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The fixed points of holomorphic maps on a convex domain

by Do Duc Thai (Ha noi)

Abstract. We give a simple proof of the result that if D is a (not necessarily bounded)
hyperbolic convex domain in Cn then the set V of fixed points of a holomorphic map
f : D → D is a connected complex submanifold of D; if V is not empty, V is a holomorphic
retract of D. Moreover, we extend these results to the case of convex domains in a locally
convex Hausdorff vector space.

1. Introduction. In [15] J.-P. Vigué investigated the structure of the
fixed point set of a holomorphic map from a bounded convex domain in Cn
into itself. He proved the following. Let D be a bounded convex domain
in Cn. Then the set V of fixed points of a holomorphic map f : D → D
is a connected complex submanifold of D and, if V is not empty, V is a
holomorphic retract of D. His main tools were the results of Vesentini [13],
[14] and Lempert [10], [11] about complex geodesics. However, his proof was
rather long.

Our purpose in this article is to give a brief and simple proof of this
theorem in the general case of (not necessarily bounded) hyperbolic convex
domains in Cn. Moreover, we shall investigate the fixed point sets of holo-
morphic maps from a convex domain in a locally convex Hausdorff vector
space into itself.

We now recall some definitions and properties.

(i) We shall frequently make use of the Kobayashi pseudodistance dM
and the Carathéodory pseudodistance cM on a complex manifold M (see
Kobayashi [9]).

(ii) A complex manifold M is called taut [7] if whenever N is a complex
manifold and fi : N → M is a sequence of holomorphic maps, then either
there exists a subsequence which converges uniformly on compact subsets
to a holomorphic map f : N → M or a subsequence which is compactly
divergent. In order for M to be taut, it suffices that this condition holds for
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N = ∆, the unit disk in Cn [1]. Also, every complete hyperbolic complex
space is taut, and a taut complex manifold is hyperbolic [7].

(iii) Let D be a domain in a locally convex Hausdorff topological vector
space E. A holomorphic map ϕ : ∆→ D is called a complex geodesic [13] if
c∆(ζ1, ζ2) = cD(ϕ(ζ1), ϕ(ζ2)) for all ζ1, ζ2 ∈ ∆. Vesentini [13] proved that ϕ
is a complex geodesic iff there exist two distinct points ζ0, ζ1 ∈ ∆ such that
c∆(ζ0, ζ1) = cD(ϕ(ζ0), ϕ(ζ1)).

The theorems of the present paper in the infinite-dimensional case were
suggested by my friend Ngo Hoang Huy. I wish to thank him for his help.

2. The finite-dimensional case. In this section we always assume
that D is a (not necessarily bounded) hyperbolic convex domain in Cn and
f : D → D is a holomorphic map. Denote the fixed point set of f by
V = Fix(f).

2.1. Theorem. If V is not empty then V is a holomorphic retract of D,
i.e. there exists a holomorphic map ϕ : D → D such that ϕ(D) ⊂ V and
ϕ|V = Id.

P r o o f. The space Hol(D,Cn) of all holomorphic maps g : D → Cn,
endowed with the compact-open topology, is a locally convex Hausdorff
vector space. Consider its subset K = {g ∈ Hol(D,D) : g|V = Id} with the
induced topology. Clearly, K is a nonempty convex subset of Hol(D,D).
Since D is a hyperbolic convex domain, D is taut (see Barth [2]). Hence K
is compact in Hol(D,Cn).

Consider the continuous operator

T : Hol(D,D)→ Hol(D,D), g 7→ f ◦ g .
It is easy to see that T (K) ⊂ K. By the Schauder fixed point theorem (see
Edwards [4]), there exists ϕ ∈ K such that f ◦ ϕ = ϕ, i.e. ϕ(D) ⊂ V . Since
ϕ|V = Id, V is a holomorphic retract of D.

By a result of Rossi (see Fischer [5, p. 102]), we deduce the following

2.2. Corollary. The fixed point set V of f is a complex submanifold
of D.

2.3. Proposition. For any two distinct fixed points x and y of f , there
exists a complex geodesic ϕ which passes through x, y and satisfies ϕ(∆) ⊂
V = Fix(f).

