On the solvability of nonlinear elliptic equations in Sobolev spaces

by Piotr FijaŁkowski (Łódź)

Abstract. We consider the existence of solutions of the system

$$
P(D) u^{l}=F\left(x,\left(\partial^{\alpha} u\right)\right), \quad l=1, \ldots, k, x \in \mathbb{R}^{n}
$$

$\left(u=\left(u^{1}, \ldots, u^{k}\right)\right)$ in Sobolev spaces, where P is a positive elliptic polynomial and F is nonlinear.

1. Introduction. We study the existence of solutions of the system $(*)$ in Sobolev spaces. We make such assumptions that the right sides of the considered equations are locally integrable for u belonging to a space of solutions. In this way, we can understand these equations in the sense of distributions.

The other assumptions concerning the right sides of equations (*) give a priori bounds of solutions. We consider, for example, assumptions of the Bernstein type. Assumptions of this kind can be found in the papers [1], [4] concerning equations on a bounded interval, in [8] concerning equations on the half-line and in [3] concerning equations on the line.

We shall denote by $\langle\cdot, \cdot\rangle$ the scalar product and by $|\cdot|$ the euclidean norm in \mathbb{R}^{l} for any positive integer l.

The Fourier transform of $f \in L^{1}\left(\mathbb{R}^{n}\right)$ is defined by

$$
(\mathcal{F} f)(\xi):=\int e^{-i\langle x, \xi\rangle} f(x) d x
$$

where $\int=\int_{\mathbb{R}^{n}}$. We define the Fourier transformation in the space of tempered distributions in the standard way.

By $\mathcal{H}^{s}=\mathcal{H}^{s}\left(\mathbb{R}^{n}\right)$, for real $s \geq 0$, we denote the real Sobolev space of real tempered distributions u such that

$$
\|u\|_{s}^{2}:=(2 \pi)^{-n} \int|(\mathcal{F} u)(\xi)|^{2}\left(1+|\xi|^{2}\right)^{s} d \xi<\infty
$$

(We have $\mathcal{H}^{0}=L^{2}=L^{2}\left(\mathbb{R}^{n}\right)$.) We denote the local Sobolev space by $\mathcal{H}_{\text {loc }}^{s}=\mathcal{H}_{\text {loc }}^{s}\left(\mathbb{R}^{n}\right)$ and treat it as a Fréchet space in the standard way (see for example [5]).

We denote the space of \mathcal{C}^{∞}-functions on \mathbb{R}^{n} with compact support by \mathcal{C}_{0}^{∞} and the space of Schwartz distributions on \mathbb{R}^{n} by \mathcal{D}^{\prime}.

By $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ we denote a multi-index, $|\alpha|:=\sum_{i=1}^{n} \alpha_{i}$. We set $\partial_{j}:=\partial / \partial x_{j}$ and $D_{j}:=-i \partial_{j}$.
2. Existence theorem for a single equation. We prove the following

Theorem 1. Let P be a polynomial of n variables and degree T such that the polynomial $P(-i \partial)$ of the variable ∂ has real coefficients. Assume that

$$
\begin{equation*}
1+|\xi|^{T} \leq C|P(\xi)|, \quad \xi \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

for some constant C.
Let $t \in[0, T[$ and

$$
m:=\sum_{0 \leq l \leq t} n^{l}, \quad m^{\prime}:=\sum_{0 \leq l<t-n / 2} n^{l},
$$

where l is an integer variable. (We set $\sum_{l \in \emptyset} n^{l}:=0$.)
Suppose that $F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ satisfies the Carathéodory condition: $F(x, \cdot)$ is continuous for almost all $x \in \mathbb{R}^{n}$ and $F\left(\cdot,\left(v_{\alpha}\right)_{|\alpha| \leq t}\right)$ is measurable for all $\left(v_{\alpha}\right)_{|\alpha| \leq t} \in \mathbb{R}^{m}$.

For any compact set $K \subset \mathbb{R}^{n} \times \mathbb{R}^{m^{\prime}}$, let there exist a function $h_{K} \in$ $L^{2}\left(\mathbb{R}^{n}\right)$ and a constant C_{K} such that

$$
\begin{equation*}
\left|F\left(x,\left(v_{\alpha}\right)_{|\alpha| \leq t}\right)\right| \leq h_{K}(x)+C_{K}\left|\left(v_{\alpha}\right)_{t-n / 2 \leq|\alpha| \leq t}\right| \tag{2}
\end{equation*}
$$

for all $\left(x,\left(v_{\alpha}\right)_{|\alpha|<t-n / 2}\right) \in K$ almost everywhere with respect to x (a.e. x). (We omit the last term in (2) if $m=m^{\prime}$.)

