ANNALES POLONICI MATHEMATICI LVI.2 (1992)

On the solvability of nonlinear elliptic equations in Sobolev spaces

by PIOTR FIJAŁKOWSKI (Łódź)

Abstract. We consider the existence of solutions of the system

(*)
$$P(D)u^{l} = F(x, (\partial^{\alpha} u)), \quad l = 1, \dots, k, \ x \in \mathbb{R}^{n}$$

 $(u=(u^1,\ldots,u^k))$ in Sobolev spaces, where P is a positive elliptic polynomial and F is nonlinear.

1. Introduction. We study the existence of solutions of the system (*) in Sobolev spaces. We make such assumptions that the right sides of the considered equations are locally integrable for u belonging to a space of solutions. In this way, we can understand these equations in the sense of distributions.

The other assumptions concerning the right sides of equations (*) give a priori bounds of solutions. We consider, for example, assumptions of the Bernstein type. Assumptions of this kind can be found in the papers [1], [4] concerning equations on a bounded interval, in [8] concerning equations on the half-line and in [3] concerning equations on the line.

We shall denote by $\langle \cdot, \cdot \rangle$ the scalar product and by $|\cdot|$ the euclidean norm in \mathbb{R}^l for any positive integer l.

The Fourier transform of $f \in L^1(\mathbb{R}^n)$ is defined by

$$(\mathcal{F}f)(\xi) := \int e^{-i\langle x,\xi\rangle} f(x) \, dx$$

where $\int = \int_{\mathbb{R}^n}$. We define the Fourier transformation in the space of tempered distributions in the standard way.

By $\mathcal{H}^s = \mathcal{H}^s(\mathbb{R}^n)$, for real $s \ge 0$, we denote the real Sobolev space of real tempered distributions u such that

$$||u||_s^2 := (2\pi)^{-n} \int |(\mathcal{F}u)(\xi)|^2 (1+|\xi|^2)^s \, d\xi < \infty.$$

¹⁹⁹¹ Mathematics Subject Classification: Primary 35J65.

(We have $\mathcal{H}^0 = L^2 = L^2(\mathbb{R}^n)$.) We denote the local Sobolev space by $\mathcal{H}^s_{\text{loc}} = \mathcal{H}^s_{\text{loc}}(\mathbb{R}^n)$ and treat it as a Fréchet space in the standard way (see for example [5]).

We denote the space of \mathcal{C}^{∞} -functions on \mathbb{R}^n with compact support by \mathcal{C}_0^{∞} and the space of Schwartz distributions on \mathbb{R}^n by \mathcal{D}' .

By $\alpha = (\alpha_1, \dots, \alpha_n)$ we denote a multi-index, $|\alpha| := \sum_{i=1}^n \alpha_i$. We set $\partial_j := \partial/\partial x_j$ and $D_j := -i\partial_j$.

2. Existence theorem for a single equation. We prove the following

THEOREM 1. Let P be a polynomial of n variables and degree T such that the polynomial $P(-i\partial)$ of the variable ∂ has real coefficients. Assume that

(1)
$$1 + |\xi|^T \le C|P(\xi)|, \quad \xi \in \mathbb{R}^n$$

for some constant C.

Let $t \in [0, T[$ and

$$m := \sum_{0 \le l \le t} n^l, \quad m' := \sum_{0 \le l < t - n/2} n^l,$$

where l is an integer variable. (We set $\sum_{l \in \emptyset} n^l := 0$.)

Suppose that $F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ satisfies the Carathéodory condition: $F(x, \cdot)$ is continuous for almost all $x \in \mathbb{R}^n$ and $F(\cdot, (v_\alpha)_{|\alpha| \le t})$ is measurable for all $(v_\alpha)_{|\alpha| \le t} \in \mathbb{R}^m$.

For any compact set $K \subset \mathbb{R}^n \times \mathbb{R}^{m'}$, let there exist a function $h_K \in L^2(\mathbb{R}^n)$ and a constant C_K such that

(2)
$$|F(x, (v_{\alpha})_{|\alpha| \le t})| \le h_K(x) + C_K|(v_{\alpha})_{t-n/2 \le |\alpha| \le t}|$$

for all $(x, (v_{\alpha})_{|\alpha| < t-n/2}) \in K$ almost everywhere with respect to x (a.e. x). (We omit the last term in (2) if m = m'.)

