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1. Introduction. Let B denote a compact convex subset of Rs (s ≥ 3)
which contains the origin as an inner point. Suppose that B has a smooth
boundary ∂B with finite nonzero Gaussian curvature throughout, and as-
sume that the “canonical map” which sends every point u of the unit sphere
in Rs to that point x of ∂B where the outward normal has the same direc-
tion, is one-one and of class C∞. We consider the number A(t) of lattice
points (of the standard lattice Zs) in the “blown-up” body

√
tB = {x ∈ Rs :

(1/
√

t)x ∈ B}, where t is a large real variable. As usual, we define the
“lattice rest” by P (t) = A(t)− V ts/2, where V is the volume of B.

For such a general convex body B, not too much progress has been made
in our knowledge of this lattice point problem. A few years ago, the sharpest
results were those of Hlawka [4] from 1950: Hlawka proved that

(1.1) P (t) = O(ts(s−1)/2(s+1)) ,

and

(1.2) P (t) = Ω(t(s−1)/4) .

In recent times, the Ω-estimate has been improved by the second-named
author (see [12]–[14]). For every dimension s ≥ 4, it is known that

(1.3) P (t) = Ω±(t(s−1)/4(log t)1/2−1/(2s)) .

(For s = 2, 3, one has a corresponding one-sided result.)
For the upper bound (1.1), the authors quite recently were able to obtain

an improvement, for every s ≥ 3 (see [10]). The result reads P (t) � tλ
∗(s)

* This article was prepared while the first-named author was visiting professor at
Vienna University, in spring semester 1991.

** This paper is part of a research project supported by the Austrian “Fonds zur
Förderung der wissenschaftlichen Forschung” (Nr. P8488-PHY).
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with

λ∗(s) def=


s

2
− 1 +

6
7s + 4

for 3 ≤ s ≤ 7 ,

s

2
− 1 +

5
6s + 2

for s ≥ 8 .

This was obtained by a combination of Hlawka’s own method along with a
classical estimate for one-dimensional exponential sums.

In the present article, we establish an upper bound for P (t) which is still
sharper than this last result, for every dimension s ≥ 3.

Theorem. For the lattice rest P (t) of the convex body
√

tB in Rs (s ≥ 3),
where B satisfies the conditions stated above, we have

P (t) �
{

ts/2−1+4/(5s+2)(log t)10/(5s+2) for 3 ≤ s ≤ 6 ,

ts/2−1+3/(4s)(log t)2/s for s ≥ 7 .

(Throughout the paper, all constants implied in the symbols O, � and
� depend only on the convex body B, unless explicitly stated otherwise.)

R e m a r k. For planar domains, the problem has been attacked by Hux-
ley [6], [7] who applied his refined variant of the “Discrete Hardy–Littlewood
Method” which originally is due to Bombieri, Iwaniec and Mozzochi. He ob-
tained the result

(1.4) P (t) = O(t7/22(log t)47/22) ,

for every planar domain B satisfying the conditions stated above. Quite re-
cently (at an Oberwolfach meeting in March 1991), Huxley has announced a
further improvement of his analysis which allows him to reduce the exponent
7
22 to 23

73 + ε.
Up to the moment, no one has found a genuine extension of the “Discrete

Hardy–Littlewood Method” to dimensions s ≥ 3. Our method of proof will
thus be based on classical tools, starting with Landau’s averaging technique.
By Hlawka’s expansions of exponential integrals over such general convex
bodies, one arrives at certain s-fold exponential sums. We estimate these by
Titchmarsh’s two-dimensional method ([15], [16]) (which has been refined
and elaborated in the first-named author’s textbook [9]), preceded by a
suitable number of “Weyl’s steps”.

2. Preliminaries. As in part I of this work [10], we recall a few facts
and notations which are essential for the Landau technique.

