On the trace of the ring of integers of an abelian number field

by

Kurt Girstmair (Innsbruck)

1. Introduction. Let K, L be algebraic number fields with $K \subseteq L$, and \mathcal{O}_K , \mathcal{O}_L their respective rings of integers. We consider the trace map

$$T = T_{L/K} : L \to K$$

and the \mathcal{O}_K -ideal $T(\mathcal{O}_L) \subseteq \mathcal{O}_K$. By I(L/K) we denote the group index of $T(\mathcal{O}_L)$ in \mathcal{O}_K (i.e., the norm of $T(\mathcal{O}_L)$ over \mathbb{Q}). It seems to be difficult to determine I(L/K) in the general case. If K and L are absolutely abelian number fields, however, we obtain a fairly explicit description of the number I(L/K). This is a consequence of our description of the Galois module structure of $T(\mathcal{O}_L)$ (Theorem 1). The case of equal conductors $f_K = f_L$ of the fields K, L is of particular interest. Here we show that I(L/K) is a certain power of 2 (Theorems 2, 3, 4).

2. Basic notions. Let $d \in \mathbb{N}$ and $\xi_d = e^{2\pi i/d}$. Then $\mathbb{Q}_d = \mathbb{Q}(\xi_d)$ is the dth cyclotomic field. If K is an absolutely abelian number field, we put $K_d = K \cap \mathbb{Q}_d$. By

$$\xi_{d,K} = T_{\mathbb{Q}_d/K_d}(\xi_d)$$

we denote the trace of the root of unity ξ_d over K_d . Let $G_K = \operatorname{Gal}(K/\mathbb{Q})$ be the Galois group of K over \mathbb{Q} and $\mathbb{Z}G_K$ its integral group ring. For a number $m \in \mathbb{N}$ write

$$m^* = \prod \{p \, ; p \, | \, m\} \, ,$$

i.e., m^* is the maximal square-free divisor of m. Let, in particular, $m = f_K$ be the conductor of K. Then \mathcal{O}_K has a uniquely determined decomposition into indecomposable $\mathbb{Z}G_K$ -modules, viz.

(1)
$$\mathcal{O}_K = \bigoplus_{m^* \mid d \mid m} \mathbb{Z}G_K \xi_{d,K}$$

(see [3], [4]).

For simplicity we write $\mathcal{O}_m = \mathcal{O}_{\mathbb{Q}_m}$ and $G_m = G_{\mathbb{Q}_m}$. If k is an integer prime to m, we define $\sigma_k \in G_m$ by

$$\sigma_k(\xi_m) = \xi_m^k \, .$$

Then $G_m = \{ \sigma_k ; 1 \le k \le m, (k, m) = 1 \}.$

Suppose now that both fields K, L, $K \subseteq L$, are abelian. Let X_K , X_L be the character groups of G_K , G_L , resp. The restriction map

$$()_K:G_L\to G_K:\sigma\mapsto\sigma_K=\sigma|_K$$

is surjective, and it defines an injection

$$X_K \to X_L : \chi \mapsto \chi \circ ()_K$$
.

Hence we consider X_K as a subgroup of X_L . For a character $\chi \in X_K$ let f_{χ} be the conductor of χ . Then f_{χ} divides $m = f_K$. Moreover, if $d \in \mathbb{N}$, we write

$$[d] = \left\{ c \in \mathbb{N} \, ; c \, | \, d \, , \, \, d/c \text{ square-free, } (c,d/c) = 1 \right\}.$$

There is a decomposition of X_K that corresponds to (1) in a canonical way (see [1]). Indeed,

$$X_K = \bigcup_{m^* \mid d \mid m} \{ \chi \in X_K ; f_{\chi} \in [d] \},$$

and

(2)
$$\operatorname{rank}_{\mathbb{Z}}(\mathbb{Z}G_K\xi_{d,K}) = |\{\chi \in X_K ; f_\chi \in [d]\}|$$

for each d, $m^* \mid d \mid m$.

