1), so that

1 ≤ D ≤ (log X)K with K =
s−1∑
i=0

Ki

and by (6)

X(log X)−(G+K) � N �� Q/D ≤ X/D .

It follows that

(7)
∑

1≤n≤Q

e(f(n)) =
D−1∑
λ=0

N∑
ν=1

e(f(λ + Dν)) + O((log X)K) .

We put

fλ(y) =
s−1∑
i=0

Ωi(λ + Dy)ki , Ωi = βi −Ai/Bi ,

ϕλ(y) =
d∑

i=s

βi(λ + Dy)ki , Tλ(ν) =
ν∑

n=1

e(ϕλ(n)) .

Then we have
D−1∑
λ=0

N∑
ν=1

e(f(λ + Dν))

=
D−1∑
λ=0

e

( s−1∑
i=0

Ai

Bi
λki

) N∑
ν=1

e(fλ(ν))(Tλ(ν)− Tλ(ν − 1))

=
D−1∑
λ=0

e

( s−1∑
i=0

Ai

Bi
λki

){
e(fλ(N + 1))Tλ(N)

+
N∑

ν=1

(e(fλ(ν))− e(fλ(ν + 1)))Tλ(ν)
}

�
D−1∑
λ=0

(
|Tλ(N)|+

N∑
ν=1

|e(fλ(ν))− e(fλ(ν + 1))| |Tλ(ν)|
)

.
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Here we have, using the mean-value theorem,

|e(fλ(ν))− e(fλ(ν + 1))| � D

s−1∑
i=0

|Ωi|Qki−1 � D
(log X)H

X

with
H = max

0≤i<s
Hi .

Therefore we obtain

(8)
D−1∑
λ=0

N∑
ν=1

e(f(λ + Dν)) �
D−1∑
λ=0

(
|Tλ(N)|+ D

(log X)H

X

N∑
ν=1

|Tλ(ν)|
)

.

We next prove that

(9) |Tλ(ν)| =
∣∣∣ ν∑

n=1

e(ϕλ(n))
∣∣∣ � X

D(log X)G+H

for all ν with 1 ≤ ν ≤ N . For this, we may assume that

(10)
X

D(log X)G+H
� ν (≤ N ≤ X/D) .

We put p(t) = ϕλ(t) in Lemma 1, so that the leading coefficient is γ =
Dksβs. Suppose first that there is a rational number A/B with (A,B) = 1
such that

(11) (log X)H′
≤ B ≤ Xks(log X)−H′

and
|γ −A/B| ≤ B−2 ,

where H ′ = 2ks+1(G + H + 1) + ksK. Then (11) together with (10) implies

(log ν)h′
≤ B ≤ νks(log ν)−h′

,

where h′ = (ks − 1)2 + 2ks(G + H). Hence we have by Lemma 1

|Tλ(ν)| � ν(log ν)−(G+H) � X

D(log X)G+H
.

If there is no such rational number, we can choose a rational number A′/B′

with (A′, B′) = 1 such that

1 ≤ B′ ≤ (log X)H′
and

∣∣∣∣γ − A′

B′

∣∣∣∣ ≤ (log X)H′

B′Xks
.

Then we have
DksB′ ≤ (log X)H′+ksK ≤ (log X)K∗

s
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and ∣∣∣∣βs −
A′

DksB′

∣∣∣∣ ≤ (log X)H∗
s

DksB′Xks
,

which contradicts the assumption on βs.
Combining (7), (8), and (9), we obtain∣∣∣ ∑
1≤n≤Q

e(f(n))
∣∣∣ � (log X)H +

D−1∑
λ=0

(
1 + DN

(log X)H

X

)
X

D(log X)G+H

� X(log X)−G ,

and the proof is complete.

3. Preliminaries of the proof of theorem. Let g(t) be as in the
theorem. Let j0 be an integer chosen sufficiently large. Then, for each j ≥ j0,
there is a positive integer nj such that rj−2 ≤ g(nj) < rj−1 ≤ g(nj+1) < rj .
It follows that nj < n ≤ nj+1 if and only if rj−1 ≤ g(n) < rj and that

nj �� rj/k , nj+1 − nj �� rj/k ,

where k ≥ 1 is the degree of the polynomial g(t). Let x > rj0 and let J be
a positive integer such that nJ < x ≤ nJ+1, so that

(12) J = logr g(x) + O(1) = O(log x) .