Suppose that there exist a sequence of open bounded sets $U_{1} \subset U_{2} \subset \ldots$, $\bigcup U_{j}=\mathbb{R}^{n}$, and a constant M such that any equation

$$
\begin{gather*}
P(D) u=\lambda F_{j}\left(x,\left(\partial^{\alpha} u\right)_{|\alpha| \leq t}\right), \quad j=1,2, \ldots, \lambda \in[0,1], \tag{3}\\
F_{j}\left(x,\left(v_{\alpha}\right)_{|\alpha| \leq t}\right):= \begin{cases}F\left(x,\left(v_{\alpha}\right)_{|\alpha| \leq t}\right) & \text { for } x \in U_{j}, \\
0 & \text { for } u \notin U_{j},\end{cases}
\end{gather*}
$$

has no solution in the set $\left\{u \in \mathcal{H}^{t}:\|u\|_{t}>M\right\}$.
Under these assumptions, the equation

$$
\begin{equation*}
P(D) u=F\left(x,\left(\partial^{\alpha} u\right)_{|\alpha| \leq t}\right) \tag{4}
\end{equation*}
$$

has a solution u in \mathcal{H}^{t} for which $\|u\|_{t} \leq M$.

The proof of Theorem 1 is based on several lemmas.
Lemma 1. If $u \in \mathcal{H}^{s}$, then any $\partial^{\alpha} u$, for $|\alpha|<s-n / 2$, is a continuous bounded function and there exists a constant C such that

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{n}} \sup _{|\alpha|<s-n / 2}\left|\partial^{\alpha} u(x)\right| \leq C\|u\|_{s} . \tag{5}
\end{equation*}
$$

Proof. See [5], Corollary 7.9.4. One can obtain inequality (5) by standard calculus.

Lemma 2. The Nemytskǐ operator $u \mapsto F_{j}\left(\cdot,\left(\partial^{\alpha} u(\cdot)\right)_{|\alpha| \leq t}\right)$ transforms $\mathcal{H}_{\mathrm{loc}}^{t}$ into L^{2} continuously.

Proof. If $u \in \mathcal{H}_{\text {loc }}^{t}$, then $F_{j}\left(\cdot,\left(\partial^{\alpha} u(\cdot)\right)_{|\alpha| \leq t}\right)$ is measurable by the Carathéodory condition (see [2], appendix, or [6], §17). The set

$$
K:=\bar{U}_{j} \times \underset{|\alpha|<t-n / 2}{X} \partial^{\alpha} u\left(\bar{U}_{j}\right)
$$

is compact because of the continuity of $\partial^{\alpha} u$ for $|\alpha|<s-n / 2$ due to Lemma 1 . We have $F_{j}\left(\cdot,\left(\partial^{\alpha} u(\cdot)\right)_{|\alpha| \leq t}\right) \in L^{2}$ by (2) for K defined above. The required continuity is now proved as in [2], appendix, where the case $s=0$ is considered.

Observe that, in \mathcal{H}^{t}, equation (3) is equivalent to

$$
\begin{equation*}
u=\lambda A_{j} u, \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{j} u:=\mathcal{F}^{-1}\left(\frac{1}{P} \mathcal{F} F_{j}\left(\cdot,\left(\partial^{\alpha} u(\cdot)\right)_{|\alpha| \leq t}\right)\right) \tag{7}
\end{equation*}
$$

Definition 1. A continuous operator between locally convex spaces is called completely continuous if it sends bounded sets into precompact ones.

The following lemma is very important for the proof of Theorem 1.
Lemma 3. The embedding $\mathcal{H}_{\mathrm{loc}}^{s} \rightarrow \mathcal{H}_{\mathrm{loc}}^{s^{\prime}}$ for $s>s^{\prime} \geq 0$ is completely continuous.

The proof is in [5], Theorem 10.1.27.
Lemma 4. The operator A_{j} defined by (7) is completely continuous from \mathcal{H}^{T} into \mathcal{H}^{T}.