3. Description of $T_{L/K}(\mathcal{O}_L)$ **and** I(L/K)**.** Let the above notations hold, in particular, let $K \subseteq L$ be abelian number fields with conductors $f_K = m$, $f_L = n$. If d is a divisor of m, write

$$\widehat{d} = d \prod \{ p \, ; \ p \text{ prime}, \ p \, | \, n, \ p \nmid m \} \, .$$

Theorem 1. In the above situation the following assertions hold:

(i)
$$T_{L/K}(\mathcal{O}_L) = \bigoplus_{m^* \mid d \mid m} \mathbb{Z}G_K h_d \xi_{d,K} ,$$

with $h_d = [L:K]/[L_{\hat{d}}:K_d]$; h_d is an integer whenever $\xi_{d,K} \neq 0$.

(ii)
$$I(L/K) = \prod_{m^* \mid d \mid m} h_d^{r_d},$$

with $r_d = \operatorname{rank}_{\mathbb{Z}}(\mathbb{Z}G_K \xi_{d,K}) = |\{\chi \in X_K ; f_\chi \in [d]\}|.$

COROLLARY. Let $m \mid n$. For $K = \mathbb{Q}_m$, $L = \mathbb{Q}_n$,

(i)
$$T(\mathcal{O}_n) = n/\widehat{m} \cdot \mathcal{O}_m;$$

(ii)
$$I(\mathbb{Q}_n/\mathbb{Q}_m) = (n/\widehat{m})^{\varphi(m)},$$

 φ denoting Euler's function.

We turn to the special case of equal conductors, so $K \subseteq L$ and $f_K = f_L = n$. Write

$$H = \operatorname{Gal}(L/K), \quad H_d = \operatorname{Gal}(L/L_d), \quad d \mid n.$$

Suppose, moreover, that q is a prime number and [L:K] a power of q. Put $e = \max\{k; 2^k \mid n\}$ (i.e., the 2-exponent of n). If $e \geq 1$, define $j, l \in \{1, \ldots, n\}$ by the congruences

$$j \equiv -1 \operatorname{mod} 2^e$$
, $l \equiv -1 + 2^{e-1} \operatorname{mod} 2^e$,
 $j \equiv l \equiv 1 \operatorname{mod} n/2^e$.

Theorem 2. In this situation the following assertions are equivalent:

- (i) I(L/K) > 1;
- (ii) q = 2, $e \geq 3$, and either $H \cap H_{n^*} = \langle \sigma_{j,L} \rangle \neq \{\text{id}\}$ or $H \cap H_{n^*} = \langle \sigma_{l,L} \rangle \neq \{\text{id}\}$.

Remark. Let (K, L_{n^*}) be the composite of the subfields K, L_{n^*} of L. Then assertion (ii) can be restated as

(iii)
$$q = 2, e \ge 3, [L:(K, L_{n^*})] = 2$$
, and either $Gal(L/(K, L_{n^*})) = \langle \sigma_{j,L} \rangle$ or $Gal(L/(K, L_{n^*})) = \langle \sigma_{l,L} \rangle$.

This is clear by Galois theory.

THEOREM 3. Let $K \subseteq L$, $f_K = f_L = n$, $e \ge 3$, and let [L:K] be a power of 2. Suppose that the equivalent conditions (i), (ii) of Theorem 2 are satisfied. If $H \cap H_{n^*} = \langle \sigma_{j,L} \rangle$ put k = j, otherwise put k = l. Then the numbers h_d of Theorem 1 take the following values:

$$h_d = \begin{cases} 2 & \text{if } \sigma_{k,L_d} = \mathrm{id}, \\ 1 & \text{else.} \end{cases}$$

In particular, $h_d = 2$ for all d with $n^* | d | n/2^{e-1}$, and $2^{[K_{n/2^e}:\mathbb{Q}]} | I(L/K) | 2^{[K:\mathbb{Q}]}$.

COROLLARY. In the situation of Theorem 3 let $L = \mathbb{Q}_n$. Then

$$T_{\mathbb{Q}_n/K}(\mathcal{O}_n) = 2 \cdot \mathcal{O}_{K_{n/2^e}} \oplus \bigoplus \{ \mathbb{Z}G_K \xi_{d,K} ; n^* \mid d \mid n, \ 4 \mid d \}$$
 and $I(L/K) = 2^{[K_{n/2^e}:\mathbb{Q}]}$.

Theorems 2 and 3 also yield a description of $T(\mathcal{O}_L)$ and I(L/K) for arbitrary abelian number fields $K \subseteq L$ of equal conductor n. As above, let $H = \operatorname{Gal}(L/K)$ and $H_{(p)}$ be the p-Sylow group of H (p prime). Let $L^{(2)}$ be the fixed field of $\prod\{H_{(p)}; p \neq 2\}$ (thus $\operatorname{Gal}(L^{(2)}/K)$ is isomorphic to $H_{(2)}$).