Put XJ = x − nJ and Xj = nj+1 − nj for (j0 ≤) j ≤ J − 1. We write
N(g(n)) = N(g(n); b1 . . . bl). Then∑

n≤x

N(g(n)) =
∑

j0≤j≤J

∑
nj<n≤nj+Xj

N(g(n)) + O(1) .

Defining the periodic function I(t) with period 1 by

I(t) =


1 if

l∑
h=1

bh

rh
≤ t− [t] <

l∑
h=1

bh

rh
+

1
rl

,

0 otherwise ,

we have ∑
nj<n≤nj+Xj

N(g(n)) =
∑

l≤m≤j

∑
nj<n≤nj+Xj

I

(
g(n)
rm

)
.

Let j be any integer with j0 ≤ j ≤ J and let C be a constant chosen
sufficiently large.

In this section, we treat those m with C log j ≤ m ≤ j − C log j. There
are, for each j, functions I−(t) and I+(t), periodic with period 1, such that
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I−(t) ≤ I(t) ≤ I+(t), having Fourier expansion of the form

I±(t) = r−l ± j−1 +
∞∑

ν=−∞
ν 6=0

A±(ν)e(νt)

with |A±(ν)| � min(|ν|−1, j|ν|−2) (cf. [14]).
We shall estimate the exponential sums

S(j, m, ν) =
nj+Xj∑

n=nj+1

e

(
ν

rm
g(n)

)
,

where J ≥ j ≥ j0, j − C log j ≥ m ≥ C log j, and 1 ≤ ν ≤ j2. Here the
leading coefficient of νr−mg(t) is νr−mα. Assume first that j < J . For any
pair (m, ν) for which there is a rational number a/q such that

(13)
(a, q) = 1 ,

∣∣∣∣ ν

rm
α− a

q

∣∣∣∣ ≤ 1
q2

,

(log Xj)H ≤ q ≤ Xb
j (log Xj)−H

with G = 3 and H as in Lemma 1, we have

|S(j, m, ν)| � Xj(log Xj)−3 � Xjj
−3

by Lemma 1. Hence, denoting by
∑ ′ the sum over all pairs (m, ν) having

this property, we have the following estimates:∑
m

∑
ν

′min(ν−1, Jν−2)|S(j, m, ν)| � j log j ·Xjj
−3 � Xj � rj/b .

If j = J , there are two cases. Assume first that XJ = O(rJ/bJ−3). Then
we have trivial estimates

J∑
m=l

J2∑
ν=1

′min(ν−1, Jν−2)|S(J,m, ν)| � rJ/bJ−1 .

Otherwise, namely if XJ � rJ/bJ−3, then log XJ �� J , so that we can
repeat the same argument as for j < J . In any case, we get∑

m

∑
ν

′min(ν−1, jν−2)|S(j, m, ν)| � rj/b

for (j0 ≤) j ≤ J (see [9; p. 208]).
On the other hand, if (j ≥) m ≥ (j/β)(β − δ) with a small positive

constant δ, we can appeal to Lemmas 4.2 and 4.8 of [12], with f(t) =
νr−mg(t). Then, for these m and ν ≤ j2, we have, with positive constants
c0 and c1,

0 < c0νr−m+j(1−1/β) < f ′(t) < c1νr−m+j(1−1/β) < 1/2
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throughout the interval [nj , nj + Xj ], since

j

(
1− 1

β

)
−m ≤ j

(
1− 1

β

)
− j

(
1− δ

β

)
<

δ − 1
β

< 0 .

Hence by the lemmas cited,

|S(j, m, ν)| = O

(
1
ν

rj/β+m−j

)
provided (j/β)(β − δ) ≤ m ≤ j and 1 ≤ ν ≤ j2 (see [8; p. 26]).

Thus it is proved that∑
C log j≤m≤j

∑
nj<n≤nj+Xj

(
I

(
g(n)
rm

)
− 1

rl

)
= O(rj/k) .