For every function F integrable on every compact subinterval of R+
0 ,

and every r ∈ N, we denote by F(r) the r-fold anti-derivative

F(r)(t)
def=

1
(r − 1)!

t∫
0

(t− w)r−1 F (w) dw (w ≥ 0) .
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For r sufficiently large, e.g. r = [(s + 1)/2], it follows by Poisson’s formula
(cf. Bochner [1], or Hlawka [4]) that

(2.1) A(r)(t) =
1
r!

∑
n∈
√

tB, n∈Zs

(t− ϕ2(n))r =
Γ (s/2 + 1)
Γ (s/2 + r)

V ts/2+r + P(r)(t) ,

where ϕ is the distance function of the convex body B,

(2.2) P(r)(t) =
∑

m∈Zs, m 6=0

Ir(m, t) ,

(2.3) Ip(m, t) def=
1
p!

∫
ϕ2(u)≤t

(t− ϕ2(u))pe(mu) du

for each p ∈ N0, e(w) def= e2πiw. We recall that

(2.4)
d

dt
(Ip+1(m, t)) = Ip(m, t) .

Furthermore, we denote by ∆
(r)
z the r-fold iterated difference operator, i.e.

(2.5) ∆(r)
z (F (t)) def=

r∑
j=0

(−1)r−j

(
r

j

)
F (t + jz) ,

for positive real numbers t and z. Then

(2.6) ∆(r)
z (F(r)(t)) =

t+z∫
t

dw1

w1+z∫
w1

dw2 . . .

wr−1+z∫
wr−1

F (wr) dwr

for every function F which is piecewise continuous and integrable on each
compact subinterval of R+

0 .
Our next important tool is Hlawka’s asymptotic expansion for the inte-

grals Ip(m, t):

Lemma 1. For m ∈ Zs, m 6= 0, p ∈ N0, and a large real parameter w,

Ip(m, w) = (γp(m)e(H(m)
√

w − τp)

+ γp(−m)e(−H(−m)
√

w + τp))w
1
2 ( s−1

2 +p)(1 + O(‖m‖−1w−1/2)) ,

where τp = 1
4 (p + s+1

2 ), H is the tac-function of the convex body B (“Stütz-
funktion”, cf. Bonnesen and Fenchel [2]), thus a positive C∞-function on
Rs − {0} which is homogeneous of degree 1, and γp is a certain positive
C∞-function on Rs − {0} (given explicitly by Hlawka [4]), homogeneous of
degree

(2.7) −dp
def= −p− s + 1

2
.

P r o o f. This is Hlawka’s Satz 2 in [5]. (See also Satz 5 in Hlawka [4].)
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Lemma 2. Let D be a polygon in R2 with O(1) vertices which is contained
in a two-dimensional interval I = I1×I2 with side lengths L(I1), L(I2). Let
k ≥ 0 be a fixed integer and let f(α, β) denote a function of two real variables
with continuous partial derivatives up to order k + 3 on

I∗ = {(u + θkL(I1), v) ∈ R2 : u ∈ I1, 0 ≤ θ ≤ 1, v ∈ I2} .

Suppose that Λ and M are real parameters ≥ 1 with L(I1), L(I2) � M , such
that the order relations∣∣∣∣∂jf

∂αj

∣∣∣∣ � ΛM1−j (j = 1, . . . , k + 2) ,∣∣∣∣ ∂k+2f

∂αk∂β2

∣∣∣∣ � ΛM−k−1 ,

∣∣∣∣ ∂k+2f

∂αk+1∂β

∣∣∣∣ � ΛM−k−1 ,

and ∣∣∣∣∂k+2f

∂αk+2

∂k+2f

∂αk∂β2
−

(
∂k+2f

∂αk+1∂β

)2∣∣∣∣ � Λ2M−2k−2

are satisfied on I∗ throughout. Suppose further that each partial derivative
of f of order j ≤ k + 3 is � ΛM1−j on I∗. Then∑

(n1,n2)∈D∩Z2

e(f(n1, n2)) � ΛωkM2−(k+1)ωk(1 + log Λ + log M) ,

where ωk = 1/(2k3 − 2) for short and the constant implied in this estimate
depends only on the various constants implied in the order symbols of the
suppositions.

