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On the density of extremal solutions
of differential inclusions

by F. S. De Blasi (Roma) and G. Pianigiani (Siena)

Abstract. An existence theorem for the Cauchy problem (∗) ẋ ∈ ext F (t, x), x(t0) =
x0, in Banach spaces is proved, under assumptions which exclude compactness. Moreover,
a type of density of the solution set of (∗) in the solution set of ẋ ∈ F (t, x), x(t0) = x0, is
established. The results are obtained by using an improved version of the Baire category
method developed in [8]–[10].

1. Introduction. Let E be a separable reflexive real Banach space.
Let F be a continuous multifunction defined on a nonempty open subset of
R× E with values in the space of closed convex bounded subsets of E with
nonempty interior. We shall consider the Cauchy problems

(1.1) ẋ ∈ F (t, x) , x(t0) = x0 ,

(1.2) ẋ ∈ extF (t, x) , x(t0) = x0 ,

where extF (t, x) denotes the set of extreme points of F (t, x).
By a result of Plís ([2], p. 127) the solution set MextF of (1.2) is not,

in general, dense in the solution set MF of (1.1). Nevertheless, elements of
MextF do approximate some significant subsets of MF . More specifically,
we shall prove that, for any selection f of F in an admissible class which
includes locally α-Lipschitz selections, if we denote by Kf the solution set
of the Cauchy problem

(1.3) ẋ = f(t, x) , x(t0) = x0 ,

then MextF has nonempty intersection with every neighborhood of Kf . In
particular, the Cauchy problem (1.2) has solutions.

In finite dimensions this type of approximation result has been estab-
lished by Pianigiani [16], by using the technique of Antosiewicz and Cel-
lina [1]. Additional difficulties occur in infinite dimensions because, in this
setting, the existence theory for differential equations is more delicate [12].
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For recent contributions, see Tolstonogov [17], Bahi [3], Tolstonogov and
Finogenko [18], Papageorgiou [14], [15].

The approach used in the present paper is a variant of the Baire category
method introduced in [8]–[10] in order to prove the existence of solutions for
nonconvex-valued differential inclusions in Banach spaces. We mention that
recently this method has been improved by Bressan and Colombo [4], who
have obtained an existence theorem containing both the existence theorem
of [10] and Filippov’s theorem [11] (see also Kaczyński and Olech [13], An-
tosiewicz and Cellina [1]). The property that MextF 6= ∅ has been proved
in [10], under stronger hypotheses; subsequently the same result has been
established in [7], by following the method and the techniques of [10].

2. Preliminaries and auxiliary results. Let E be a reflexive sepa-
rable real Banach space with norm ‖ · ‖. We denote by B the metric space
of all closed convex bounded subsets of E, with nonempty interior, endowed
with the Hausdorff distance h.

Let Z be a metric space. A multifunction G : Z → B is said to be
continuous, bounded, if it so as a function from Z to the metric space B.
Let X be a nonempty subset of Z. A single-valued function f : X → E
satisfying f(x) ∈ G(x) for every x ∈ X is called a selection of G on X (a
selection of G if X = Z). For any subset X of Z, the interior of X and the
closure of X are denoted by intX and X, respectively. Moreover, if X ⊂ Z
is bounded, α[X] stands for the Kuratowski measure of noncompactness
of X. In Z an open (resp. closed) ball with center x ∈ Z and radius r > 0
is denoted by B(x, r) (resp. B̃(x, r)). The unit open ball in a normed space
Z is denoted by B; moreover, for any subset X of Z, extX stands for the
set of extreme points of X.

Let J be a nonempty bounded interval of R. As usual, C(J,E) denotes
the Banach space of all continuous bounded functions x : J → E endowed
with the norm of uniform convergence. Furthermore, by |J | we mean the
length of J . The space R × E will be equipped with the norm ‖(t, x)‖ =
max{|t|, ‖x‖}, (t, x) ∈ R×E. In the sequel, when a set X ⊂ Z is considered
as a metric space, it is understood that X retains the metric of Z.

