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On the solvability of nonlinear
elliptic equations in Sobolev spaces

by Piotr Fija Lkowski ( Lódź)

Abstract. We consider the existence of solutions of the system

(∗) P (D)ul = F (x, (∂αu)), l = 1, . . . , k, x ∈ Rn

(u = (u1, . . . , uk)) in Sobolev spaces, where P is a positive elliptic polynomial and F is
nonlinear.

1. Introduction. We study the existence of solutions of the system
(∗) in Sobolev spaces. We make such assumptions that the right sides of
the considered equations are locally integrable for u belonging to a space of
solutions. In this way, we can understand these equations in the sense of
distributions.

The other assumptions concerning the right sides of equations (∗) give
a priori bounds of solutions. We consider, for example, assumptions of the
Bernstein type. Assumptions of this kind can be found in the papers [1], [4]
concerning equations on a bounded interval, in [8] concerning equations on
the half-line and in [3] concerning equations on the line.

We shall denote by 〈·, ·〉 the scalar product and by | · | the euclidean norm
in Rl for any positive integer l.

The Fourier transform of f ∈ L1(Rn) is defined by

(Ff)(ξ) :=
∫
e−i〈x,ξ〉f(x) dx,

where
∫

=
∫

Rn . We define the Fourier transformation in the space of tem-
pered distributions in the standard way.

By Hs = Hs(Rn), for real s ≥ 0, we denote the real Sobolev space of
real tempered distributions u such that

‖u‖2s := (2π)−n
∫
|(Fu)(ξ)|2(1 + |ξ|2)s dξ <∞.
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(We have H0 = L2 = L2(Rn).) We denote the local Sobolev space by
Hsloc = Hsloc(Rn) and treat it as a Fréchet space in the standard way (see
for example [5]).

We denote the space of C∞-functions on Rn with compact support by
C∞0 and the space of Schwartz distributions on Rn by D′.

By α = (α1, . . . , αn) we denote a multi-index, |α| :=
∑n
i=1 αi. We set

∂j := ∂/∂xj and Dj := −i∂j .

2. Existence theorem for a single equation. We prove the following

Theorem 1. Let P be a polynomial of n variables and degree T such
that the polynomial P (−i∂) of the variable ∂ has real coefficients. Assume
that

(1) 1 + |ξ|T ≤ C|P (ξ)|, ξ ∈ Rn,

for some constant C.
Let t ∈ [0, T [ and

m :=
∑

0≤l≤t

nl, m′ :=
∑

0≤l<t−n/2

nl,

where l is an integer variable. (We set
∑
l∈∅ n

l := 0.)
Suppose that F : Rn × Rm → R satisfies the Carathéodory condition:

F (x, ·) is continuous for almost all x ∈ Rn and F (·, (vα)|α|≤t) is measurable
for all (vα)|α|≤t ∈ Rm.

For any compact set K ⊂ Rn × Rm′
, let there exist a function hK ∈

L2(Rn) and a constant CK such that

(2) |F (x, (vα)|α|≤t)| ≤ hK(x) + CK |(vα)t−n/2≤|α|≤t|

for all (x, (vα)|α|<t−n/2) ∈ K almost everywhere with respect to x (a.e. x).
(We omit the last term in (2) if m = m′.)

Suppose that there exist a sequence of open bounded sets U1 ⊂ U2 ⊂ . . . ,⋃
Uj = Rn, and a constant M such that any equation

(3) P (D)u = λFj(x, (∂αu)|α|≤t), j = 1, 2, . . . , λ ∈ [0, 1],

Fj(x, (vα)|α|≤t) :=
{
F (x, (vα)|α|≤t) for x ∈ Uj ,
0 for u 6∈ Uj ,

has no solution in the set {u ∈ Ht : ‖u‖t > M}.
Under these assumptions, the equation

(4) P (D)u = F (x, (∂αu)|α|≤t)

has a solution u in Ht for which ‖u‖t ≤M .
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The proof of Theorem 1 is based on several lemmas.

Lemma 1. If u ∈ Hs, then any ∂αu, for |α| < s − n/2, is a continuous
bounded function and there exists a constant C such that

(5) sup
x∈Rn

sup
|α|<s−n/2

|∂αu(x)| ≤ C‖u‖s.

P r o o f. See [5], Corollary 7.9.4. One can obtain inequality (5) by stan-
dard calculus.