P r o o f. This is a special case of Theorem 2.22 in Krätzel [9], p. 84, with
a suitable change of notation.

We now establish a pivotal auxiliary result which will enable us to apply
this deep exponential sum estimate in our general situation.

Lemma 3. Let H(u) denote the tac-function of a convex body B in Rs,
where s ≥ 3, which possesses the properties stated in the introduction. For
nonzero vectors p,v,w ∈ Rs, define a function F of two real variables by

(2.8) F (α, β) = F (α, β;p,v,w) = H(p + αv + βw) .

Let k ≥ 0 be an arbitrary fixed integer. Then for any given p ∈ Rs, p 6= 0,
there exist vectors v,w ∈ Rs such that none of the equalities

∂jF

∂αj

∣∣∣∣
(α,β)=(0,0)

= 0 (j = 1, 2, . . . , k + 2) ,(2.9)

∂k+2F

∂αk∂β2

∣∣∣∣
(α,β)=(0,0)

= 0 ,
∂k+2F

∂αk+1∂β

∣∣∣∣
(α,β)=(0,0)

= 0 ,(2.10)
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and

hk = hk(p;v,w)(2.11)

def=
(

∂k+2F

∂αk+2

∂k+2F

∂αk∂β2
−

(
∂k+2F

∂αk+1∂β

)2)∣∣∣∣
(α,β)=(0,0)

= 0

is satisfied.

P r o o f. We first consider hk which involves the most difficulties. By a
straightforward calculation,

(2.12) hk =
∑

1≤a1≤...≤a2k+2≤s
1≤b1≤b2≤s

C(a1, . . . , a2k+2; b1, b2)va1 . . . va2k+2wb1wb2

where

C(a1, . . . , a2k+2; b1, b2)

=
∑
(A)

∑
(B)

det
(

Ha′1a′2a′3...a′
k+2

Ha′′1 b′′2 a′′
k+3...a′′2k+2

Hb′′1 a′′2 a′′3 ...a′′
k+2

Hb′1b′2a′
k+3...a′2k+2

)
(p) ,

where the summation conditions (A) and (B) are defined (throughout the
sequel) by

(A): (a′1, . . . , a
′
2k+2) ∈ P (a1, . . . , a2k+2), (a′′1 , . . . , a′′2k+2) ∈ P (a1, . . . , a2k+2),

(B): (b′1, b
′
2) ∈ P (b1, b2), (b′′1 , b′′2) ∈ P (b1, b2),

and P (·) denotes the set of all permutations with repetitions of the elements
given in the bracket; the subscripts of H denote iterated partial derivatives
as usual. We now show, by induction on k ≥ 0, that for every p ∈ Rs,
p 6= 0, there exists at least one nonzero coefficient C(·) in (2.12).

To show this for k = 0, we recall what is known about the matrix
T = (Hij(p)) where Hij are all partial derivatives of order 2. According to
Bonnesen–Fenchel [2], p. 61 ff., the rank of this matrix is equal to s−1, and
its nonzero eigenvalues are all positive. Thus (1) there exist a, b ∈ {1, . . . , s}
such that

C(a, a; b, b) = det
(

Haa Hab

Hba Hbb

)
(p) > 0 .

Suppose now the assertion is true for some k ≥ 0: Let

C(a1, . . . , a2k+2; b1, b2) 6= 0 .

(1) This conclusion is an elementary exercise in linear algebra which we leave to the
reader.
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For real variables ξ, η > 0, let us consider the function

ϕ(ξ, η) def=
∑
(A)

∑
(B)

det
(

Ha′1a′2a′3...a′
k+2

(ξp) Ha′′1 b′′2 a′′
k+3...a′′2k+2

(ηp)
Hb′′1 a′′2 a′′3 ...a′′

k+2
(ξp) Hb′1b′2a′

k+3...a′2k+2
(ηp)

)
.