Let U be a nonempty subset of R×E. A function f : U → E is said to be
α-Lipschitzean (with constant k) if f is continuous and bounded on U , and
there exists a constant k ≥ 0 such that α[f(X)] ≤ kα[X] for every bounded
set X ⊂ U . A function f : U → E is said to be locally Lipschitzean (resp.
locally α-Lipschitzean) if f is bounded (resp. continuous and bounded), and
for each (s, u) ∈ U there exist δs,u > 0 and ks,u ≥ 0 such that f restricted
to B((s, u), δs,u) is Lipschitzean (resp. α-Lipschitzean) with constant ks,u.

Let J be a nonempty bounded interval of the form [a, b[ . We denote by
I(J) the class of all countable families {Ji} of nonempty pairwise disjoint
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intervals Ji = [ai, bi[ such that
⋃
i Ji = J . A member of I(J) is called, for

short, a partition of J . Let {Ji} be a partition of J ; the set of end points of
the intervals Ji is called the mesh of the partition, and the number sup |Ji|
the norm of the partition. Let J = [a, b[ be nonempty and bounded, and let
B(x0, r) ⊂ E, r > 0. A function f : J ×B(x0, r)→ E is said to be piecewise
locally Lipschitzean (resp. piecewise locally α-Lipschitzean) if f is bounded
and there exists a partition {Ji} ∈ I(J) of J such that the restriction of f to
each set Ji ×B(x0, r) is locally Lipschitzean (resp. locally α-Lipschitzean).

We shall denote by L(J × B(x0, r)) and Lα(J × B(x0, r)) the class of
all functions f : J ×B(x0, r)→ E which are, respectively, piecewise locally
Lipschitzean and piecewise locally α-Lipschitzean.

Let F : I × B(x0, r) → B be a multifunction, where I = [t0, T [ and
B(x0, r) ⊂ E (r > 0). We suppose:

(H1) F is continuous on I ×B(x0, r),
(H2) F is bounded on I ×B(x0, r) by a constant M ≥ 1,
(H3) 0 < T − t0 < r/(2M).

By a solution of (1.1) (resp. (1.2), (1.3)) we mean a Lipschitzean function
x : J → E defined on a nondegenerate interval J containing t0, satisfying
(1.1) (resp. (1.2), (1.3)) a.e. in J . Set

MF = {x : I → E | x is a solution of (1.1)} ,
MextF = {x : I → E | x is a solution of (1.2)} .

The space MF , endowed with the metric of uniform convergence, is com-
plete [8].

For F satisfying (H1)–(H3), set SF = {f ∈ L(I × B(x0, r)) | f is a
selection of F}, SαF = {f ∈ Lα(I ×B(x0, r)) | f is a selection of F}. Clearly
SF , SαF are nonempty. For f ∈ SαF , we set Kf = {x : I → E | x is a solution
of (1.3)}. Kf is a nonempty compact subset of MF and, if f ∈ SF , then
Kf is a singleton.

Proposition 2.1. Let F satisfy (H1)–(H3). Let f ∈ SαF and η > 0.
Then there exists % = %f (η), 0 < % < r/2, such that if x ∈ C(I,E) satisfies
‖x(t)− x0‖ < r and∥∥∥ t∫

t0

[ẋ(s)− f(s, x(s))] ds
∥∥∥ < % for every t ∈ I ,

then x ∈ Kf + ηB.

P r o o f. Suppose the statement is not true. Then there exist f ∈ SαF ,
η > 0, and a sequence {xn} ⊂ C(I,E), with ‖xn(t) − x0‖ < r, t ∈ I,
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satisfying for each n ∈ N∥∥∥ t∫
t0

[ẋn(s)− f(s, xn(s))] ds
∥∥∥ < r

2n
for every t ∈ I ,

and xn /∈ Kf+ηB. By a standard argument one can prove that α[{xn(t)}] =
0 for every t ∈ I. Hence the sequence {xn} ⊂ C(I,E) is compact. Let {xnk

}
be a subsequence of {xn} converging to x, say. As x ∈ Kf , for k large enough
we have xnk

∈ Kf + ηB, a contradiction. This completes the proof.