Lemma 2. The Nemytskĭı operator u 7→ Fj(·, (∂αu(·))|α|≤t) transforms
Htloc into L2 continuously.

P r o o f. If u ∈ Htloc, then Fj(·, (∂αu(·))|α|≤t) is measurable by the
Carathéodory condition (see [2], appendix, or [6], §17). The set

K := U j × ×
|α|<t−n/2

∂αu(U j)

is compact because of the continuity of ∂αu for |α| < s−n/2 due to Lemma 1.
We have Fj(·, (∂αu(·))|α|≤t) ∈ L2 by (2) for K defined above. The required
continuity is now proved as in [2], appendix, where the case s = 0 is consid-
ered.

Observe that, in Ht, equation (3) is equivalent to

(6) u = λAju,

where

(7) Aju := F−1

(
1
P
FFj(·, (∂αu(·))|α|≤t)

)
.

Definition 1. A continuous operator between locally convex spaces is
called completely continuous if it sends bounded sets into precompact ones.

The following lemma is very important for the proof of Theorem 1.

Lemma 3. The embedding Hsloc → Hs
′

loc for s > s′ ≥ 0 is completely
continuous.

The proof is in [5], Theorem 10.1.27.

Lemma 4. The operator Aj defined by (7) is completely continuous from
HT into HT .

P r o o f. Observe that, for u ∈ Htloc,

(8) (1 + |ξ|T )F(Aju)(ξ) = b(ξ)FFj(·, (∂αu(·))|α|≤t)(ξ)

where b(ξ) := (P (ξ))−1(1 + |ξ|T ) is bounded by (1).
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Consequently, Aju ∈ HT + iHT . We have Aju ∈ HT because the poly-
nomial P (−i∂) of the variable ∂ has real coefficients.

It follows easily from Lemma 2 and (8) that Aj transforms Htloc into HT
continuously. But the embedding HT → Htloc is completely continuous by
Lemma 3, which proves the lemma.

Lemma 5. There exists a constant Mj such that ‖ujλ‖T ≤ Mj for any
solution ujλ of equation (6) for λ ∈ [0, 1].

P r o o f. From the assumption, we have ‖ujλ‖t ≤ M , hence from (5)
and (2)

‖Fj(·, (∂αujλ(·))|α|≤t)‖0 ≤M ′j
for some constant M ′j . Using (8), we obtain the result.

Lemma 6. Equation (6) has a solution in HT for λ = 1 and any j.

P r o o f. Write (6) in the form

(I − λAj)u = 0

where I stands for the identity mapping. We treat I − λAj as a mapping
from the ball B(0,Mj+1) ⊂ HT intoHT and use the Leray–Schauder degree
theory (see for instance [7]), since Aj is completely continuous by Lemma 4.
From Lemma 5, we know that (I−λAj)u 6= 0 for ‖u‖T = Mj + 1, so for the
Leray–Schauder degree we obtain

deg(I −Aj , B(0,Mj + 1), 0) = deg(I,B(0,Mj + 1), 0) = 1 6= 0.

Therefore, equation (6) has a solution in HT for λ = 1.

Lemma 7. The set {uj} of solutions of equations (3), for λ = 1, in the
space HT is bounded in the space Hsloc, where s := min{t+ 1, T}.

P r o o f. Let φ ∈ C∞0 . We have to estimate ‖φuj‖s by a constant depend-
ing on φ only. From (1) and the Leibniz–Hörmander formula ([5], (1.1.10)),
we obtain

‖φuj‖s =
(

(2π)−n
∫

(1 + |ξ|2)s|F(φuj)(ξ)|2 dξ
)1/2

=
(

(2π)−n
∫

(1 + |ξ|2)s−T (1 + |ξ|2)T |F(φuj)(ξ)|2 dξ
)1/2

≤ C1

( ∫
(1 + |ξ|2)s−T |P (ξ)|2|F(φuj)(ξ)|2 dξ

)1/2

≤ C1

( ∫
(1 + |ξ|2)s−T |FP (D)(φuj)(ξ)|2 dξ

)1/2

≤ C1

( ∫
(1 + |ξ|2)s−T

∣∣∣F(∑
α∈Nn

∂αφ(∂αP )(D)uj/α!
)

(ξ)
∣∣∣2 dξ)1/2
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≤ C1

( ∫
(1 + |ξ|2)s−T |F(φP (D)uj)(ξ)|2 dξ

)1/2

+ C1

∑
α6=(0,...,0)

