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On the solvability of nonlinear
elliptic equations in Sobolev spaces

by P1oTR FrsaLkowskr (Lédz)

Abstract. We consider the existence of solutions of the system

(%) P(DW! = F(z,(0%)), l=1,...,k, z€R"
(u = (u',...,u*)) in Sobolev spaces, where P is a positive elliptic polynomial and F is
nonlinear.

1. Introduction. We study the existence of solutions of the system
() in Sobolev spaces. We make such assumptions that the right sides of
the considered equations are locally integrable for u belonging to a space of
solutions. In this way, we can understand these equations in the sense of
distributions.

The other assumptions concerning the right sides of equations (x) give
a priori bounds of solutions. We consider, for example, assumptions of the
Bernstein type. Assumptions of this kind can be found in the papers [1], [4]
concerning equations on a bounded interval, in [8] concerning equations on
the half-line and in [3] concerning equations on the line.

We shall denote by (-, -) the scalar product and by |-| the euclidean norm
in R! for any positive integer .

The Fourier transform of f € L'(R") is defined by

(FHE) = [ e f(x) da,

where [ = fR”' We define the Fourier transformation in the space of tem-
pered distributions in the standard way.

By H® = H*(R"™), for real s > 0, we denote the real Sobolev space of
real tempered distributions u such that

lulZ == 2m) ™" [ [(Fu)©P (1 + [€]*)° dé < oo.
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(We have H® = L? = L?(R™).) We denote the local Sobolev space by
Hi . = H;i,.(R™) and treat it as a Fréchet space in the standard way (see
for example [5]).

We denote the space of C°°-functions on R" with compact support by
C§° and the space of Schwartz distributions on R™ by D’.

By a = (a1, ..., a,) we denote a multi-index, |a| := Y | a;. We set
6]' = 8/6.%] and Dj = —iaj.

2. Existence theorem for a single equation. We prove the following

THEOREM 1. Let P be a polynomial of n variables and degree T such
that the polynomial P(—i0) of the variable O has real coefficients. Assume
that

(1) 1+ " <CIP(g)], ¢eR™,

for some constant C.
Let t € [0,T] and

0<i<t 0<i<t—n/2

where | is an integer variable. (We set Y, .pn' :=0.)

Suppose that F' : R" x R™ — R satisfies the Carathéodory condition:
F(x,-) is continuous for almost all x € R™ and F(-, (va)|a|<¢) i measurable
for all (va)|a)<t € R™.

For any compact set K C R"™ x Rm/, let there exist a function hyx €
L2(R™) and a constant C such that

(2) |F'(, (Uoc)|a|§t)’ < hg(x)+ CK’(’Uoc)tfn/2§\a|§t‘
for all (z, (va)|a|<t—ns2) € K almost everywhere with respect to x (a.e. x).
(We omit the last term in (2) if m =m'.)

Suppose that there exist a sequence of open bounded sets Uy C Uy C ...,
UU; =R", and a constant M such that any equation

(3) P(D)u = AFj(z,(0°Wa<t),  j=1,2,..., A€ [0,1],
Fj((ll, (vo‘)|04|St) = {g(x, (’Ua>|04\§t) ;Z:,i;gj:

has no solution in the set {u € H' : ||jul|; > M}.
Under these assumptions, the equation

(4) P(D)u = F(z,(0%)|a|<t)

has a solution u in H' for which ||ull; < M.
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The proof of Theorem 1 is based on several lemmas.

LEMMA 1. If u € H®, then any 0%u, for |a| < s —n/2, is a continuous
bounded function and there exists a constant C such that
(5) sup  sup  [0%u(z)| < Clluls.
z€R" |a|<s—n/2
Proof. See [5], Corollary 7.9.4. One can obtain inequality (5) by stan-
dard calculus.

LEMMA 2. The Nemytskii operator u — Fj(-,(0%u(-))|a|<¢) transforms
into L? continuously.

HfOC
Proof. If u € H{ ., then Fj(-,(0%u(-))a<¢) is measurable by the

Carathéodory condition (see [2], appendix, or [6], §17). The set

K:=U;x X 0uUy)
la)<t—m/2
is compact because of the continuity of 0“u for |a| < s—n/2 due to Lemma 1.
We have Fj(-, (0%u(-))|aj<t) € L? by (2) for K defined above. The required
continuity is now proved as in [2], appendix, where the case s = 0 is consid-
ered.

Observe that, in ‘H!, equation (3) is equivalent to

(6) u = AAju,
where
(7) Aju = F! (Ilngj('a (aau('))alét)> :

DEFINITION 1. A continuous operator between locally convex spaces is
called completely continuous if it sends bounded sets into precompact ones.

The following lemma is very important for the proof of Theorem 1.

LEMMA 3. The embedding H;, . — Hf;c for s > s > 0 is completely
continuous.

The proof is in [5], Theorem 10.1.27.