Suppose that there exist a sequence of open bounded sets $U_1 \subset U_2 \subset \ldots$, $\bigcup U_j = \mathbb{R}^n$, and a constant M such that any equation

(3)
$$P(D)u = \lambda F_j(x, (\partial^{\alpha} u)_{|\alpha| \le t}), \quad j = 1, 2, \dots, \lambda \in [0, 1],$$
$$F_j(x, (v_{\alpha})_{|\alpha| \le t}) := \begin{cases} F(x, (v_{\alpha})_{|\alpha| \le t}) & \text{for } x \in U_j, \\ 0 & \text{for } u \notin U_j, \end{cases}$$

has no solution in the set $\{u \in \mathcal{H}^t : ||u||_t > M\}.$

Under these assumptions, the equation

(4)
$$P(D)u = F(x, (\partial^{\alpha} u)_{|\alpha| \le t})$$

has a solution u in \mathcal{H}^t for which $||u||_t \leq M$.

The proof of Theorem 1 is based on several lemmas.

LEMMA 1. If $u \in \mathcal{H}^s$, then any $\partial^{\alpha} u$, for $|\alpha| < s - n/2$, is a continuous bounded function and there exists a constant C such that

(5)
$$\sup_{x \in \mathbb{R}^n} \sup_{|\alpha| < s - n/2} |\partial^{\alpha} u(x)| \le C ||u||_s.$$

 $\Pr{\text{oof. See}}$ [5], Corollary 7.9.4. One can obtain inequality (5) by standard calculus.

LEMMA 2. The Nemytskii operator $u \mapsto F_j(\cdot, (\partial^{\alpha} u(\cdot))_{|\alpha| \leq t})$ transforms \mathcal{H}_{loc}^t into L^2 continuously.

Proof. If $u \in \mathcal{H}^t_{\text{loc}}$, then $F_j(\cdot, (\partial^{\alpha} u(\cdot))_{|\alpha| \leq t})$ is measurable by the Carathéodory condition (see [2], appendix, or [6], §17). The set

$$K := \overline{U}_j \times \bigotimes_{|\alpha| < t - n/2} \partial^{\alpha} u(\overline{U}_j)$$

is compact because of the continuity of $\partial^{\alpha} u$ for $|\alpha| < s-n/2$ due to Lemma 1. We have $F_j(\cdot, (\partial^{\alpha} u(\cdot))_{|\alpha| \leq t}) \in L^2$ by (2) for K defined above. The required continuity is now proved as in [2], appendix, where the case s = 0 is considered.

Observe that, in \mathcal{H}^t , equation (3) is equivalent to

(6)
$$u = \lambda A_j u,$$

where

(7)
$$A_{j}u := \mathcal{F}^{-1}\left(\frac{1}{P}\mathcal{F}F_{j}(\cdot, (\partial^{\alpha}u(\cdot))_{|\alpha| \le t})\right)$$

DEFINITION 1. A continuous operator between locally convex spaces is called *completely continuous* if it sends bounded sets into precompact ones.

The following lemma is very important for the proof of Theorem 1.

LEMMA 3. The embedding $\mathcal{H}_{loc}^s \to \mathcal{H}_{loc}^{s'}$ for $s > s' \ge 0$ is completely continuous.

The proof is in [5], Theorem 10.1.27.

LEMMA 4. The operator A_j defined by (7) is completely continuous from \mathcal{H}^T into \mathcal{H}^T .

Proof. Observe that, for $u \in \mathcal{H}_{loc}^t$,

(8) $(1+|\xi|^T)\mathcal{F}(A_j u)(\xi) = b(\xi)\mathcal{F}F_j(\cdot, (\partial^{\alpha} u(\cdot))_{|\alpha| \le t})(\xi)$ where $b(\xi) := (P(\xi))^{-1}(1+|\xi|^T)$ is bounded by (1).

Consequently, $A_j u \in \mathcal{H}^T + i\mathcal{H}^T$. We have $A_j u \in \mathcal{H}^T$ because the polynomial $P(-i\partial)$ of the variable ∂ has real coefficients.

It follows easily from Lemma 2 and (8) that A_j transforms \mathcal{H}_{loc}^t into \mathcal{H}^T continuously. But the embedding $\mathcal{H}^T \to \mathcal{H}_{loc}^t$ is completely continuous by Lemma 3, which proves the lemma.

LEMMA 5. There exists a constant M_j such that $||u_{j\lambda}||_T \leq M_j$ for any solution $u_{j\lambda}$ of equation (6) for $\lambda \in [0, 1]$.

Proof. From the assumption, we have $||u_{j\lambda}||_t \leq M$, hence from (5) and (2)

$$||F_j(\cdot, (\partial^{\alpha} u_{j\lambda}(\cdot))|_{|\alpha| \le t})||_0 \le M$$

for some constant M'_i . Using (8), we obtain the result.

LEMMA 6. Equation (6) has a solution in \mathcal{H}^T for $\lambda = 1$ and any j.