Proof. Observe that, for $u \in \mathcal{H}_{\text {loc }}^{t}$,

$$
\begin{equation*}
\left(1+|\xi|^{T}\right) \mathcal{F}\left(A_{j} u\right)(\xi)=b(\xi) \mathcal{F} F_{j}\left(\cdot,\left(\partial^{\alpha} u(\cdot)\right)_{|\alpha| \leq t}\right)(\xi) \tag{8}
\end{equation*}
$$

where $b(\xi):=(P(\xi))^{-1}\left(1+|\xi|^{T}\right)$ is bounded by (1).

Consequently, $A_{j} u \in \mathcal{H}^{T}+i \mathcal{H}^{T}$. We have $A_{j} u \in \mathcal{H}^{T}$ because the polynomial $P(-i \partial)$ of the variable ∂ has real coefficients.

It follows easily from Lemma 2 and (8) that A_{j} transforms $\mathcal{H}_{\mathrm{loc}}^{t}$ into \mathcal{H}^{T} continuously. But the embedding $\mathcal{H}^{T} \rightarrow \mathcal{H}_{\text {loc }}^{t}$ is completely continuous by Lemma 3, which proves the lemma.

Lemma 5. There exists a constant M_{j} such that $\left\|u_{j \lambda}\right\|_{T} \leq M_{j}$ for any solution $u_{j \lambda}$ of equation (6) for $\lambda \in[0,1]$.

Proof. From the assumption, we have $\left\|u_{j \lambda}\right\|_{t} \leq M$, hence from (5) and (2)

$$
\left\|F_{j}\left(\cdot,\left(\partial^{\alpha} u_{j \lambda}(\cdot)\right)_{|\alpha| \leq t}\right)\right\|_{0} \leq M_{j}^{\prime}
$$

for some constant M_{j}^{\prime}. Using (8), we obtain the result.
Lemma 6. Equation (6) has a solution in \mathcal{H}^{T} for $\lambda=1$ and any j.
Proof. Write (6) in the form

$$
\left(I-\lambda A_{j}\right) u=0
$$

where I stands for the identity mapping. We treat $I-\lambda A_{j}$ as a mapping from the ball $B\left(0, M_{j}+1\right) \subset \mathcal{H}^{T}$ into \mathcal{H}^{T} and use the Leray-Schauder degree theory (see for instance [7]), since A_{j} is completely continuous by Lemma 4. From Lemma 5, we know that $\left(I-\lambda A_{j}\right) u \neq 0$ for $\|u\|_{T}=M_{j}+1$, so for the Leray-Schauder degree we obtain

$$
\operatorname{deg}\left(I-A_{j}, B\left(0, M_{j}+1\right), 0\right)=\operatorname{deg}\left(I, B\left(0, M_{j}+1\right), 0\right)=1 \neq 0
$$

Therefore, equation (6) has a solution in \mathcal{H}^{T} for $\lambda=1$.
Lemma 7. The set $\left\{u_{j}\right\}$ of solutions of equations (3), for $\lambda=1$, in the space \mathcal{H}^{T} is bounded in the space $\mathcal{H}_{\mathrm{loc}}^{s}$, where $s:=\min \{t+1, T\}$.

Proof. Let $\phi \in \mathcal{C}_{0}^{\infty}$. We have to estimate $\left\|\phi u_{j}\right\|_{s}$ by a constant depending on ϕ only. From (1) and the Leibniz-Hörmander formula ([5], (1.1.10)), we obtain