P r o o f. Hol(∆,Cn), endowed with the compact-open topology, is a lo-
cally convex Hausdorff vector space. Assume that x, y ∈ V and x 6= y.
Choose η ∈ ∆ such that c∆(0, η) = cD(x, y). Consider the subset Γ = {g ∈
Hol(∆,D) : g(0) = x, g(η) = y} of Hol(∆,Cn) with the induced topology.
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By the results of Lempert [10], [11] and Royden–Wong [12], we have
cD(x, y) = dD(x, y) = δD(x, y) = inf{c∆(0, ζ) : ∃ϕ : ∆ → D holomor-
phic with ϕ(0) = x, ϕ(ζ) = y}. Thus there exists a sequence {ϕn} ⊂
Hol(∆,D) and a sequence {ζn} ⊂ ∆ such that ϕn(0) = x, ϕn(ζn) = y and
limn→∞ c∆(0, ζn) = cD(x, y) < ∞. We can assume that {ζn} converges to
a point ζ0 ∈ ∆. Since D is taut [2], we may assume that {ϕn} converges
in Hol(∆,D) to a map ϕ0 ∈ Hol(∆,D). Clearly ϕ0(0) = x, ϕ0(ζ0) = y and
c∆(0, ζ0) = cD(x, y).

Take an automorphism T of ∆ such that T (0) = 0, T (η) = ζ0. Then
ϕ0 ◦ T ∈ Γ . Thus Γ is a nonempty convex subset of Hol(∆,D). On the
other hand, since D is taut, Γ is compact in Hol(∆,Cn).

Consider the continuous operator

T : Hol(∆,D)→ Hol(∆,D), g 7→ f ◦ g .

It is easy to see that T (Γ ) ⊂ Γ . By the Schauder fixed point theorem, there
is ϕ ∈ Γ such that f ◦ ϕ = ϕ, i.e. ϕ(∆) ⊂ V .

Corollary 2.2 and Proposition 2.3 yield the following

2.4. Theorem. The fixed point set V of f is a connected complex sub-
manifold of D.

2.5. Proposition. Assume that V is a one-dimensional connected com-
plex submanifold of D. Then the following are equivalent :

(i) V is the fixed point set of some holomorphic map f : D → D.
(ii) V is the image of some complex geodesic ϕ : ∆→ D.
(iii) V is a holomorphic retract of D.

P r o o f. (i)⇒(ii). Assume that V = Fix(f), where f : D → D is a
holomorphic map. Take two distinct x, y ∈ V . By Proposition 2.3, there
exists a complex geodesic which passes through x, y and satisfies ϕ(∆) ⊂ V .
Then ϕ(∆) = V , because ϕ(∆) is open and closed in V .

(ii)⇒(iii). Assume that ϕ : ∆ → D is a complex geodesic and V =
ϕ(∆). Take two distinct points z1, z2 ∈ ∆. We have cD(ϕ(z1), ϕ(z2)) =
sup{c∆(0, g(ϕ(z2))) : g ∈ Hol(D,∆) with g(ϕ(z1)) = 0}. By the normality
of Hol(D,∆), there exists g ∈ Hol(D,∆) such that

cD(ϕ(z1), ϕ(z2)) = c∆(g(ϕ(z1)), g(ϕ(z2))) .

Hence c∆(z1, z2) = c∆(g ◦ ϕ(z1), g ◦ ϕ(z2)). Thus g ◦ ϕ is an automorphism
of ∆ having two distinct fixed points z1, z2. By the Schwarz lemma, g ◦ϕ =
Id. Therefore ϕ ◦ g : D → ϕ(∆) is a retraction on ϕ(∆) = V .

(iii)⇒(i). The proof follows immediately from the definition of a holo-
morphic retract of D.
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From Proposition 2.5 we have the following

2.6. Corollary. Let f be a holomorphic map of a hyperbolic convex
domain D in C2 into itself having a fixed point in D. Then one of the
following cases necessarily occurs:

(i) f has a unique fixed point.
(ii) The fixed point set of f is the image of a complex geodesic ϕ :

∆→ D.
(iii) f is the identity map.

3. The infinite-dimensional case. Assume that D is a domain in a
locally convex Hausdorff vector space E.

The Kobayashi pseudodistance dD on D is defined as in [6]. If dD is
a distance and if the topology defined by dD is equivalent to the relative
topology of D in E, the domain D is said to be hyperbolic (see [6]).

In this section we always assume that D is a convex domain in a locally
convex Hausdorff vector space E such that D is contained in a hyperbolic
domain D′ of E and f : D → D is a holomorphic map such that the
image f(D) of f is contained in some compact convex subset K of E.

3.1. Theorem. If the fixed point set V of f is not empty then V is a
holomorphic retract of D.

P r o o f. The space Hol(D,E), endowed with the compact-open topology,
is a locally convex Hausdorff vector space. Consider its subset N = {g ∈
Hol(D,D) : g|V = Id and g(D) ⊂ K} with the induced topology. Then N
is a nonempty convex subset of Hol(D,E).