Proposition 2.2. Let T , X be metric spaces. Let G : T × X → B
be a continuous multifunction. Let u0 ∈ E be such that u0 ∈ intG(t, x)
for every (t, x) ∈ T × B̃(x0, δ), where x0 ∈ X and δ > 0. Then there
exists a locally Lipschitzean selection g of G satisfying g(t, x) = u0 for every
(t, x) ∈ T × B̃(x0, δ).

P r o o f. Let (s, z) ∈ T ×X. Suppose that d(z, x0) = δ, where d is the
metric of X. Since u0 ∈ intG(s, z), and G is continuous, there exists a ball
B((s, z), δs,z) ⊂ T×X such that u0 ∈ G(t, x) for every (t, x) ∈ B((s, z), δs,z).

Suppose d(z, x0) > δ. In this case choose any us,z ∈ intG(s, z). Since
G is continuous there exists a ball B((s, z), δs,z) ⊂ T ×X not intersecting
T×B̃(x0, δ) such that us,z ∈ G(t, x) for every (t, x) ∈ B((s, z), δs,z). Denote
by U = {U} the family whose members are T × B(x0, δ) and each of the
sets B((s, z), δs,z) constructed above. U is an open covering of T ×X. For
U ∈ U , set

yU =
{
u0 if U = T ×B(x0, δ) ,
us,z if U = B((s, z), δs,z) .

Let {pU}U∈U be a partition of unity subordinate to U [6]. Without loss
of generality we suppose that the functions pU : T ×X → [0, 1] are locally
Lipschitzean. Now, define g : T ×X → E by

g(t, x) =
∑
U∈U

pU (t, x)yU .

It is straightforward to verify that g is a locally Lipschitzean selection of G
such that g(t, x) = u0 for every (t, x) ∈ T × B̃(x0, δ). This completes the
proof.

Let E∗ be the topological dual of E. Let {en} ⊂ E∗, ‖en‖ = 1, be
a sequence dense in the unit sphere of E∗ (recall that E is separable and
reflexive). Let 〈·,·〉 denote the pairing between E∗ and E. Let F : I ×
B(x0, r) → B satisfy (H1)–(H3). Following Choquet [6] and Castaing and
Valadier [5], define ϕF : I ×B(x0, r)× E→ [0,+∞] by

ϕF (t, x, v) =
{∑∞

n=1〈en, v〉2/2n if v ∈ F (t, x) ,
+∞ if v /∈ F (t, x) .
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Let A denote the class of all continuous affine functions a : E→ R. We
associate with ϕF the function ϕ̂F : I ×B(x0, r)×E→ [−∞,+∞[ given by
ϕ̂F (t, x, v) = inf{a(v) | a ∈ A and a(z) ≥ ϕF (t, x, z) for every z ∈ F (t, x)} .
Now, define the Choquet function dF : I ×B(x0, r)× E→ [−∞,+∞[ by

dF (t, x, v) = ϕ̂F (t, x, v)− ϕF (t, x, v) .

Some known properties of the Choquet function dF are collected in the
following proposition (see [5], [3]).

Proposition 2.3. Let F satisfy (H1)–(H3). Then we have:

(i) For each (t, x) ∈ I×B(x0, r) and v ∈ F (t, x) we have 0≤dF (t, x, v) ≤
M2. Moreover , dF (t, x, v) = 0 if and only if v ∈ extF (t, x).

(ii) For each (t, x) ∈ I ×B(x0, r) the function v → dF (t, x, v) is concave
on E and strictly concave on F (t, x).

(iii) dF is upper semicontinuous on I ×B(x0, r)× E.
(iv) For each solution x : I → E of (1.1), the function t →

dF (t, x(t), ẋ(t)) is nonnegative, bounded and Lebesgue measurable.
(v) If {xn} ⊂ MF converges uniformly to x ∈MF , then

lim sup
n→+∞

∫
I

dF (t, xn(t), ẋn(t)) dt ≤
∫
I

dF (t, x(t), ẋ(t)) dt .