LEMMA 4. The operator A; defined by (7) is completely continuous from
HT into HT.

Proof. Observe that, for u € Hj,.,
(8) (1+ €M) F(Aju)(€) = bEFE (-, (0%u(-))jal<t) (€)
where b(¢) := (P(€))~1(1 + |¢|T) is bounded by (1).
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Consequently, A;u € HT +iH”. We have Aju € HT because the poly-
nomial P(—i0) of the variable J has real coefficients.

It follows easily from Lemma 2 and (8) that A; transforms MY, into HT
continuously. But the embedding H? — Hi. . is completely continuous by
Lemma 3, which proves the lemma.

LEMMA 5. There exists a constant M; such that ||u;x||r < M; for any
solution u;x of equation (6) for A € [0, 1].

Proof. From the assumption, we have |lu;jx[; < M, hence from (5)
and (2)

E5 0w Djaro)lo < M
for some constant M. Using (8), we obtain the result.
LEMMA 6. Equation (6) has a solution in HT for A =1 and any j.
Proof. Write (6) in the form
(I—=XAj))u=0

where I stands for the identity mapping. We treat I — AA; as a mapping
from the ball B(0, M;+1) C H” into H” and use the Leray—Schauder degree
theory (see for instance [7]), since A; is completely continuous by Lemma 4.
From Lemma 5, we know that (I —AA;)u # 0 for |lul|z = M;+ 1, so for the
Leray—Schauder degree we obtain
deg(I — A;,B(0,M; +1),0) = deg({, B(0,M; +1),0) =1 #0.

Therefore, equation (6) has a solution in HT for A = 1.

LEMMA 7. The set {u;} of solutions of equations (3), for A\ =1, in the
space HT' is bounded in the space Hi. ., where s := min{t + 1,T’}.

Proof. Let ¢ € C§°. We have to estimate |¢u,||s by a constant depend-
ing on ¢ only. From (1) and the Leibniz—Hérmander formula ([5], (1.1.10)),
we obtain

louslle = (@0 [ (Lt JeP) | o) @) d)

= (@m)™ [ A+ 1R T+ 16”1 F () (€)1 de)
<o [ iy TIPOPIF )@ )
<o [ (Lt 1Py TIFPD)u) ) d)
<o [ avigyrE (X oo P Dpusat) )| ae)

aeN”?

1/2
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<a(f (1+IE\Q)S‘T\f(qﬁP(D)uj)(g)y?dg)m
+o Y (f(1—1-|f\2)s_T|}'((9a¢(8aP)(D)uj/oz!)(5)|2d£>1/2

a#(0,...,0
for some coni(tant )Cl. We will estimate the integrals in the last expression:
J @ +[EP) T IF(@P(D)uy) () dé < f !f(¢P(D)Uj)(£)I2 dg
<@m" [ | Yuj(z)[? dx
2m)" [ (@) Fy(, (0%u;(2)jaj<i)|” do < Cy

for some constant Co depending on ¢. In the last step we have used the
estimate ||u;||; < M and (2) for the set

Ki=(suppd) x X [-M,M].
laj<t—n/2

Note that the map H*™7 3 w — yw € H*~7T is continuous for fixed
1 € C§° (see [5], Theorem 10.1.15). This implies that, for o # (0, ...,0),

[ Q+IEP) T IF @60 P)(D)uy /al) ()] d€
< Co [ (L+[EP) " IF (@ P)(D)uy (€)1 dé
=Ca [ (L+[EP) T 1(0*P)(€)Fuy (&) d¢
=Ci, [ (L 16P) T 1Fu; (€)1 dé < Chlluyle < CLM
for some constants C,, C!, depending on ¢. Hence
ldulls < C
for some C' depending on ¢.
Let (u;) be a sequence of H7-solutions of equations (3) for A = 1. The

set {u;} is bounded in Hgicn{Hl’T} by Lemma 7. Using Lemma 3, take a

subsequence of (u;) (denoted once more by (u;) for simplicity of notation)
which is convergent to some u in the topology of H} .. We have u € H* and
lull¢ < M, since [Ju;||; < M.

We shall demonstrate that u is a solution of equation (4). Notice that

Ej (-, (0%u;(+))jai<t) = F (5 (0%u(:)) 1<)
in D’. Indeed, let ¢ € C5°. For large j, we have

| @) Fj(@, (0% (@) <) dr = [ (2)F(x, (0%u;(2))jaj<i) da

supp ¢
- f ¢(x)F(z, (0%u())|a<t) da.

In the last step, we have used Lemma 2.
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The convergence u; — u in H{ . implies the convergence u; — u in D',
so also the convergence P(D)u; — P(D)u in D’. Hence u is a solution
of (4).

ExaMPLE 1. We now define a class of equations for which Theorem 1 is
valid.

