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1. Introduction. Let K, L be algebraic number fields with K C L,
and Ok, Oy, their respective rings of integers. We consider the trace map

T:TL/KLHK

and the Og-ideal T(O) C Ok. By I(L/K) we denote the group index of
T(Or) in Ok (i.e., the norm of T(Opr) over Q). It seems to be difficult to
determine I(L/K) in the general case. If K and L are absolutely abelian
number fields, however, we obtain a fairly explicit description of the number
I(L/K). This is a consequence of our description of the Galois module
structure of 7'(Or) (Theorem 1). The case of equal conductors fx = fr
of the fields K, L is of particular interest. Here we show that I(L/K) is a
certain power of 2 (Theorems 2, 3, 4).

2. Basic notions. Let d € N and &; = €™/ Then Qg = Q(&,) is
the dth cyclotomic field. If K is an absolutely abelian number field, we put
K;=KnNQy. By

§a.x = T, /r,(8a)
we denote the trace of the root of unity {4 over Ky. Let Gx = Gal(K/Q)

be the Galois group of K over Q and ZG g its integral group ring. For a
number m € N write

m* =[[{p;p|m},
i.e., m* is the maximal square-free divisor of m. Let, in particular, m = fx

be the conductor of K. Then Ok has a uniquely determined decomposition
into indecomposable ZG g-modules, viz.

(1) Ok= P ZGréux
m*|d|m

(see [3], [4]).
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For simplicity we write O,, = Oq,, and G,, = Gg,,. If k is an integer
prime to m, we define o € G,,, by

Ok (Em) = & -
Then G, = {ox;1 <k <m, (k,m)=1}.
Suppose now that both fields K, L, K C L, are abelian. Let Xg, X
be the character groups of Gx, G, resp. The restriction map

()k :GL — Gk 10— 0g =0k
is surjective, and it defines an injection
Xk —=Xp:x—xo()k-

Hence we consider X as a subgroup of Xj. For a character y € Xk let
fx be the conductor of x. Then f, divides m = fx. Moreover, if d € N, we
write

[d] = {c € N;c|d, d/csquare-free, (¢,d/c) =1}.

There is a decomposition of X that corresponds to (1) in a canonical way
(see [1]). Indeed,

Xe= |J {xeXg;feld},
m*|d|m
and
(2) rankz(ZGkéa,x) = [{x € Xk ; fx € [d]}]

for each d, m* | d|m.

3. Description of T}, (0Or) and I(L/K). Let the above notations
hold, in particular, let K C L be abelian number fields with conductors
fx =m, fr, =n. If d is a divisor of m, write

d=d][{p; p prime, p|n, ptm}.
THEOREM 1. In the above situation the following assertions hold:

(i) T/k(OL) = @ ZGrhaa, K

m*|d|m

with hqg = [L : K]/[L; : Kql; hq is an integer whenever {q x # 0.
(i) 7S | A

m*|d|m
with rq = rankz(ZGKgde) = |{X € Xk fX S [d]}|
COROLLARY. Let m|n. For K = Q,,, L = Q,,
(i) T(On) = n/m - Op;
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(ii) 1(Qn/Qp) = (n/m)#"™),
© denoting Fuler’s function.

We turn to the special case of equal conductors, so K C L and fx =
fr =mn. Write
H=Gal(L/K), H;=Gal(L/Lg), d|n.
Suppose, moreover, that ¢ is a prime number and [L : K] a power of q.
Put e = max{k;2¥|n} (i.e., the 2-exponent of n). If e > 1, define j,1 €
{1,...,n} by the congruences
j= —1mod2°, = —1+42"1mod2°,
j=1=1modn/2°.
THEOREM 2. In this situation the following assertions are equivalent:
(i) I(L/K) > 1
(ii) ¢ = 2, e > 3, and either H N Hp« = (0j,1,) # {id} or HN Hp« =
(on,) # {id}.
Remark. Let (K, L,~) be the composite of the subfields K, L« of L.
Then assertion (ii) can be restated as
(i) g =2,e >3, [L: (K, L,-)] = 2, and either Gal(L/(K, Ly~)) = (0 1)
or Gal(L/(K,Ly,~)) = (oy,1).
This is clear by Galois theory.
THEOREM 3. Let K C L, fx = fr, = n, e > 3, and let [L: K] be a
power of 2. Suppose that the equivalent conditions (i), (ii) of Theorem 2 are