( ∫
(1 + |ξ|2)s−T |F(∂αφ(∂αP )(D)uj/α!)(ξ)|2 dξ

)1/2

for some constant C1. We will estimate the integrals in the last expression:∫
(1 + |ξ|2)s−T |F(φP (D)uj)(ξ)|2 dξ ≤

∫
|F(φP (D)uj)(ξ)|2 dξ

≤ (2π)n
∫
|φ(x)P (D)uj(x)|2 dx

= (2π)n
∫
|φ(x)Fj(x, (∂αuj(x))|α|≤t)|2 dx ≤ C2

for some constant C2 depending on φ. In the last step we have used the
estimate ‖uj‖t ≤M and (2) for the set

K := (suppφ)× ×
|α|<t−n/2

[−M,M ].

Note that the map Hs−T 3 w 7→ ψw ∈ Hs−T is continuous for fixed
ψ ∈ C∞0 (see [5], Theorem 10.1.15). This implies that, for α 6= (0, . . . , 0),∫

(1 + |ξ|2)s−T |F(∂αφ(∂αP )(D)uj/α!)(ξ)|2 dξ

≤ Cα
∫

(1 + |ξ|2)s−T |F(∂αP )(D)uj(ξ)|2 dξ

= Cα
∫

(1 + |ξ|2)s−T |(∂αP )(ξ)Fuj(ξ)|2 dξ

= C ′α
∫

(1 + |ξ|2)s−T |Fuj(ξ)|2 dξ ≤ C ′α‖uj‖t ≤ C ′αM

for some constants Cα, C ′α depending on φ. Hence

‖φuj‖s ≤ C
for some C depending on φ.

Let (uj) be a sequence of HT -solutions of equations (3) for λ = 1. The
set {uj} is bounded in Hmin{t+1,T}

loc by Lemma 7. Using Lemma 3, take a
subsequence of (uj) (denoted once more by (uj) for simplicity of notation)
which is convergent to some u in the topology of Htloc. We have u ∈ Ht and
‖u‖t ≤M , since ‖uj‖t ≤M .

We shall demonstrate that u is a solution of equation (4). Notice that

Fj(·, (∂αuj(·))|α|≤t)→ F (·, (∂αu(·))|α|≤t)
in D′. Indeed, let φ ∈ C∞0 . For large j, we have∫

φ(x)Fj(x, (∂αuj(x))|α|≤t) dx =
∫

suppφ

φ(x)F (x, (∂αuj(x))|α|≤t) dx

→
∫
φ(x)F (x, (∂αu(x))|α|≤t) dx.

In the last step, we have used Lemma 2.
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The convergence uj → u in Htloc implies the convergence uj → u in D′,
so also the convergence P (D)uj → P (D)u in D′. Hence u is a solution
of (4).

Example 1. We now define a class of equations for which Theorem 1 is
valid.

Assume that P is a real polynomial of degree T = 2t, positive for ξ ∈ Rn
and such that the polynomial P (−i∂) of the variable ∂ has real coefficients
and (1) is valid.

Let F : Rn ×Rm → R satisfy the Carathéodory condition as above. Let
F satisfy (2).

Assume that there exist constants 0 < a < 2, L > 0 and nonnegative
functions f ∈ L2/a, g ∈ L2/(2−a) such that

(10) v(0,...,0)F (x, (vα)|α|≤t) ≤ 0 if |v(0,...,0)| ≥ g(x) a.e. x,
(11) |F (x, (vα)|α|≤t)| ≤ f(x) + L|(vα)|α|≤t|a if |v(0,...,0)| ≤ g(x) a.e. x.

We show that our assumptions give an a priori bound for solutions of
equations (3) where, for example,

Fj(x, (vα)|α|≤t) =
{
F (x, (vα)|α|≤t) for |x| < j,
0 for |x| ≥ j.