Now we prove that N is compact in Hol(D,E). Suppose that a sequence
{gn} ⊂ N converges in Hol(D,E) to a map g ∈ Hol(D,E). Clearly g|V =
Id and g(D) ⊂ K. We must prove that g(D) ⊂ D. Indeed, we have D =⋂
γ∈∂D{x∗γ < aγ}, where x∗γ are (real) linear functionals on E. Therefore

x∗γ◦g is plurisubharmonic onD, x∗γ◦g(z) ≤ aγ for all z ∈ D and x∗γ◦g(z) < aγ
for all z ∈ V . By the maximum principle, x∗γ ◦ g(z) < aγ for all z ∈ D, i.e.
g(D) ⊂ D. Thus N is a closed subset in Hol(D,E).

Now we prove that Hol(D,D) is an even family [8]. Indeed, let x ∈ D,
y ∈ E be any points and let U be a neighbourhood of y in E. Without loss
of generality we can assume that y ∈ D ⊂ D′.

Take r > 0 such that Br = {q ∈ D′ : dD′(y, q) < r} ⊂ U . Since D is
hyperbolic, V = {p ∈ D : dD(x, p) < r/2} is an open neighbourhood of x
in D. Analogously, the ball W = Br/2 = {q ∈ D′ : dD′(y, q) < r/2} is an
open neighbourhood of y in E. It is easy to see that f̃(V ) ⊂ U whenever
f̃(x) ∈W (for all f̃ ∈ Hol(D,D)).
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By Arzelà–Ascoli’s theorem (see [8, Theorems 7.6 and 7.21]), N is com-
pact in Hol(D,E).

Consider the continuous operator

T : Hol(D,D)→ Hol(D,D), g 7→ f ◦ g .
Obviously T (N) ⊂ N . By the Schauder fixed point theorem, there is ϕ ∈ N
such that f ◦ ϕ = ϕ. As in Theorem 2.1, we have ϕ(D) ⊂ V and ϕ|V = Id.
Thus V is a holomorphic retract of D.

3.2. Theorem. For any two distinct fixed points x and y of f , there
exists a complex geodesic ϕ : ∆→ D which passes through x, y and satisfies
ϕ(∆) ⊂ Fix(f).

P r o o f. Consider the space Hol(∆,E) with the compact-open topology.
By our assumption, D is a hyperbolic convex domain and hence cD(x, y)

= dD(x, y) = δD(x, y) = inf{c∆(0, ζ) : ∃ϕ : ∆ → D holomorphic with
ϕ(0) = x, ϕ(ζ) = y} (see [3]). Thus there exist a sequence {ϕn} ⊂
Hol(∆,D) and a sequence {ζn} ⊂ ∆ such that ϕn(0) = x, ϕn(ζn) = y
and limn→∞ c∆(0, ζn) = cD(x, y) <∞. We can assume that {ζn} converges
to a point ζ0 ∈ ∆ and |ζi| ≤ r < 1 for all i ≥ 0. Put ψn = f ◦ ϕn for all
n ≥ 1.

Consider the subset A = {θ ∈ Hol(∆,D) : θ(0) = x, θ(ζ) = y for some
|ζ| ≤ r and θ(∆) ⊂ K} of Hol(∆,E) with the induced topology. Reasoning
as in Theorem 3.1, we find that A is closed in Hol(∆,E) and Hol(∆,D) is
an even family. By Arzelà–Ascoli’s theorem, A is compact.

Since {ψn} ⊂ A, we can assume that {ψn} converges in Hol(∆,D) to
a map ψ0 ∈ Hol(∆,D). We have ψ0(0) = x, ψ0(ζ0) = y and c∆(0, ζ0) =
cD(x, y), i.e. ψ0 is a complex geodesic passing through x and y.

Consider the subset N = {ϕ ∈ Hol(∆,D) : ϕ(0) = x, ϕ(ζ0) = y and
ϕ(∆) ⊂ K} of Hol(∆,E) with the induced topology. Just as in Theorem 3.1,
N is closed in Hol(∆,E) and hence it is a nonempty compact convex subset
of Hol(∆,E).

Consider the continuous operator

T : Hol(∆,D)→ Hol(∆,D), g 7→ f ◦ g .
Again as in Theorem 3.1, there is ϕ ∈ N such that f ◦ ϕ = ϕ, i.e. ϕ(∆) ⊂
Fix(f).

Theorems 3.1 and 3.2 yield the following

3.3. Corollary. Let D be a bounded convex domain in a Banach com-
plex space E. Assume that f : D → D is a holomorphic map whose image
f(D) is contained in some compact convex subset K of E. Then

(i) Fix(f) is a holomorphic retract of D if Fix(f) 6= ∅.
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(ii) For any two distinct fixed points x, y of f , there exists a complex
geodesic ϕ : ∆→ D passing through x, y and satisfying ϕ(∆) ⊂ Fix(f).
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Reçu par la Rédaction le 9.5.1990
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