3. Main result. Let F satisfy (H1)–(H3). For θ > 0, define

Mθ =
{
x ∈MF

∣∣∣ ∫
I

dF (t, x(t), ẋ(t)) dt < θ
}
.

Lemma 3.1. Let F satisfy (H1)–(H3). Then for every θ > 0 the set Mθ

is open in MF .

P r o o f. Let {xn} ⊂ MF \Mθ be any sequence converging to x ∈MF .
By virtue of Proposition 2.3(v), we have∫

I

dF (t, x(t), ẋ(t)) dt ≥ lim sup
n→+∞

∫
I

dF (t, xn(t), ẋn(t)) dt ≥ θ ,

and so x ∈MF \Mθ. Hence MF \Mθ is closed, completing the proof.

Lemma 3.2. Let F satisfy (H1)–(H3). Let f ∈ SαF . Let η > 0 and θ > 0.
Then there exists g ∈ SF such that

(3.1) Kg ∈Mθ ∩ (Kf + ηB) .

P r o o f. The construction of g is realized in three steps. In Step 1, g
is constructed locally on a set of the form Iδ × B(x0, r) for some interval
Iδ ⊂ I. In Step 2, g is extended to the whole set I×B(x0, r) and it is shown
that g ∈ SF . In Step 3, it is proved that for such g, (3.1) is satisfied.
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Let f ∈ SαF , η > 0 and θ > 0. Let % = %f (η) correspond to f and η
according to Proposition 2.1. Fix σ with

(3.2) 0 < σ < min{%, θ} .

Denote by {Lj} ∈ I(I) a partition of I associated with f (according to the
definition of a piecewise α-Lipschitzean function) and let Lj be the interval
of such partition containing t0.

S t e p 1 (Local construction of g). Since f(t0, x0) ∈ F (t0, x0), by the
Krein–Milman theorem there exist vk ∈ extF (t0, x0) and 0 < λk ≤ 1 (k =
1, . . . , p), with

∑p
k=1 λk = 1, such that∥∥∥f(t0, x0)−

p∑
k=1

λkvk

∥∥∥ < σ

4|I|
.

By Proposition 2.3(i), (iii), there exist uk ∈ intF (t0, x0) (k = 1, . . . , p) such
that dF (t0, x0, uk) < σ/|I|, and

(3.3)
∥∥∥f(t0, x0)−

p∑
k=1

λkuk

∥∥∥ < σ

4|I|
.

Since f and F are continuous at (t0, x0), and dF is upper semicontinuous
at (t0, x0, uk), there exists a δ0, with [t0, t0 + δ0[⊂ Lj , such that for every
(t, x) ∈ [t0, t0 + δ0[×B̃(x0, δ0) we have

(3.4) ‖f(t, x)− f(t0, x0)‖ ≤ σ/(4|I|) ,
(3.5) uk ∈ intF (t, x) , k = 1, . . . , p ,
(3.6) dF (t, x, uk) ≤ σ/|I| , k = 1, . . . , p .

Consider the interval Iδ = [t0, t0 + δ[, where

(3.7) 0 < δ < min{δ0/M, σ/(4M)}

(M ≥ 1 is the constant in (H2)). Let {Jk}pk=1 be the partition of Iδ given
by

Jk = [tk−1, tk[ , tk = t0 +
k∑
h=1

λhδ , k = 1, . . . , p .

By Proposition 2.2, there exists a function g : Iδ × B(x0, r) → E which is
a selection of F on Iδ × B(x0, r) and, moreover, for each k, 1 ≤ k ≤ p, the
restriction of g to Jk ×B(x0, r) is locally Lipschitzean and satisfies

(3.8) g(t, x) = uk for every (t, x) ∈ Jk ×B(x0, δ0) .