$$
\begin{aligned}
& \left\|\phi u_{j}\right\|_{s}=\left((2 \pi)^{-n} \int\left(1+|\xi|^{2}\right)^{s}\left|\mathcal{F}\left(\phi u_{j}\right)(\xi)\right|^{2} d \xi\right)^{1 / 2} \\
& =\left((2 \pi)^{-n} \int\left(1+|\xi|^{2}\right)^{s-T}\left(1+|\xi|^{2}\right)^{T}\left|\mathcal{F}\left(\phi u_{j}\right)(\xi)\right|^{2} d \xi\right)^{1 / 2} \\
& \leq C_{1}\left(\int\left(1+|\xi|^{2}\right)^{s-T}|P(\xi)|^{2}\left|\mathcal{F}\left(\phi u_{j}\right)(\xi)\right|^{2} d \xi\right)^{1 / 2} \\
& \leq C_{1}\left(\int\left(1+|\xi|^{2}\right)^{s-T}\left|\mathcal{F} P(D)\left(\phi u_{j}\right)(\xi)\right|^{2} d \xi\right)^{1 / 2} \\
& \leq C_{1}\left(\int\left(1+|\xi|^{2}\right)^{s-T}\left|\mathcal{F}\left(\sum_{\alpha \in \mathbb{N}^{n}} \partial^{\alpha} \phi\left(\partial^{\alpha} P\right)(D) u_{j} / \alpha!\right)(\xi)\right|^{2} d \xi\right)^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
\leq & C_{1}\left(\int\left(1+|\xi|^{2}\right)^{s-T}\left|\mathcal{F}\left(\phi P(D) u_{j}\right)(\xi)\right|^{2} d \xi\right)^{1 / 2} \\
& +C_{1} \sum_{\alpha \neq(0, \ldots, 0)}\left(\int\left(1+|\xi|^{2}\right)^{s-T}\left|\mathcal{F}\left(\partial^{\alpha} \phi\left(\partial^{\alpha} P\right)(D) u_{j} / \alpha!\right)(\xi)\right|^{2} d \xi\right)^{1 / 2}
\end{aligned}
$$

for some constant C_{1}. We will estimate the integrals in the last expression:

$$
\begin{aligned}
\int\left(1+|\xi|^{2}\right)^{s-T} \mid \mathcal{F}(\phi P(D) & \left.u_{j}\right)\left.(\xi)\right|^{2} d \xi \leq \int\left|\mathcal{F}\left(\phi P(D) u_{j}\right)(\xi)\right|^{2} d \xi \\
& \leq(2 \pi)^{n} \int\left|\phi(x) P(D) u_{j}(x)\right|^{2} d x \\
& =(2 \pi)^{n} \int\left|\phi(x) F_{j}\left(x,\left(\partial^{\alpha} u_{j}(x)\right)_{|\alpha| \leq t}\right)\right|^{2} d x \leq C_{2}
\end{aligned}
$$

for some constant C_{2} depending on ϕ. In the last step we have used the estimate $\left\|u_{j}\right\|_{t} \leq M$ and (2) for the set

$$
K:=(\operatorname{supp} \phi) \times \underset{|\alpha|<t-n / 2}{X}[-M, M]
$$

Note that the map $\mathcal{H}^{s-T} \ni w \mapsto \psi w \in \mathcal{H}^{s-T}$ is continuous for fixed $\psi \in \mathcal{C}_{0}^{\infty}$ (see [5], Theorem 10.1.15). This implies that, for $\alpha \neq(0, \ldots, 0)$,

$$
\begin{aligned}
\int\left(1+|\xi|^{2}\right)^{s-T} \mid \mathcal{F} & \left.\left(\partial^{\alpha} \phi\left(\partial^{\alpha} P\right)(D) u_{j} / \alpha!\right)(\xi)\right|^{2} d \xi \\
& \leq C_{\alpha} \int\left(1+|\xi|^{2}\right)^{s-T}\left|\mathcal{F}\left(\partial^{\alpha} P\right)(D) u_{j}(\xi)\right|^{2} d \xi \\
& =C_{\alpha} \int\left(1+|\xi|^{2}\right)^{s-T}\left|\left(\partial^{\alpha} P\right)(\xi) \mathcal{F} u_{j}(\xi)\right|^{2} d \xi \\
& =C_{\alpha}^{\prime} \int\left(1+|\xi|^{2}\right)^{s-T}\left|\mathcal{F} u_{j}(\xi)\right|^{2} d \xi \leq C_{\alpha}^{\prime}\left\|u_{j}\right\|_{t} \leq C_{\alpha}^{\prime} M
\end{aligned}
$$

for some constants $C_{\alpha}, C_{\alpha}^{\prime}$ depending on ϕ. Hence

$$
\left\|\phi u_{j}\right\|_{s} \leq C
$$

for some C depending on ϕ.
Let $\left(u_{j}\right)$ be a sequence of \mathcal{H}^{T}-solutions of equations (3) for $\lambda=1$. The set $\left\{u_{j}\right\}$ is bounded in $\mathcal{H}_{\mathrm{loc}}^{\min \{t+1, T\}}$ by Lemma 7. Using Lemma 3, take a subsequence of $\left(u_{j}\right)$ (denoted once more by $\left(u_{j}\right)$ for simplicity of notation) which is convergent to some u in the topology of $\mathcal{H}_{\mathrm{loc}}^{t}$. We have $u \in \mathcal{H}^{t}$ and $\|u\|_{t} \leq M$, since $\left\|u_{j}\right\|_{t} \leq M$.