Proof. Write (6) in the form

$$(I - \lambda A_i)u = 0$$

where I stands for the identity mapping. We treat $I - \lambda A_j$ as a mapping from the ball $B(0, M_j + 1) \subset \mathcal{H}^T$ into \mathcal{H}^T and use the Leray–Schauder degree theory (see for instance [7]), since A_j is completely continuous by Lemma 4. From Lemma 5, we know that $(I - \lambda A_j)u \neq 0$ for $||u||_T = M_j + 1$, so for the Leray–Schauder degree we obtain

$$\deg(I - A_j, B(0, M_j + 1), 0) = \deg(I, B(0, M_j + 1), 0) = 1 \neq 0.$$

Therefore, equation (6) has a solution in \mathcal{H}^T for $\lambda = 1$.

LEMMA 7. The set $\{u_j\}$ of solutions of equations (3), for $\lambda = 1$, in the space \mathcal{H}^T is bounded in the space \mathcal{H}^s_{loc} , where $s := \min\{t + 1, T\}$.

Proof. Let $\phi \in C_0^{\infty}$. We have to estimate $\|\phi u_j\|_s$ by a constant depending on ϕ only. From (1) and the Leibniz–Hörmander formula ([5], (1.1.10)), we obtain

$$\begin{aligned} \|\phi u_{j}\|_{s} &= \left((2\pi)^{-n} \int (1+|\xi|^{2})^{s} |\mathcal{F}(\phi u_{j})(\xi)|^{2} d\xi\right)^{1/2} \\ &= \left((2\pi)^{-n} \int (1+|\xi|^{2})^{s-T} (1+|\xi|^{2})^{T} |\mathcal{F}(\phi u_{j})(\xi)|^{2} d\xi\right)^{1/2} \\ &\leq C_{1} \left(\int (1+|\xi|^{2})^{s-T} |\mathcal{F}(\xi)|^{2} |\mathcal{F}(\phi u_{j})(\xi)|^{2} d\xi\right)^{1/2} \\ &\leq C_{1} \left(\int (1+|\xi|^{2})^{s-T} |\mathcal{F}P(D)(\phi u_{j})(\xi)|^{2} d\xi\right)^{1/2} \\ &\leq C_{1} \left(\int (1+|\xi|^{2})^{s-T} \left|\mathcal{F}\left(\sum_{\alpha \in \mathbb{N}^{n}} \partial^{\alpha} \phi(\partial^{\alpha} P)(D) u_{j} / \alpha!\right)(\xi)\right|^{2} d\xi\right)^{1/2} \end{aligned}$$

$$\leq C_1 \Big(\int (1+|\xi|^2)^{s-T} |\mathcal{F}(\phi P(D)u_j)(\xi)|^2 d\xi \Big)^{1/2} \\ + C_1 \sum_{\alpha \neq (0,...,0)} \Big(\int (1+|\xi|^2)^{s-T} |\mathcal{F}(\partial^{\alpha} \phi(\partial^{\alpha} P)(D)u_j/\alpha!)(\xi)|^2 d\xi \Big)^{1/2}$$

for some constant C_1 . We will estimate the integrals in the last expression:

$$\int (1+|\xi|^2)^{s-T} |\mathcal{F}(\phi P(D)u_j)(\xi)|^2 d\xi \leq \int |\mathcal{F}(\phi P(D)u_j)(\xi)|^2 d\xi$$
$$\leq (2\pi)^n \int |\phi(x)P(D)u_j(x)|^2 dx$$
$$= (2\pi)^n \int |\phi(x)F_j(x, (\partial^{\alpha}u_j(x))_{|\alpha|\leq t})|^2 dx \leq C_2$$

for some constant C_2 depending on ϕ . In the last step we have used the estimate $||u_j||_t \leq M$ and (2) for the set

$$K := (\operatorname{supp} \phi) \times \bigotimes_{|\alpha| < t-n/2} [-M, M].$$

Note that the map $\mathcal{H}^{s-T} \ni w \mapsto \psi w \in \mathcal{H}^{s-T}$ is continuous for fixed $\psi \in \mathcal{C}_0^{\infty}$ (see [5], Theorem 10.1.15). This implies that, for $\alpha \neq (0, \ldots, 0)$,

$$\int (1+|\xi|^2)^{s-T} |\mathcal{F}(\partial^{\alpha}\phi(\partial^{\alpha}P)(D)u_j/\alpha!)(\xi)|^2 d\xi$$

$$\leq C_{\alpha} \int (1+|\xi|^2)^{s-T} |\mathcal{F}(\partial^{\alpha}P)(D)u_j(\xi)|^2 d\xi$$

$$= C_{\alpha} \int (1+|\xi|^2)^{s-T} |(\partial^{\alpha}P)(\xi)\mathcal{F}u_j(\xi)|^2 d\xi$$

$$= C'_{\alpha} \int (1+|\xi|^2)^{s-T} |\mathcal{F}u_j(\xi)|^2 d\xi \leq C'_{\alpha} ||u_j||_t \leq C'_{\alpha} M$$
for some constants $C_{\alpha} = C'_{\alpha}$ denotes by a set of Hence.

for some constants C_{α} , C'_{α} depending on ϕ . Hence

$$\|\phi u_j\|_s \le C$$

for some C depending on ϕ .