By homogeneity of H and its partial derivatives, this is equal to

(ξη)−k−1C(a1, . . . , a2k+2; b1, b2) ,

hence
∂2ϕ

∂ξ∂η

∣∣∣∣
(ξ,η)=(1,1)

6= 0 .

On the other hand, by a direct computation,

∂2ϕ

∂ξ∂η

∣∣∣∣
(ξ,η)=(1,1)

=
∑

1≤c1≤c2≤s

pc1pc2

×
∑
(A)

∑
(B)

∑
(c′1,c′2)∈P (c1,c2)

(c′′1 ,c′′2 )∈P (c1,c2)

det
(

Hc′1a′1a′2a′3...a′
k+2

Hc′′1 a′′1 b′′2 a′′
k+3...a′′2k+2

Hc′′2 b′′1 a′′2 a′′3 ...a′′
k+2

Hc′2b′1b′2a′
k+3...a′2k+2

)
(p) .

Thus it is impossible that all of the inner sums here vanish. Renaming the
subscripts, we immediately infer the existence of a nonzero coefficient C(·)
in (2.12) for k + 1.

Moreover, by a well-known formula,

∂a+bF

∂αa∂βb

∣∣∣∣
(α,β)=(0,0)

=
∑

e1+...+es=a
f1+...+fs=b

a!
e1! . . . es!

b!
f1! . . . fs!

∂a+bH

∂ue1+f1
1 . . . ∂ues+fs

s

(p)

× ve1
1 . . . ves

s wf1
1 . . . wfs

s ,

where a, b and ej , fj are in N0. It is impossible that all partial derivatives of
H of order a+b ≥ 1 vanish at some (arbitrary, but fixed) point p ∈ Rs. (For
a + b ≥ 2, this follows from the above argument. For a + b = 1, it suffices
to observe that d

dξ H(ξp) = H(p) 6= 0 for ξ > 0, since H is positive and
homogeneous of degree 1.) Consequently, each one of the equations (2.9) to
(2.11) defines a set of 2s-tuples (v1, . . . , vs, w1, . . . , ws) of Lebesgue measure
zero in R2s. (Note that the left-hand side is always a nontrivial homogeneous
polynomial.) From this the assertion of Lemma 3 is immediate.

Lemma 4. Let D be a subset of R2 which is contained in a compact
two-dimensional interval I whose side lengths are � M . Let γ denote a
function of two real variables on I with continuous partial derivatives up to
order 2. Suppose that

(2.13) γ � G , γ1, γ2 � G/M , γ12 � G/M2
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on all of I. (Here M ≥ 1 and G are real parameters, and the subscripts
denote partial derivatives.) Furthermore, let η denote a function defined on
D ∩ Z2. Then∑

(n1,n2)∈D∩Z2

γ(n1, n2)η(n1, n2) � G max
(u,v)∈I

∑
(n1,n2)∈D∩Z2

n1≤u, n2≤v

η(n1, n2) ,

where the constant implied in this estimate depends only on the constants
implied in the order symbols of the suppositions.

P r o o f. This result on partial summation in two dimensions can be
easily derived from formula (1.5) on p. 19 of [9], or also be considered as a
special case of Theorem 1.6 in the same book, p. 24. One only has to put
η = 0 on (I −D) ∩ Z2.

3. Proof of the Theorem. The first step is quite the same as in [10].
Thus t is a large real variable and z = z(t) is a certain (continuous) function
of t to be fixed later on (see (3.6) below), such that z = o(t) as t → ∞. It
is an immediate consequence of (2.1) and (2.6) that, for r

def= [(s + 1)/2],

A(t) ≤ z−r∆(r)
z (A(r)(t))(3.1)

= z−rV
Γ (s/2 + 1)
Γ (s/2 + r)

∆(r)
z (ts/2+r) + z−r∆(r)

z (P(r)(t))

= V ts/2 + O(ts/2−1z) + z−r∆(r)
z (P(r)(t)) .