We shall demonstrate that u is a solution of equation (4). Notice that

$$
F_{j}\left(\cdot,\left(\partial^{\alpha} u_{j}(\cdot)\right)_{|\alpha| \leq t}\right) \rightarrow F\left(\cdot,\left(\partial^{\alpha} u(\cdot)\right)_{|\alpha| \leq t}\right)
$$

in \mathcal{D}^{\prime}. Indeed, let $\phi \in \mathcal{C}_{0}^{\infty}$. For large j, we have

$$
\begin{aligned}
\int \phi(x) F_{j}\left(x,\left(\partial^{\alpha} u_{j}(x)\right)_{|\alpha| \leq t}\right) d x & =\int_{\operatorname{supp} \phi} \phi(x) F\left(x,\left(\partial^{\alpha} u_{j}(x)\right)_{|\alpha| \leq t}\right) d x \\
& \rightarrow \int \phi(x) F\left(x,\left(\partial^{\alpha} u(x)\right)_{|\alpha| \leq t}\right) d x
\end{aligned}
$$

In the last step, we have used Lemma 2.

The convergence $u_{j} \rightarrow u$ in $\mathcal{H}_{\text {loc }}^{t}$ implies the convergence $u_{j} \rightarrow u$ in \mathcal{D}^{\prime}, so also the convergence $P(D) u_{j} \rightarrow P(D) u$ in \mathcal{D}^{\prime}. Hence u is a solution of (4).

Example 1. We now define a class of equations for which Theorem 1 is valid.

Assume that P is a real polynomial of degree $T=2 t$, positive for $\xi \in \mathbb{R}^{n}$ and such that the polynomial $P(-i \partial)$ of the variable ∂ has real coefficients and (1) is valid.

Let $F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ satisfy the Carathéodory condition as above. Let F satisfy (2).

Assume that there exist constants $0<a<2, L>0$ and nonnegative functions $f \in L^{2 / a}, g \in L^{2 /(2-a)}$ such that
(10) $\quad v_{(0, \ldots, 0)} F\left(x,\left(v_{\alpha}\right)_{|\alpha| \leq t}\right) \leq 0 \quad$ if $\left|v_{(0, \ldots, 0)}\right| \geq g(x)$ a.e. x,
(11) $\left|F\left(x,\left(v_{\alpha}\right)_{|\alpha| \leq t}\right)\right| \leq f(x)+L\left|\left(v_{\alpha}\right)_{|\alpha| \leq t}\right|^{a} \quad$ if $\left|v_{(0, \ldots, 0)}\right| \leq g(x)$ a.e. x.

We show that our assumptions give an a priori bound for solutions of equations (3) where, for example,

$$
F_{j}\left(x,\left(v_{\alpha}\right)_{|\alpha| \leq t}\right)= \begin{cases}F\left(x,\left(v_{\alpha}\right)_{|\alpha| \leq t}\right) & \text { for }|x|<j \\ 0 & \text { for }|x| \geq j\end{cases}
$$