satisfied. If H N Hp« = (o)1) put k = j, otherwise put k = l. Then the
numbers hg of Theorem 1 take the following values:

by — {2 if 0.1, = id,

1 else.
In particular, hg = 2 for all d with n*|d|n/2°" !, and
9[Kn/2e:Q] |I(L/K) | olK:Q]
COROLLARY. In the situation of Theorem 3 let L = Q. Then
T, /x(On) =2 Ok, .. ® P{ZGKEaxin™ |d|n, 4|d}
and I(L/K) = 2[Kn/2¢:Q,

Theorems 2 and 3 also yield a description of T(Op) and I(L/K) for
arbitrary abelian number fields K C L of equal conductor n. As above, let
H = Gal(L/K) and H,) be the p-Sylow group of H (p prime). Let L3 be
the fixed field of [[{H,);p # 2} (thus Gal(L(?/K) is isomorphic to H(s)).
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THEOREM 4. In the above situation,

T1/k(OL) =T )k (OLe) -
Hence the structure of Tr/x(OL) and the value of I(L/K) are given by
Theorems 2 and 3 applied to K C L2,

4. Proofs
Proof of Theorem 1. First we show
(3) T(OL)= P ZGrhcbex,
n*|c|n

with h. = [L: K]/[L.: K.]. Indeed, if n* | ¢|n, then
Tk, (er) = Tr/x,(Toyx(§e,n)) = [K: KTk (§e,L)

and
Tr r.(er) =T,k (Trjp.(Een)) = [L: Lelée x -
This yields
Tryk(er) = ([L: Le]/[K : Ke])ée,x = hee k-
Hence T(ZGLéc,L) = ZGLT(§C7L) = ZGLhcfc,K == ZGthfcﬂK. We obtain
T(Or) = Z LG rhele K -
n*|c|n

This sum, however, is direct, due to ZGxhée,x € ZG &, 1, and formula (1).
Therefore (3) holds. For the time being, fix ¢ with n*|c¢|n, and put
d = (¢,m). Then K; = K. and

(4) §C,K = TQd/Kd (TQC/Qd (56)) .
Moreover, formula (34) in [1] yields

_ [ xou(&a) ifdeld,
(5) To./04(&) = {0 otherwise,

k being a certain number prime to d. From (4), (5) we conclude that &, x #
0 only if d € [¢], i.e., ¢ = d. In this case h. = hg, and (4), (5) imply
ZGKSC,K = ZGde,K- We obtain from (3)

T(0)= @ ZGxhaux.
m*|d|m
Observe that ZG g hala,x € Ok, m* | d|m. Hence (1) implies hqZG g&q,x C
2Gk€ak- It Eax #0, ZGKEq Kk is a free Z-module of Z-rank > 1, and hg

must be an integer. This concludes the proof of (i). Assertion (ii) follows
from (i), (1), and (2). =
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Proof of the Corollary (of Theorem 1). For each d with m* |d|m

the number hy equals p(n)e(d)/(e(m)e(d)) = ¢(n)/e(m) = n/m. Since
hq does not depend on the choice of d, the assertions follow from (1). m

Proof of Theorem 2. Let n* |d|n. By Galois theory, Gal(L/K4) =
Gal(L/K N Lg) = (H,Hy) = HH,4. Moreover, |HH4| = |H||Hg4|/|H N Hy|.
After a short calculation this yields
(6) hq = |H N Hy.

Suppose that (ii) holds. Then h,- = 2, by (6). Formula (1) shows that
Ok,. = 2GKkén Kk ,

which yields r,» = rankz Ok, . > 1. From Theorem 1(ii), we infer that

I(L/K) > 1.

Conversely, assume (i). We shall show in the subsequent steps (a)—(d)
that (ii) holds.