On the other hand, with t∗ = t + rz, we have

(3.2) A(t∗) ≥ z−r∆(r)
z (A(r)(t)) ,

and
t∗ � t , (t∗)s/2 = ts/2 + O(ts/2−1z) .

Hence it will suffice to estimate the right-hand side of (3.1).
Let

(3.3) y =
√

t/z .

(It will be clear from (3.6) below that y → ∞ with t.) Recalling (2.2), we
obtain

∆(r)
z (P(r)(t)) =

∑
m∈Zs, m 6=0

∆(r)
z (Ir(m, t))(3.4)

=
∑

0<‖m‖∞≤y

+
∑

‖m‖∞>y

.

(Here and throughout the sequel, ‖ · ‖∞ denotes the maximum norm in Rs.)
Using (2.6), (2.4), and the linearity of the ∆-operator for the first part of
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the sum, and (2.5) for the second part, we obtain (cf. [10] for a detailed
calculation)

(3.5) ∆(r)
z (P(r)(t))

� zr max
t≤w≤t+rz

∣∣∣ ∑
0<‖m‖∞≤y

I0(m, w)
∣∣∣ + max

t≤w≤t+rz

∣∣∣ ∑
‖m‖∞>y

Ir(m, w)
∣∣∣ .

In what follows, p is either 0 or r, M ≥ 1 is a real variable, k is either 1
or 2 (it depends on the dimension s and will be fixed later). Furthermore,
let

K0
def= {p ∈ Rs : 1 < ‖p‖∞ ≤ 2} .

To estimate the sums on the right-hand side of (3.5), we split up their do-
mains of summation and consider first only the main terms of the asymptotic
expansion in Lemma 1. We thus obtain exponential sums

ΣM
def=

∑
m∈MK0

γp(m)e(H(m)
√

w) (w � t) .

For nonzero vectors p, v, w in Rs, let F be defined by (2.8) and put, for
i, j ∈ N0,

δi,j(p;v,w) def=
∂i+jF

∂αi∂βj

∣∣∣∣
(α,β)=(0,0)

,

and

µF (p;v,w)def=
inf{ inf

1≤i≤k+2
|δi,0(p;v,w)|, |δk+1,1(p;v,w)|, |δk,2(p;v,w)|, |hk(p;v,w)|} ,

where hk is defined in (2.11).
We now apply Lemma 3, along with an obvious continuity argument.

For every point p ∈ K0 (the bar denotes the topological closure) there exist
rational vectors v∗ = v∗(p) 6= 0 and w∗ = w∗(p) 6= 0 (not collinear), and
a positive number ε(p) such that

µF (p′;v∗,w∗) > 0 for all p′ ∈ Rs with ‖p′ − p‖∞ < 5
√

sε(p) .

Put

K∗(p) def= {p′ ∈ Rs : ‖p′ − p‖∞ < ε(p)} .

Then K0 is covered by the union of all open cubes K∗(p) with p ∈ K0, and,
by compactness, even by finitely many of them, say

K0 ⊂
J⋃

j=1

K∗(p(j)) .
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We now define sets Kj ⊆ K∗(p(j)), j = 1, . . . , J , by

Kj
def= K0 ∩

(
K∗(p(j))−

⋃
1≤i<j

K∗(p(i))
)

.

These sets are all disjoint, their union is K0, and they have the property that
the intersection of any (two-dimensional) plane with any Kj gives at most
O(1) polygons with O(1) vertices. For each j = 1, . . . , J , we can find integer
vectors v(j), w(j) which are collinear to v∗(p(j)), w∗(p(j)), respectively,
such that the greatest common divisor of the components is equal to 1 for
either of them.

We decompose the above exponential sum:

ΣM =
J∑

j=1

∑
m∈MKj

γp(m)e(
√

wH(m)) .