Therefore, if we can prove the inequality

(14)
∑

l≤m≤C log j

∑
nj<n≤nj+Xj

(
I

(
g(n)
rm

)
− 1

rl

)
= O(rj/k) ,

we shall have obtained∑
l≤m≤j

∑
nj<n≤nj+Xj

I

(
g(n)
rm

)
=

1
rl

jXj + O(rj/k) ,

which leads to∑
n≤x

N(g(n)) =
1
rl

xJ + O(rJ/k) =
1
rl

x logr g(x) + O(x) ,

which is the assertion of our theorem. Thus it remains to show (14).

4. Proof of the inequality (14). In this section, we shall prove (14)
for those j for which at least one of the coefficients of g(t) has no rational
approximations with small denominators in the sense stated in Lemma 2.

To estimate the sum ∑
nj<n≤nj+Xj

I

(
g(n)
rm

)
in (14), we approximate the function I(t) by functions I−(t) and I+(t) peri-
odic with period 1, such that I−(t) ≤ I(t) ≤ I+(t), having Fourier expansion
of the form

I±(t) =
1
rl
± 1

j
+

∑
ν∈Z,ν 6=0

A±(ν)e(νt)

with |A±(ν)| � min(|ν|−1, jν−2), where the constant implied is absolute
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(cf. [14]). Then we have∑
nj<n≤nj+Xj

I

(
g(n)
rm

)

=
Xj

rl
+ O

(
Xj

j

)
+ O

( j2∑
ν=1

1
ν

∣∣∣∣ ∑
nj<n≤nj+Xj

e

(
ν

rm
g(n)

)∣∣∣∣) .

We shall evaluate ∣∣∣∣ ∑
nj<n≤nj+Xj

e

(
ν

rm
g(n)

)∣∣∣∣
with l ≤ m ≤ C log j and 1 ≤ ν ≤ j2, by making use of Lemma 2 inductively.

Let the polynomial g(t) be of the form

g(t) = α0t
k0 + α1t

k1 + . . . + αdt
kd ,

where k = k0 > k1 > . . . > kd ≥ 0 and α0, . . . , αd are nonzero real numbers.
We may assume kd ≥ 1 in estimating the exponential sum above. We put
in Lemma 2

f(t) = r−mνg(t)
so that

βi = r−mναi (0 ≤ i ≤ d) .

We choose a constant c > 0 such that crj/k ≥ Xj for all j ≤ J , and
define a parameter X by

X = X(j) = crj/k (j0 ≤ j ≤ J) .

Then log X = j1+o(1), as j →∞, so that

rm ≤ (log X)C log r+o(1) , ν ≤ (log X)2+o(1) ,

since m ≤ C log j and ν ≤ j2.

C a s e 0. Let j be an integer with j0 ≤ j ≤ J for which there is no
rational number a0/b0 with (a0, b0) = 1 such that

1 ≤ b0 ≤ (log X)2h0 and
∣∣∣∣α0 −

a0

b0

∣∣∣∣ ≤ (log X)h0

b0Xk0
,

where
h0 = H∗

0 + C log r + 1 , H∗
0 = 2k0+1(G + 1) .

The set of all j with this property will be denoted by J0. If j ∈ J0, there is
no rational number A0/B0 with (A0, B0) = 1 such that

1 ≤ B0 ≤ (log X)2H∗
0 and

∣∣∣∣β0 −
A0

B0

∣∣∣∣ ≤ (log X)H∗
0

B0Xk0
,
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since, if there is such a rational number A0/B0, we shall have

1 ≤ νB0 ≤ (log X)2H∗
0 +3 ≤ (log X)2h0

and ∣∣∣∣α0 −
rmA0

νB0

∣∣∣∣ ≤ (log X)H∗
0 +C log r+1

νB0Xk0
≤ (log X)h0

νB0Xk0
,

which contradicts the assumptions in this case. Hence we can apply
Lemma 2 with s = 0 and obtain

(15)
∣∣∣∣ ∑

nj<n≤nj+Xj

e

(
ν

rm
g(n)

)∣∣∣∣ � X

(log X)G

for all j ∈ J0.

C a s e s. Let 1 ≤ s ≤ d. We put

H∗
0 = 2k0+1(G + 1) , H0 = H∗

0 + 2k0+1(G + 1)

and define H∗
i and Hi (1 ≤ i ≤ d) inductively by

H∗
i = 2ki+1(G + Hi−1 + 1) + 2ki(H0 + . . . + Hi−1) ,

Hi = H∗
i + 2(C log r + 1) .