THEOREM 4. In the above situation,

$$T_{L/K}(\mathcal{O}_L) = T_{L^{(2)}/K}(\mathcal{O}_{L^{(2)}})$$
.

Hence the structure of $T_{L/K}(\mathcal{O}_L)$ and the value of I(L/K) are given by Theorems 2 and 3 applied to $K \subseteq L^{(2)}$.

4. Proofs

Proof of Theorem 1. First we show

(3)
$$T(\mathcal{O}_L) = \bigoplus_{n^* \mid c \mid n} \mathbb{Z}G_K h_c \xi_{c,K} ,$$

with $h_c = [L:K]/[L_c:K_c]$. Indeed, if $n^* \mid c \mid n$, then

$$T_{L/K_c}(\xi_{c,L}) = T_{K/K_c}(T_{L/K}(\xi_{c,L})) = [K:K_c]T_{L/K}(\xi_{c,L}),$$

and

$$T_{L/K_c}(\xi_{c,L}) = T_{L_c/K_c}(T_{L/L_c}(\xi_{c,L})) = [L:L_c]\xi_{c,K}.$$

This yields

$$T_{L/K}(\xi_{c,L}) = ([L:L_c]/[K:K_c])\xi_{c,K} = h_c\xi_{c,K}$$
.

Hence $T(\mathbb{Z}G_L\xi_{c,L}) = \mathbb{Z}G_LT(\xi_{c,L}) = \mathbb{Z}G_Lh_c\xi_{c,K} = \mathbb{Z}G_Kh_c\xi_{c,K}$. We obtain

$$T(\mathcal{O}_L) = \sum_{n^* \mid c \mid n} \mathbb{Z} G_K h_c \xi_{c,K} .$$

This sum, however, is direct, due to $\mathbb{Z}G_K h_c \xi_{c,K} \subseteq \mathbb{Z}G_L \xi_{c,L}$ and formula (1). Therefore (3) holds. For the time being, fix c with $n^* \mid c \mid n$, and put d = (c, m). Then $K_d = K_c$ and

(4)
$$\xi_{c,K} = T_{\mathbb{Q}_d/K_d}(T_{\mathbb{Q}_c/\mathbb{Q}_d}(\xi_c)).$$

Moreover, formula (34) in [1] yields

(5)
$$T_{\mathbb{Q}_c/\mathbb{Q}_d}(\xi_c) = \begin{cases} \pm \sigma_k(\xi_d) & \text{if } d \in [c], \\ 0 & \text{otherwise,} \end{cases}$$

k being a certain number prime to d. From (4), (5) we conclude that $\xi_{c,K} \neq 0$ only if $d \in [c]$, i.e., $c = \hat{d}$. In this case $h_c = h_d$, and (4), (5) imply $\mathbb{Z}G_K\xi_{c,K} = \mathbb{Z}G_K\xi_{d,K}$. We obtain from (3)

$$T(\mathcal{O}_L) = \bigoplus_{m^* \mid d \mid m} \mathbb{Z}G_K h_d \xi_{d,K} .$$

Observe that $\mathbb{Z}G_K h_d \xi_{d,K} \subseteq \mathcal{O}_K$, $m^* \mid d \mid m$. Hence (1) implies $h_d \mathbb{Z}G_K \xi_{d,K} \subseteq \mathbb{Z}G_K \xi_{d,K}$. If $\xi_{d,K} \neq 0$, $\mathbb{Z}G_K \xi_{d,K}$ is a free \mathbb{Z} -module of \mathbb{Z} -rank ≥ 1 , and h_d must be an integer. This concludes the proof of (i). Assertion (ii) follows from (i), (1), and (2).

Proof of the Corollary (of Theorem 1). For each d with $m^* \mid d \mid m$ the number h_d equals $\varphi(n)\varphi(d)/(\varphi(m)\varphi(\widehat{d})) = \varphi(n)/\varphi(\widehat{m}) = n/\widehat{m}$. Since h_d does not depend on the choice of d, the assertions follow from (1).