Assume that P is a real polynomial of degree T' = 2t, positive for £ € R™
and such that the polynomial P(—id) of the variable 0 has real coefficients
and (1) is valid.

Let F: R™ x R™ — R satisfy the Carathéodory condition as above. Let
F satisfy (2).

Assume that there exist constants 0 < a < 2, L > 0 and nonnegative
functions f € L?*/%, g € L?/(2~%) such that

(10) V(0,..,00F (%, (Va)jaj<t) <0 if |ve,.. 0] = g(z) ae. z,
(1) [F(, (va)jaj<e)| < f(2) + Ll(va)jaj<el® i oo

We show that our assumptions give an a priori bound for solutions of
equations (3) where, for example,

F(x,(va)ja|<t) for |z| < 7,
Fj(x, (va)ja1<t) = {0 o= for |z| > j.

0l < g(z) ae. .

-----

Let u = ujy € H' be a solution of (3). Compute
lul? = [ U+ Fu@©)?de < C [ PE)Fu(&)Ful€)dg
= C [ Fu@)F(P(D)u)(§) dé = 2m)"C [ u(@)P(D)u(x)dx
= 2m)"C [ u(z)P(D)u(z)dx
= (2m)"C\ f u(x)Fj(z, (8au(x))|a|gt)dx
< @0)"C [ u(@)Fj(z, (0°u(@))ja|<t) do
< @2m)"C [ w@)Fj(x, (0%u(x))a)<t) da
{w:u(@)|<g(x)}

< (2m)"C I @) F(e, (0u(@)jai<)| de
{z:|u(@)|<g(z)}

< 2m)"C [ g(x)(f(z) + L|(0*u()) a1<|") da

< @mye( [ 1o e a) """ ([ e a)”

+(27T)”CL< f ‘g(l.)’2/(2,a)d$>(2—a)/2

for some constant C;. In the last steps we have used assumptions (10), (11)
and the Holder inequality.

lullf < Cr(1+ [lull?)
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Now, it is easy to see that ||ul|; < M for some M.

3. Existence theorem for a system of equations. We formulate a
similar theorem for a system of equations.

THEOREM 2. Let P., r = 1,...,k, be polynomials of n variables and
degrees T, such that the polynomials P.(—i0) of the variable O have real
coefficients. Assume that

(13) L+ ¢ <G P(§), €€RT,
for some constants Cy., r =1,...,k. Let t, € [0,T,[ and

m::zk: Z n', m’:zk: Z nt.

r=10<I<t, r=10<I<t,—n/2

Suppose that F : R™ x R™ — RF satisfies the Carathéodory condition and,
for any compact set K C R™ x R™, there exist a function hy € L*(R™) and
a constant Ci that

(14)  [F(z, (va)jal<t,r=1,...k)| < b (2) + Cx|(va)t, —nj2<|al<t,, r=1,... k]

for (z, (V) |al<tr—n/2,r=1,..k) € K a.e. x. (We omit the last term in (14)
if m =m’.) Suppose that there exist a sequence of open bounded sets U; C

Uy C ..., JUU; = R", and a constant M > 0 such that the system of
equations
(15) P(D)u = AF}(z, (0°U" )jaj<t,, ret, k) L=1,....k

(F=TF",...,F%)), has no solution in the set

k k
{u: (W', dh) e CH S |2 > M2}
r=1

r=1

forj=1,2,..., A=[0,1]. The functions F]l used above are defined by

! r — Fl(xa (UQ) a|<t,, r= ,_,,,k) fO’f’,I S U‘,
Fj (z, (va)\a|§tr,r:1,...,k¢) = {0 | <t 1 e U;.

Under these assumptions, the system of equations

_PI(D)UZ - Fl(xa (aaur)|a|§tr,r:1,...,k:)a l = 17 UEI kv

has a solution u in szl H'r for which

k
> |l < M2,
r=1

We omit the proof, similar to the proof of Theorem 1.
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EXAMPLE 2 (cf. Example 1). We define a class of systems for which
Theorem 2 is valid.

Assume that P., r = 1,...,k, are real polynomials of degrees T, = 2t,.,
positive for £ € R™ and such that the polynomials P.(—i0) of the variable
0 have real coefficients and (13) is valid. Let F' : R™ x R™ — R satisfy
the Carathéodory condition and (14). Assume that there exist constants
0 < a < 2, L > 0 and nonnegative functions f € L?/¢ g € L?(2=% gsuch
that

(v(0,...,00, F(, (V3)|al<tr, r=1,..k)) <0 if v, 0] > g(x) ae. =
(F=(F!,...,FF)), and

[F'(2, (va) ot <ty r=1....0)| < F(@) + LI(v0) o)<t r=1,.. 6]
if [v,...0] < g(z) ae. z.
These assumptions give (13) and an a priori bound for solutions of the

system (15) in the space szl H'r. The proof is similar to the one in
Example 1 so it can be omitted.
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