Let $u=u_{j \lambda} \in \mathcal{H}^{t}$ be a solution of (3). Compute

$$
\begin{aligned}
\|u\|_{t}^{2}= & \int\left(1+|\xi|^{2}\right)^{t}|\mathcal{F} u(\xi)|^{2} d \xi \leq C \int P(\xi) \mathcal{F} u(\xi) \overline{\mathcal{F} u(\xi)} d \xi \\
= & C \int \mathcal{F} u(\xi) \overline{\mathcal{F}(P(D) u)(\xi)} d \xi=(2 \pi)^{n} C \int u(x) \overline{P(D) u(x)} d x \\
= & (2 \pi)^{n} C \int u(x) P(D) u(x) d x \\
= & (2 \pi)^{n} C \lambda \int u(x) F_{j}\left(x,\left(\partial^{\alpha} u(x)\right)_{|\alpha| \leq t}\right) d x \\
\leq & (2 \pi)^{n} C \int u(x) F_{j}\left(x,\left(\partial^{\alpha} u(x)\right)_{|\alpha| \leq t}\right) d x \\
\leq & (2 \pi)^{n} C \iint_{\{x:|u(x)| \leq g(x)\}} u(x) F_{j}\left(x,\left(\partial^{\alpha} u(x)\right)_{|\alpha| \leq t}\right) d x \\
\leq & (2 \pi)^{n} C \iint_{\{x:|u(x)| \leq g(x)\}}|u(x)|\left|F_{j}\left(x,\left(\partial^{\alpha} u(x)\right)_{|\alpha| \leq t}\right)\right| d x \\
\leq & (2 \pi)^{n} C \int g(x)\left(f(x)+L\left|\left(\partial^{\alpha} u(x)\right)_{|\alpha| \leq t}\right|^{a}\right) d x \\
\leq & (2 \pi)^{n} C\left(\int|g(x)|^{2 /(2-a)} d x\right)^{(2-a) / 2}\left(\int|f(x)|^{2 / a} d x\right)^{a / 2} \\
& +(2 \pi)^{n} C L\left(\int|g(x)|^{2 /(2-a)} d x\right)^{(2-a) / 2}\|u\|_{t}^{a} \leq C_{1}\left(1+\|u\|_{t}^{a}\right)
\end{aligned}
$$

for some constant C_{1}. In the last steps we have used assumptions (10), (11) and the Hölder inequality.

Now, it is easy to see that $\|u\|_{t} \leq M$ for some M.
3. Existence theorem for a system of equations. We formulate a similar theorem for a system of equations.

Theorem 2. Let $P_{r}, r=1, \ldots, k$, be polynomials of n variables and degrees T_{r} such that the polynomials $P_{r}(-i \partial)$ of the variable ∂ have real coefficients. Assume that

$$
\begin{equation*}
1+|\xi|^{T_{r}} \leq C_{r} P_{r}(\xi), \quad \xi \in \mathbb{R}^{n} \tag{13}
\end{equation*}
$$

for some constants $C_{r}, r=1, \ldots, k$. Let $t_{r} \in\left[0, T_{r}[\right.$ and

$$
m:=\sum_{r=1}^{k} \sum_{0 \leq l \leq t_{r}} n^{l}, \quad m^{\prime}=\sum_{r=1}^{k} \sum_{0 \leq l<t_{r}-n / 2} n^{l} .
$$

Suppose that $F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ satisfies the Carathéodory condition and, for any compact set $K \subset \mathbb{R}^{n} \times \mathbb{R}^{m}$, there exist a function $h_{K} \in L^{2}\left(\mathbb{R}^{n}\right)$ and a constant C_{K} that
(14) $\left|F\left(x,\left(v_{\alpha}^{r}\right)_{|\alpha| \leq t_{r}, r=1, \ldots, k}\right)\right| \leq h_{K}(x)+C_{K}\left|\left(v_{\alpha}^{r}\right)_{t_{r}-n / 2 \leq|\alpha| \leq t_{r}, r=1, \ldots, k}\right|$
for $\left(x,\left(v_{\alpha}^{r}\right)_{|\alpha|<t_{r}-n / 2, r=1, \ldots, k}\right) \in K$ a.e. x. (We omit the last term in (14) if $m=m^{\prime}$.) Suppose that there exist a sequence of open bounded sets $U_{1} \subset$ $U_{2} \subset \ldots, \bigcup U_{j}=\mathbb{R}^{n}$, and a constant $M>0$ such that the system of equations

$$
\begin{equation*}
P_{l}(D) u^{l}=\lambda F_{j}^{l}\left(x,\left(\partial^{\alpha} u^{r}\right)_{|\alpha| \leq t_{r}, r=1, \ldots, k}\right), \quad l=1, \ldots, k \tag{15}
\end{equation*}
$$

$\left.\left(F=F^{1}, \ldots, F^{k}\right)\right)$, has no solution in the set

$$
\left\{u=\left(u^{1}, \ldots, u^{k}\right) \in \underset{r=1}{\underset{X}{X}} \mathcal{H}^{t_{r}}: \sum_{r=1}^{k}\left\|u^{r}\right\|_{t_{r}}^{2}>M^{2}\right\}
$$

for $j=1,2, \ldots, \lambda=[0,1]$. The functions F_{j}^{l} used above are defined by

$$
F_{j}^{l}\left(x,\left(v_{\alpha}^{r}\right)_{|\alpha| \leq t_{r}, r=1, \ldots, k}\right):= \begin{cases}F^{l}\left(x,\left(v_{\alpha}^{r}\right)_{\left.|\alpha| \leq t_{r}, r=1, \ldots, k\right)}\right. & \text { for } x \in U_{j}, \\ 0 & \text { for } x \notin U_{j}\end{cases}
$$