Also we write
hi = H∗

i + C log r + 1 (0 ≤ i ≤ d) .

Let j be an integer with j0 ≤ j ≤ J for which there are rational numbers
a0/b0, . . . , as−1/bs−1 such that

1 ≤ bi ≤ (log X)2hi and
∣∣∣∣αi −

ai

bi

∣∣∣∣ ≤ (log X)hi

biXki
(0 ≤ i < s) ,

but there is no rational number as/bs with (as, bs) = 1 such that

1 ≤ bs ≤ (log X)2hs and
∣∣∣∣αs −

as

bs

∣∣∣∣ ≤ (log X)hs

bsXks
.

The set of all j with this property will be denoted by Js. If j ∈ Js, we have

1 ≤ rmbi ≤ (log X)2Hi and
∣∣∣∣βi −

νai

rmbi

∣∣∣∣ ≤ (log X)Hi

rmbiXki

for 0 ≤ i < s, but there is no rational number As/Bs with (As, Bs) = 1 such
that

1 ≤ Bs ≤ (log X)2H∗
s and

∣∣∣∣βs −
As

Bs

∣∣∣∣ ≤ (log X)H∗
s

BsXks
,

since otherwise we have a contradiction as in Case 0. Hence, by Lemma 2
with these Hi, H∗

s and Ki = 2Hi, K∗
s = 2H∗

s , we have again (15) for all
j ∈ Js.



Discrepancy estimates 281

Choosing G = 3 in (15), we get∣∣∣∣ ∑
nj<n≤nj+Xj

e

(
ν

rm
g(n)

)∣∣∣∣ � rj/k

j2
,

for all (l ≤) m ≤ C log j, (1 ≤) ν ≤ j2, and j ∈ J0 ∪ . . . ∪ Jd, and hence
by (14) ∑

l≤m≤C log j

∑
nj<n≤nj+Xj

(
I

(
g(n)
rm

)
− 1

rl

)
= O

(
rj/k

j

)
for all j ∈ J0 ∪ . . . ∪ Jd.

It remains to prove (14) for j 6∈ J0 ∪ . . .∪ Jd with j0 ≤ j ≤ J , which will
be done in the next section.

5. Proof of the inequality (14). Continued. Let Jd+1 be the set
of all integers j with j0 ≤ j ≤ J for which there are rational numbers ai/bi

with (ai, bi) = 1 such that

1 ≤ bi ≤ (log X)2hd and
∣∣∣∣αi −

ai

bi

∣∣∣∣ ≤ (log X)hd

biXki

for all i = 0, 1, . . . , d, where hd is defined in Section 4. Then by definition

{j0, j0 + 1, . . . , J} = J0 ∪ . . . ∪ Jd ∪ Jd+1 .

In the rest of this paper, we shall prove (14) for all j ∈ Jd+1 by a method
different from that used in the preceding section. We assume kd ≥ 1. The
proof is valid also in the case of kd = 0.

Let j ∈ Jd+1. We denote by a∗ the greatest common divisor of a0, . . . , ad

and by b∗ the least common multiple of b0, . . . , bd. Then (a∗, b∗) = 1 and

1 ≤ b∗ ≤ jh , 1 ≤ a∗ � jh ,

where h = 2(d + 1)hd + 1. We then define integers c0, . . . , cd by
ai

bi
=

a∗ci

b∗

so that (b∗, a∗c0, . . . , a∗cd) = 1. We write for brevity L1 = log j and Lw =
log Lw−1 (2 ≤ w ≤ wj), where wj is the greatest integer w for which Lw ≥ 3.