For each fixed j = 1, . . . , J , there exist (integer) vectors v(j,2), . . . ,v(j,s)

which together with v(j) form a basis of Zs, such that

w(j) = c1v(j) + c2v(j,2)

with integers 0 ≤ c1 < c2 (cf. Lekkerkerker [11], p. 20). Every m ∈ MKj

has a unique representation

m = n′1v
(j) + n′2v

(j,2) + . . . + n′sv
(j,s)

=
(

n′1 −
c1

c2
n′2

)
v(j) +

1
c2

n′2w
(j) +

s∑
i=3

n′iv
(j,i) ,

with n′i ∈ Z. Consider those m for which n′2 lies in a fixed residue class %
modulo c2 (0 ≤ % < c2; note that c2 = O(1)), and put n′2 = c2n2 + %. Then
we get

m = n1v(j) + n2w(j) + b(j) ,

b(j) = b(j)(%;n3, . . . , ns) = −c1

c2
%v(j) +

1
c2

%w(j) +
s∑

i=3

niv(j,i) ,

with n1 = n′1 − (c1/c2)(n′2 − %), ni = n′i for 3 ≤ i ≤ s. We keep j, %, and
n3, . . . , ns fixed and denote by D any of the O(1) polygons which make up
the range for n1, n2, corresponding to m ∈ MKj . Put

f(α, β) def=
√

wH(αv(j) + βw(j) + b(j)) .

Then it is clear by the homogeneity of H and our construction that the con-
ditions of Lemma 2 are satisfied with Λ =

√
t, as long as αv(j)+βw(j)+b(j)

lies in MKj . If D′ denotes the intersection of D with any two-dimensional
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interval, we may thus infer from Lemma 2 that∑
(n1,n2)∈ D′∩Z2

e(f(n1, n2)) � tωk/2M2−(k+1)ωk log(Mt) .

To deal with the factor γp(m), we observe that every partial derivative of
γp(·) of order R ≥ 0 is homogeneous of degree −dp −R (recall (2.7)).

Hence γp(αv(j) + βw(j) + b(j)) (as a function of (α, β)) satisfies the
assumptions of Lemma 4 with G � M−dp . This implies that∑

(n1,n2)∈D∩Z2

γp(n1v(j) + n2w(j) + b(j))e(
√

wH(n1v(j) + n2w(j) + b(j)))

� tωk/2M2−dp−ωk(k+1) log(Mt) .

Summation over n3, . . . , ns leads to an extra factor Ms−2, since by con-
struction the values of all of these variables are � M , as long as m ∈ MK0.
Furthermore, it now is trivial that the order term of Lemma 1 gives a con-
tribution which is smaller than the bound we already have.

Finally, we let M run through the sequence y/2, y/4, . . . for p = 0, and
through y, 2y, 4y, . . . for p = r. The exponent of M is positive in the first
case and negative in the second case, thus it follows from (3.5) that

z−r∆(r)
z (P(r)(t)) � tωk/2+(s−1)/4y(s−1)/2−(k+1)ωk(1 + ts/2y−rz−r) log t

� t(s−1)/2−kωk/2z−(s−1)/2+(k+1)ωk log t ,

in view of (3.3). Balancing the first order term here against the term
O(ts/2−1z) in (3.1), we find it optimal to choose

(3.6) z = t(1−kωk)/(s+1−2ωk(k+1))(log t)2/(s+1−2ωk(k+1)) .

Inserting our estimate into (3.1), we thus obtain

(3.7) z−r∆(r)
z (A(r)(t)) = V ts/2 + O(tλ(s)(log t)ν(s)) ,

with

λ(s) =
s

2
− 1 +

1− kωk

s + 1− 2ωk(k + 1)
, ν(s) =

2
s + 1− 2ωk(k + 1)

.

We now choose k = 2 for 3 ≤ s ≤ 6, and k = 1 for s ≥ 7. This gives just
the values of λ(s) and ν(s) as stated in the Theorem.

By combining (3.7) with (3.1) and (3.2), our proof is complete.
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