Let x : Iδ → E be the solution of the Cauchy problem

(3.9) ẋ = g(t, x) , x(t0) = x0 .
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We claim that

(3.10) dF (t, x(t), ẋ(t)) ≤ σ/|I| , t ∈ Iδ a.e.,

(3.11)
∥∥∥ t0+δ∫
t0

[ẋ(s)− f(s, x(s))] ds
∥∥∥ ≤ σδ

2|I|
.

In order to prove (3.10), observe that for each t ∈ Iδ we have ‖x(t)−x0‖ <
Mδ ≤ δ0, thus

(3.12) (t, x(t)) ∈ Iδ ×B(x0, δ0) for every t ∈ Iδ .
Then, by (3.12), (3.8) and (3.6), for almost all t ∈ int Iδ we have

dF (t, x(t), ẋ(t)) = dF (t, x(t), g(t, x(t))) = dF (t, x(t), uk) ≤ σ/|I| ,
and (3.10) is satisfied.

Let us prove (3.11). We have∥∥∥ t0+δ∫
t0

[ẋ(s)− f(s, x(s))] ds
∥∥∥ =

∥∥∥δ p∑
k=1

λkuk −
t0+δ∫
t0

f(s, x(s)) ds
∥∥∥

≤
∥∥∥δ p∑

k=1

λkuk − δf(t0, x0)
∥∥∥+

∥∥∥ t0+δ∫
t0

[f(s, x(s))− f(t0, x0)] ds
∥∥∥

≤ δ
∥∥∥ p∑
k=1

λkuk − f(t0, x0)
∥∥∥+

t0+δ∫
t0

‖f(s, x(s))− f(t0, x0)‖ ds .

From this, by virtue of (3.3), (3.12), and (3.4), we have∥∥∥ t0+δ∫
t0

[ẋ(s)− f(s, x(s))] ds
∥∥∥ < δ

σ

4|I|
+ δ

σ

4|I|
=

σδ

2|I|
,

and also (3.11) is satisfied.

S t e p 2 (Global construction of g). Denote by G the class of all functions
g : Dg ×B(x0, r)→ E, Dg = [t0, tg[ , t0 < tg ≤ T , such that:

(i) g is a selection of F on Dg ×B(x0, r),
(ii) g is a piecewise locally Lipschitzean function,
(iii) the solution x : Dg → E of the Cauchy problem (3.9) satisfies

(3.13) dF (t, x(t), ẋ(t)) ≤ σ/|I| , t ∈ Dg a.e.,

(iv) Dg admits a partition {Ii} ∈ I(Dg) of norm strictly less than
σ/(4M) such that, at each mesh point ti, we have

(3.14)
∥∥∥ ti∫
t0

[ẋ(s)− f(s, x(s))] ds
∥∥∥ ≤ σ(ti − t0)

2|I|
.
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G is nonempty, for the function g : Iδ × B(x0, r) → E constructed in
Step 1 satisfies (i)–(iv). Now, let us introduce in G a partial order. For
gk : Dgk

×B(x0, r)→ E (k = 1, 2), define g1 ≺ g2 if and only if tg1 ≤ tg2 and
the restriction of g2 to the set Dg1×B(x0, r) is equal to g1. Let {gj}j∈Γ be an
arbitrary chain in G. Let τ = sup{tgj | j ∈ Γ}. Define g : Dg×B(x0, r)→ E,
where Dg = [t0, τ [ , by g(t, x) = gj(t, x) if (t, x) ∈ Dgj × B(x0, r). Clearly
g ∈ G is an upper bound of the chain {gj}j∈Γ . By Zorn’s Lemma there
exists in G a maximal element, say g, where g : Dg × B(x0, r) → E and
Dg = [t0, tg[ . We claim that tg = T . Suppose tg < T . Let x : Dg → E be
the solution of the Cauchy problem (3.9). Let u be the limit of x(t) as t tends
to tg. As in Step 1 we construct a piecewise locally Lipschitzean selection
of F on ∆×B(x0, r), say h : ∆×B(x0, r)→ E (where ∆ = [tg, tg + δ[ and
0 < δ < σ/(4M)), such that the solution y : ∆→ E of the Cauchy problem
ẏ = h(t, y), y(tg) = u, satisfies (3.10) and (3.11) (with y, ∆, tg in place of
x, Iδ, t0). Now, defining γ : [t0, tg + δ[×B(x0, r)→ E by