Proof of Theorem 2. Let $n^* |d| n$. By Galois theory, $\operatorname{Gal}(L/K_d) = \operatorname{Gal}(L/K \cap L_d) = \langle H, H_d \rangle = HH_d$. Moreover, $|HH_d| = |H| |H_d| / |H \cap H_d|$. After a short calculation this yields

$$(6) h_d = |H \cap H_d|.$$

Suppose that (ii) holds. Then $h_{n^*} = 2$, by (6). Formula (1) shows that

$$\mathcal{O}_{K_{n^*}} = \mathbb{Z}G_K \xi_{n^*, K} \,,$$

which yields $r_{n^*} = \operatorname{rank}_{\mathbb{Z}} \mathcal{O}_{K_{n^*}} \geq 1$. From Theorem 1(ii), we infer that I(L/K) > 1.

Conversely, assume (i). We shall show in the subsequent steps (a)–(d) that (ii) holds.

- (a) There is a number d, $n^* \mid d \mid n$, such that $H \cap H_d \neq \{\text{id}\}$. Because of $H_d \subseteq H_{n^*}$, $H \cap H_{n^*} \neq \{\text{id}\}$, too. Since |H| is a power of q, $H \cap H_{n^*}$ is a non-trivial subgroup of the q-Sylow group $H_{n^*,q}$ of H_{n^*} .
- (b) Suppose that $q \neq 2$ or q = 2, $e \leq 2$. We show that $H_{n^*,q}$ is a cyclic group. Put

$$J = \operatorname{Gal}(\mathbb{Q}_n/L), \quad J_{n^*} = \operatorname{Gal}(\mathbb{Q}_n/\mathbb{Q}_{n^*}).$$

Then $JJ_{n^*} = \operatorname{Gal}(\mathbb{Q}_n/L_{n^*})$. The restriction map

$$()_L: \operatorname{Gal}(\mathbb{Q}_n/L_{n^*}) \to \operatorname{Gal}(L/L_{n^*}) = H_{n^*}: \sigma \mapsto \sigma_L$$

is surjective; because of $(J)_L = 1$ we get $H_{n^*} = (JJ_{n^*})_L = (J_{n^*})_L$. We assert that the q-Sylow group $J_{n^*,q}$ of J_{n^*} is cyclic. Indeed, the Chinese Remainder Theorem yields a canonical isomorphism

$$\psi: G_n \to \prod_{p \mid n} (\mathbb{Z}/p^{e_p}\mathbb{Z})^{\times},$$

 $e_p = \max\{k; p^k \mid n\}$ being the *p*-exponent of *n*. But ψ maps J_{n^*} onto $\prod_{p \mid n} \{\overline{k}; k \equiv 1 \mod p\}$, whose *q*-Sylow group is

$$\{\overline{k}\,; k \equiv 1 \operatorname{mod} q\} \times \prod_{p \neq q} \{\overline{1}\}\,.$$

Since $q \ge 3$ or q = 2, $e \le 2$, this group is cyclic.

(c) Again suppose $q \neq 2$ or q = 2, $e \leq 2$. If $e_q = 1$, $|J_{n^*}| = n/n^* \not\equiv 0 \mod q$; thus $|H_{n^*}| \not\equiv 0 \mod q$ and $|H \cap H_{n^*}| \not\equiv 0 \mod q$, contrary to step (a). Hence assume $e_q \geq 2$. Then $H_{n/q} \subseteq H_{n^*}$. Furthermore, $|J_{n/q}| = q$, which gives $|H_{n/q}| |q$ and $H_{n/q} \subseteq H_{n^*,q}$. However, $H_{n^*,q}$ is cyclic by step (b), and $H \cap H_{n^*}$ is a non-trivial subgroup, by (a). This requires $H_{n/q} \subseteq H \cap H_{n^*} \subseteq H$. Therefore $K \subseteq L_{n/q}$, which is impossible, due to $f_K = n$.