(a) There is a number d, n* | d|n, such that H N Hy # {id}. Because of
H; C H,«, HN Hy« # {id}, too. Since |H| is a power of ¢, H N H,+ is a
non-trivial subgroup of the ¢-Sylow group H,,« 4 of Hp-.

(b) Suppose that ¢ # 2 or ¢ = 2, e < 2. We show that H,-, is a cyclic
group. Put

J =Gal(Q,/L), Jp- =Gal(Q,/Qp).
Then JJ,- = Gal(Q,,/L,~). The restriction map

() :Gal(Qn/Ly+) — Gal(L/Ly+) = Hy : 0 — o,

is surjective; because of (J)r = 1 we get Hyp« = (JJp+)r = (o). We
assert that the g-Sylow group J,-, of J,» is cyclic. Indeed, the Chinese
Remainder Theorem yields a canonical isomorphism

Gy — H(Z/pepZ)X )

pln

ep = rﬁnax{k:;p’C |n} being the p-exponent of n. But ¢ maps J,« onto
len{k ;k = 1mod p}, whose ¢-Sylow group is

{k;k=1modq} x [[{T}.
P#q
Since ¢ > 3 or ¢ = 2, e < 2, this group is cyclic.

(c) Again suppose ¢ # 2 or ¢ =2, e < 2. If e = 1, [Jy+| = n/n* #
0mod ¢; thus |H,«| # 0mod g and |HNH,,+| Z 0mod ¢, contrary to step (a).
Hence assume e, > 2. Then H,,,, € H,-. Furthermore, |.J,/,| = ¢, which
gives |H,, /4| |q and H,,/, C Hy-4. However, Hy- 4 is cyclic by step (b), and
H N Hy,- is a non-trivial subgroup, by (a). This requires H,,/; € H N Hy~
C H. Therefore K C L which is impossible, due to fx = n.

n/q»
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(d) Step (c) has shown that ¢ = 2 and e > 3. Let ok, € H N Hy-,
ok, # id. Since there is an epimorphism ( )z : Jy=2 — Hyx2, we can
assume that oy, € Jy+2, i.e., k = 1 modn/2° It is well-known that & satisfies
one of the congruences

k=+5mod2¢, 1<b<2°2
(see, e.g., [2], p. 43). Suppose that b < 272, Then there is a divisor ¢ of
2¢73 such that
5%¢ =14 2" mod 2°

(loc. cit). We get k¢ = (£1)¢(1 + 2°"')mod2°. If ¢ > 1, this yields
of € Jnyo \{id}. But |, 5| = 2, thus J,, 5 = (0f) and H,, /o = (0} ;) C H,
contrary to fi = n. Therefore ¢ = 1, and k = +(1 + 2°71)mod2¢. The
case k = 1 + 271 mod 2° is impossible again. Altogether, we have shown
that b = 2°72, k = —1mod 2¢, or that k = —1 —2°7! = —1 + 2" mod 2¢.
This implies H N Hy,« = (0j,) # {id} or H N Hp« = (0y,1) # {id}. =

Proof of Theorem 3 and the Corollary. Let k be as assumed
and H N H,» = (oy,1) # id. Consider a number d with n* |d|n. Then
HNH; C HNHy-; by (6) we get hg # 1 if and only if 0,1, € Hy, which
means oy, 1, = id. Obviously this is the case if 4fd. We have shown

2:-0, CT(Or)
C P{zG k26 rsn |d[n/27 "y @ PIZCKkEaxc ;20" |d|n}

=2 Ok, 0c © PI{ZCKEa ;20" |d|n}.
This gives
9K 2e:Q] | I(L/K) | olK:Q]
In the case L = Q,, the last inclusion can be replaced by equality. m

Proof of Theorem 4. We have [L: L(®)] = |H|/|H ()|, which is an
odd number. For this reason there exists a chain of intermediate fields

I®c..crcr’'c...CL

such that [L” : L'] is an odd prime power. All of these fields have conduc-
tor n. So Theorem 2 implies T/ (Op) = O/, whence TL/L(2>(0L) =
Opr(2 . Finally,

TL/K(OL) = TL(2)/K(TL/L(2) (On)) = TL(z)/K(OL(z)) .=
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