For a given positive constant C, we have

(16)
∑

l≤m≤C log j

∣∣∣ ∑
nj<n≤nj+Xj

(I(r−mg(n))− r−l)
∣∣∣

≤
∑

1≤w≤wj

∑
V Lw+1<m≤V Lw

∣∣∣ ∑
nj<n≤nj+Xj

(I(r−mg(n))− r−l)
∣∣∣ + V Xj

where V ≥ C is a constant which will be chosen suitably at the end of
the proof. For each w, there are functions I−w (t) and I+

w (t), periodic with
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period 1, such that I−w (t) ≤ I(t) ≤ I+
w (t), having Fourier expansion of the

form

I±w (t) = r−l ± L−2
w +

∑
ν∈Z,ν 6=0

A±w(ν)e(νt) ,

with |A±w(ν)| ≤ min(|ν|−1, L2
wν−2) (cf. [14]). Then it follows that

(17)
∑

nj<n≤nj+Xj

(I(r−mg(n))− r−l)

� XjL
−2
w +

∑
1≤ν≤L4

w

ν−1
∣∣∣ ∑

nj<n≤nj+Xj

e(r−mνg(n))
∣∣∣ .

Here we have, for any fixed m with VLw+1 < m ≤ VLw and ν with
1 ≤ ν ≤ L4

w,∑
nj<n≤nj+Xj

e(r−mνg(n))

=
∑

0≤λ≤rmb∗

e

(
νa∗
rmb∗

d∑
i=0

ciλ
ki

) ∑
ν;n=λ+rmb∗ν
nj<n≤nj+Xj

e

(
ν

rm

d∑
i=0

Ωin
ki

)

=
∑

0≤λ≤rmb∗

e

(
νa∗
rmb∗

d∑
i=0

ciλ
ki

){ ∫
nj<n≤nj+Xj

x=λ+rmb∗y

e

(
ν

rm

d∑
i=0

Ωix
ki

)
dy + O(1)

}

=
∑

0≤λ≤rmb∗

e

(
νa∗
rmb∗

d∑
i=0

ciλ
ki

)
1

rmb∗

∫
nj<n≤nj+Xj

e

(
ν

rm

d∑
i=0

Ωix
ki

)
dx

+ O(rmb∗) ,

using a lemma of van der Corput’s ([12], Lemma 4.8), where Ωi = αi−ai/bi.
Defining now rational numbers Ri/Q (0 ≤ i ≤ d) by

Ri

Q
=

ν

rm

a∗ci

b∗
(=

ν

rm

ai

bi
) with (Q,R0, R1, . . . , Rd) = 1

and applying the theorem in [4], Chap. 1, §1, to the exponential sum over λ,
we get ∑

nj<n≤nj+Xj

e(r−mνg(n)) � rmb∗

Q
Q1−9/(10k) Xj

rmb∗
+ rmb∗

� XjQ
−9/(10k) + rmjh
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and hence by (17)

(18)
∑

V Lw+1<m≤V Lw

∣∣∣ ∑
nj<n≤nj+Xj

(I(r−mg(n))− r−l)
∣∣∣

�
∑

V Lw+1<m≤V Lw

(
XjL

−2
w + Xj

∑
1≤ν≤L4

w

ν−1Q−9/(10k) + Lw+1r
mjh

)
� rj/kL−1

w + Xj

∑
V Lw+1<m≤V Lw

∑
1≤ν≤L4

w

ν−1Q−9/(10k) .

Therefore it follows from (16) and (18) that

(19)
∑

l≤m≤C log j

∣∣∣ ∑
nj<n≤nj+Xj

(I(r−mg(n))− r−l)
∣∣∣

� rj/k + rj/k
∑

1≤w≤wj

∑
V Lw+1<m≤V Lw

∑
1≤ν≤L4

w

ν−1Q−9/(10k) .

But, since νQ = rmRibi/ai �� rmRiα
−1
i �� rmRi � rm by the defini-

tion of Ri/Q, we obtain∑
1≤w≤wj

∑
V Lw+1<m≤V Lw

∑
1≤ν≤L4

w

ν−1Q−9/(10k)

�
∑

1≤w≤wj

∑
V Lw+1<m≤V Lw

∑
1≤ν≤L4

w

(rm)−9/(10k)

�
∑

1≤w≤wj

V Lw · L4
w(rV Lw+1)−9/(10k)

� V
∑

1≤w≤wj

L
5− 9 log r

10k V
w � V

∑
1≤w≤wj

L−1
w � 1 ,

provided that V ≥ max(C, 20k/(3 log r)). Combining this with (19), we have
(14) for all j ∈ Jd+1. Therefore, (14) is proved for any j with j0 ≤ j ≤ J ,
and the proof of the theorem is complete.
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