Under these assumptions, the system of equations

$$
P_{l}(D) u^{l}=F^{l}\left(x,\left(\partial^{\alpha} u^{r}\right)_{|\alpha| \leq t_{r}, r=1, \ldots, k}\right), \quad l=1, \ldots, k
$$

has a solution u in $X_{r=1}^{k} \mathcal{H}^{t_{r}}$ for which

$$
\sum_{r=1}^{k}\left\|u^{r}\right\|_{t_{r}}^{2} \leq M^{2}
$$

We omit the proof, similar to the proof of Theorem 1.

Example 2 (cf. Example 1). We define a class of systems for which Theorem 2 is valid.

Assume that $P_{r}, r=1, \ldots, k$, are real polynomials of degrees $T_{r}=2 t_{r}$, positive for $\xi \in \mathbb{R}^{n}$ and such that the polynomials $P_{r}(-i \partial)$ of the variable ∂ have real coefficients and (13) is valid. Let $F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ satisfy the Carathéodory condition and (14). Assume that there exist constants $0<a<2, L>0$ and nonnegative functions $f \in L^{2 / a}, g \in L^{2 /(2-a)}$ such that

$$
\left\langle v_{(0, \ldots, 0)}, F\left(x,\left(v_{\alpha}^{r}\right)_{|\alpha| \leq t_{r}, r=1, \ldots, k}\right)\right\rangle \leq 0 \quad \text { if }\left|v_{(0, \ldots, 0)}\right| \geq g(x) \text { a.e. } x
$$

$\left(F=\left(F^{1}, \ldots, F^{k}\right)\right)$, and

$$
\begin{aligned}
&\left|F\left(x,\left(v_{\alpha}^{r}\right)_{|\alpha| \leq t_{r}, r=1, \ldots, k}\right)\right| \leq f(x)+L\left|\left(v_{\alpha}^{r}\right)_{|\alpha| \leq t_{r}, r=1, \ldots, k}\right|^{a} \\
& \text { if }\left|v_{(0, \ldots, 0)}\right| \leq g(x) \text { a.e. } x .
\end{aligned}
$$

These assumptions give (13) and an a priori bound for solutions of the system (15) in the space $X_{r=1}^{k} \mathcal{H}^{t_{r}}$. The proof is similar to the one in Example 1 so it can be omitted.

References

[1] S. N. Bernstein, Sur les équations du calcul des variations, Ann. Sci. École Norm. Sup. 29 (1912), 431-485.
[2] F. E. Browder, Nonlinear functional analysis and nonlinear integral equations of Hammerstein and Urysohn type, in: Contributions to Nonlinear Functional Analysis, E. H. Zarantonello (ed.), Academic Press, New York 1971, 425-500.
[3] P. Fijałkowski, On the equation $x^{\prime \prime}(t)=F(t, x(t))$ in the Sobolev space $H^{1}(\mathbb{R})$, Ann. Polon. Math. 53 (1991), 29-34.
[4] A. Granas, R. Guenther and J. Lee, Nonlinear boundary value problems for ordinary differential equations, Dissertationes Math. 244 (1985).
[5] L. Hörmander, The Analysis of Linear Partial Differential Operators, Springer, Berlin 1983.
[6] M. A. Krasnosel'skiŭ, P. P. Zabreĭko, E. I. Pustyl'nik and P. E. Sobolevskiŭ, Integral Operators in Spaces of Summable Functions, Nauka, Moscow 1966 (in Russian).
[7] N. G. Lloyd, Degree Theory, Cambridge Univ. Press, 1978.
[8] B. Przeradzki, On the solvability of singular BVPs for second-order ordinary differential equations, Ann. Polon. Math. 50 (1990), 279-289.

INSTITUTE OF MATHEMATICS
UNIVERSITY OF ŁÓDŹ
BANACHA 22
90-238 ŁÓDŹ, POLAND