Let u = ujλ ∈ Ht be a solution of (3). Compute

‖u‖2t =
∫

(1 + |ξ|2)t|Fu(ξ)|2 dξ ≤ C
∫
P (ξ)Fu(ξ)Fu(ξ) dξ

= C
∫
Fu(ξ)F(P (D)u)(ξ) dξ = (2π)nC

∫
u(x)P (D)u(x) dx

= (2π)nC
∫
u(x)P (D)u(x) dx

= (2π)nCλ
∫
u(x)Fj(x, (∂αu(x))|α|≤t) dx

≤ (2π)nC
∫
u(x)Fj(x, (∂αu(x))|α|≤t) dx

≤ (2π)nC
∫

{x :|u(x)|≤g(x)}

u(x)Fj(x, (∂αu(x))|α|≤t) dx

≤ (2π)nC
∫

{x :|u(x)|≤g(x)}

|u(x)| |Fj(x, (∂αu(x))|α|≤t)| dx

≤ (2π)nC
∫
g(x)(f(x) + L|(∂αu(x))|α|≤t|a) dx

≤ (2π)nC
( ∫

|g(x)|2/(2−a) dx
)(2−a)/2( ∫

|f(x)|2/a dx
)a/2

+ (2π)nCL
( ∫

|g(x)|2/(2−a) dx
)(2−a)/2

‖u‖at ≤ C1(1 + ‖u‖at )

for some constant C1. In the last steps we have used assumptions (10), (11)
and the Hölder inequality.
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Now, it is easy to see that ‖u‖t ≤M for some M .

3. Existence theorem for a system of equations. We formulate a
similar theorem for a system of equations.

Theorem 2. Let Pr, r = 1, . . . , k, be polynomials of n variables and
degrees Tr such that the polynomials Pr(−i∂) of the variable ∂ have real
coefficients. Assume that

(13) 1 + |ξ|Tr ≤ CrPr(ξ), ξ ∈ Rn,

for some constants Cr, r = 1, . . . , k. Let tr ∈ [0, Tr[ and

m :=
k∑
r=1

∑
0≤l≤tr

nl, m′ =
k∑
r=1

∑
0≤l<tr−n/2

nl.

Suppose that F : Rn × Rm → Rk satisfies the Carathéodory condition and ,
for any compact set K ⊂ Rn×Rm, there exist a function hK ∈ L2(Rn) and
a constant CK that

(14) |F (x, (vrα)|α|≤tr,r=1,...,k)| ≤ hK(x) + CK |(vrα)tr−n/2≤|α|≤tr, r=1,...,k|

for (x, (vrα)|α|<tr−n/2, r=1,...,k) ∈ K a.e. x. (We omit the last term in (14)
if m = m′.) Suppose that there exist a sequence of open bounded sets U1 ⊂
U2 ⊂ . . . ,

⋃
Uj = Rn, and a constant M > 0 such that the system of

equations

(15) Pl(D)ul = λF lj(x, (∂
αur)|α|≤tr, r=1,...,k), l = 1, . . . , k

(F = F 1, . . . , F k)), has no solution in the set{
u = (u1, . . . , uk) ∈

k×
r=1

Htr :
k∑
r=1

‖ur‖2tr > M2
}

for j = 1, 2, . . . , λ = [0, 1]. The functions F lj used above are defined by

F lj(x, (v
r
α)|α|≤tr, r=1,...,k) :=

{
F l(x, (vrα)|α|≤tr, r=1,...,k) for x ∈ Uj ,
0 for x 6∈ Uj .

Under these assumptions, the system of equations

Pl(D)ul = F l(x, (∂αur)|α|≤tr,r=1,...,k), l = 1, . . . , k,

has a solution u in×k

r=1
Htr for which

k∑
r=1

‖ur‖2tr ≤M
2.

We omit the proof, similar to the proof of Theorem 1.
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Example 2 (cf. Example 1). We define a class of systems for which
Theorem 2 is valid.

Assume that Pr, r = 1, . . . , k, are real polynomials of degrees Tr = 2tr,
positive for ξ ∈ Rn and such that the polynomials Pr(−i∂) of the variable
∂ have real coefficients and (13) is valid. Let F : Rn × Rm → R satisfy
the Carathéodory condition and (14). Assume that there exist constants
0 < a < 2, L > 0 and nonnegative functions f ∈ L2/a, g ∈ L2/(2−a) such
that

〈v(0,...,0), F (x, (vrα)|α|≤tr, r=1,...,k)〉 ≤ 0 if |v(0,...,0)| ≥ g(x) a.e. x

(F = (F 1, . . . , F k)), and

|F (x, (vrα)|α|≤tr,r=1,...,k)| ≤ f(x) + L|(vrα)|α|≤tr, r=1,...,k|a

if |v(0,...,0)| ≤ g(x) a.e. x.

These assumptions give (13) and an a priori bound for solutions of the
system (15) in the space ×k

r=1
Htr . The proof is similar to the one in

Example 1 so it can be omitted.
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