(d) Step (c) has shown that q=2 and $e\geq 3$. Let $\sigma_{k,L}\in H\cap H_{n^*}$, $\sigma_{k,L}\neq \mathrm{id}$. Since there is an epimorphism ()_L: $J_{n^*,2}\to H_{n^*,2}$, we can assume that $\sigma_k\in J_{n^*,2}$, i.e., $k\equiv 1 \bmod n/2^e$. It is well-known that k satisfies one of the congruences

$$k \equiv \pm 5^b \operatorname{mod} 2^e, \quad 1 \le b \le 2^{e-2}$$

(see, e.g., [2], p. 43). Suppose that $b < 2^{e-2}$. Then there is a divisor c of 2^{e-3} such that

$$5^{bc} \equiv 1 + 2^{e-1} \bmod 2^e$$

(loc. cit.). We get $k^c \equiv (\pm 1)^c (1 + 2^{e-1}) \mod 2^e$. If c > 1, this yields $\sigma_k^c \in J_{n/2} \setminus \{\text{id}\}$. But $|J_{n/2}| = 2$, thus $J_{n/2} = \langle \sigma_k^c \rangle$ and $H_{n/2} = \langle \sigma_{k,L}^c \rangle \subseteq H$, contrary to $f_K = n$. Therefore c = 1, and $k \equiv \pm (1 + 2^{e-1}) \mod 2^e$. The case $k \equiv 1 + 2^{e-1} \mod 2^e$ is impossible again. Altogether, we have shown that $b = 2^{e-2}$, $k \equiv -1 \mod 2^e$, or that $k \equiv -1 - 2^{e-1} \equiv -1 + 2^{e-1} \mod 2^e$. This implies $H \cap H_{n^*} = \langle \sigma_{j,L} \rangle \neq \{\text{id}\}$ or $H \cap H_{n^*} = \langle \sigma_{l,L} \rangle \neq \{\text{id}\}$.

Proof of Theorem 3 and the Corollary. Let k be as assumed and $H \cap H_{n^*} = \langle \sigma_{k,L} \rangle \neq \text{id}$. Consider a number d with $n^* \mid d \mid n$. Then $H \cap H_d \subseteq H \cap H_{n^*}$; by (6) we get $h_d \neq 1$ if and only if $\sigma_{k,L} \in H_d$, which means $\sigma_{k,L_d} = \text{id}$. Obviously this is the case if $4 \nmid d$. We have shown

$$2 \cdot \mathcal{O}_k \subseteq T(\mathcal{O}_L)$$

$$\subseteq \bigoplus \{ \mathbb{Z}G_K 2\xi_{d,K} ; n^* \mid d \mid n/2^{e-1} \} \oplus \bigoplus \{ \mathbb{Z}G_K \xi_{d,K} ; 2n^* \mid d \mid n \}$$

$$= 2 \cdot \mathcal{O}_{K_{n/2^e}} \oplus \bigoplus \{ \mathbb{Z}G_K \xi_{d,K} ; 2n^* \mid d \mid n \} .$$

This gives

$$2^{[K_{n/2^e}:\mathbb{Q}]} | I(L/K) | 2^{[K:\mathbb{Q}]}.$$

In the case $L = \mathbb{Q}_n$, the last inclusion can be replaced by equality.

Proof of Theorem 4. We have $[L:L^{(2)}] = |H|/|H_{(2)}|$, which is an odd number. For this reason there exists a chain of intermediate fields

$$L^{(2)} \subseteq \ldots \subseteq L' \subseteq L'' \subseteq \ldots \subseteq L$$

such that [L'':L'] is an odd prime power. All of these fields have conductor n. So Theorem 2 implies $T_{L''/L'}(\mathcal{O}_{L''}) = \mathcal{O}_{L'}$, whence $T_{L/L^{(2)}}(\mathcal{O}_L) = \mathcal{O}_{L^{(2)}}$. Finally,

$$T_{L/K}(\mathcal{O}_L) = T_{L^{(2)}/K}(T_{L/L^{(2)}}(\mathcal{O}_L)) = T_{L^{(2)}/K}(\mathcal{O}_{L^{(2)}}) \,. \ \blacksquare$$

References

[1] K. Girstmair, Dirichlet convolution of cotangent numbers and relative class number formulas, Monatsh. Math. 110 (1990), 231–256.

- [2] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer, New York 1982.
- [3] H. W. Leopoldt, Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. Reine Angew. Math. 201 (1959), 119–149.
- [4] G. Lettl, The ring of integers of an abelian number field, ibid. 404 (1990), 162–170.

INSTITUT FÜR MATHEMATIK UNIVERSITÄT INNSBRUCK TECHNIKERSTR. 25/7 A-6020 INNSBRUCK, ÖSTERREICH

> Received on 10.2.1992 and in revised form on 25.3.1992

(2228)