γ(t, x) =
{
g(t, x) if (t, x) ∈ Dg ×B(x0, r) ,
h(t, x) if (t, x) ∈ ∆×B(x0, r) ,

one can easily see that γ ∈ G and g ≺ γ, g 6= γ, a contradiction. Thus
tg = T and the existence of a map g : I ×B(x0, r)→ E satisfying (i)–(iv) is
proved, completing Step 2.

S t e p 3 (The solution x of (3.9) satisfies x ∈ Mθ ∩ (Kf + ηB)). Let
g : I×B(x0, r)→ E satisfy (i)–(iv) (with I in place of Dg). By construction
g ∈ SF . Let x : I → E be the solution of (3.9). From (3.13) and (3.2), we
have ∫

I

dF (t, x(t), ẋ(t)) dt < θ ,

thus x ∈ Mθ. Now, let t ∈ I. With the notations of (iv) for some mesh
point ti of the partition {Ii} ∈ I(I), we have |t − ti| < θ/(4M). From this
inequality and (3.14) it follows that∥∥∥ t∫

t0

[ẋ(s)− f(s, x(s))] ds
∥∥∥

≤
∥∥∥ ti∫
t0

[ẋ(s)− f(s, x(s))] ds
∥∥∥+

∥∥∥ t∫
ti

[ẋ(s)− f(s, x(s))] ds
∥∥∥

≤ σ(ti − t0)
2|I|

+ |t− ti|2M <
σ

2
+
σ

2
= σ .

As the last inequality is satisfied for arbitrary t ∈ I and σ < % (by (3.2)),
Proposition 2.1 implies that x ∈ Kf + ηB. Hence x ∈Mθ ∩ (Kf + ηB) and
thus Kg ∈Mθ ∩ (Kf + ηB), for Kg = x. This completes the proof.
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Theorem 3.3. Let F satisfy (H1)–(H3). Let f ∈ SαF . Then for every
η > 0 we have

(3.15) MextF ∩ (Kf + ηB) 6= ∅ .
In particular , MextF is nonempty.

P r o o f. Fix f ∈ SαF , η > 0 and set θn = 1/n (n ∈ N). We denote
by B(u, r) and B̃(u, r) an open and a closed ball in the space MF . By
Lemma 3.2 there exists g1 ∈ SF such that Kg1 ∈MF ∩ (Kf +ηB) and thus,
for some 0 < η1 < θ1 we have

B̃(Kg1 , η1) ⊂MF ∩ (Kf + ηB) .

By Lemma 3.2 there exists g2 ∈ SF such that Kg2 ∈ Mθ1 ∩ B(Kg1 , η1).
Since, by Lemma 3.1, this set is open in MF , there exists 0 < η2 < θ2 such
that

B̃(Kg2 , η2) ⊂Mθ1 ∩B(Kg1 , η1) .

Continuing in this way gives a decreasing sequence of closed balls B̃(Kgn
, ηn)

⊂ MF , where gn ∈ SF and 0 < ηn < θn, with diameters tending to zero,
satisfying

B̃(Kgn+1 , ηn+1) ⊂Mθn
∩B(Kgn

, ηn) , n ∈ N .
AsMF is complete, by Cantor’s intersection theorem there is one (and only
one) point, say x, lying in all the balls B̃(Kgn

, ηn). Since x ∈ Mθn
, n ∈ N,

we have ∫
I

dF (t, x(t), ẋ(t)) dt = 0 .

Thus, by Proposition 2.3(i), ẋ(t) ∈ extF (t, x(t)) a.e., showing that x ∈
MextF . On the other hand, x ∈ B̃(Kg1 , η1) ⊂ Kf + ηB. Hence (3.15) is
proved. This completes the proof.
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