Let (u_j) be a sequence of \mathcal{H}^T -solutions of equations (3) for $\lambda = 1$. The set $\{u_j\}$ is bounded in $\mathcal{H}^{\min\{t+1,T\}}_{\text{loc}}$ by Lemma 7. Using Lemma 3, take a subsequence of (u_j) (denoted once more by (u_j) for simplicity of notation) which is convergent to some u in the topology of $\mathcal{H}^t_{\text{loc}}$. We have $u \in \mathcal{H}^t$ and $\|u\|_t \leq M$, since $\|u_j\|_t \leq M$.

We shall demonstrate that u is a solution of equation (4). Notice that

$$F_j(\cdot, (\partial^{\alpha} u_j(\cdot))_{|\alpha| \le t}) \to F(\cdot, (\partial^{\alpha} u(\cdot))_{|\alpha| \le t})$$

in \mathcal{D}' . Indeed, let $\phi \in \mathcal{C}_0^{\infty}$. For large j, we have

$$\int \phi(x)F_j(x,(\partial^{\alpha}u_j(x))|_{|\alpha|\leq t})\,dx = \int_{\operatorname{supp}\phi} \phi(x)F(x,(\partial^{\alpha}u_j(x))|_{|\alpha|\leq t})\,dx$$
$$\to \int \phi(x)F(x,(\partial^{\alpha}u(x))|_{|\alpha|\leq t})\,dx.$$

In the last step, we have used Lemma 2.

P. Fijałkowski

The convergence $u_j \to u$ in \mathcal{H}_{loc}^t implies the convergence $u_j \to u$ in \mathcal{D}' , so also the convergence $P(D)u_j \to P(D)u$ in \mathcal{D}' . Hence u is a solution of (4).

EXAMPLE 1. We now define a class of equations for which Theorem 1 is valid.

Assume that P is a real polynomial of degree T = 2t, positive for $\xi \in \mathbb{R}^n$ and such that the polynomial $P(-i\partial)$ of the variable ∂ has real coefficients and (1) is valid.

Let $F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ satisfy the Carathéodory condition as above. Let F satisfy (2).

Assume that there exist constants 0 < a < 2, L > 0 and nonnegative functions $f \in L^{2/a}$, $g \in L^{2/(2-a)}$ such that

(10)
$$v_{(0,...,0)}F(x,(v_{\alpha})_{|\alpha| \le t}) \le 0$$
 if $|v_{(0,...,0)}| \ge g(x)$ a.e. x ,

(11)
$$|F(x, (v_{\alpha})_{|\alpha| \le t})| \le f(x) + L|(v_{\alpha})_{|\alpha| \le t}|^{a}$$
 if $|v_{(0,...,0)}| \le g(x)$ a.e. x.

We show that our assumptions give an a priori bound for solutions of equations (3) where, for example,

$$F_j(x, (v_\alpha)_{|\alpha| \le t}) = \begin{cases} F(x, (v_\alpha)_{|\alpha| \le t}) & \text{for } |x| < j, \\ 0 & \text{for } |x| \ge j. \end{cases}$$

Let
$$u = u_{j\lambda} \in \mathcal{H}^t$$
 be a solution of (3). Compute
 $||u||_t^2 = \int (1+|\xi|^2)^t |\mathcal{F}u(\xi)|^2 d\xi \leq C \int P(\xi)\mathcal{F}u(\xi)\overline{\mathcal{F}u(\xi)} d\xi$
 $= C \int \mathcal{F}u(\xi)\overline{\mathcal{F}(P(D)u)(\xi)} d\xi = (2\pi)^n C \int u(x)\overline{P(D)u(x)} dx$
 $= (2\pi)^n C \int u(x)P(D)u(x) dx$
 $= (2\pi)^n C \int u(x)F_j(x, (\partial^{\alpha}u(x))_{|\alpha|\leq t}) dx$
 $\leq (2\pi)^n C \int u(x)F_j(x, (\partial^{\alpha}u(x))_{|\alpha|\leq t}) dx$
 $\leq (2\pi)^n C \int_{\{x:|u(x)|\leq g(x)\}} u(x)F_j(x, (\partial^{\alpha}u(x))_{|\alpha|\leq t})| dx$
 $\leq (2\pi)^n C \int g(x)(f(x) + L|(\partial^{\alpha}u(x))_{|\alpha|\leq t}|^a) dx$
 $\leq (2\pi)^n C \int g(x)(f(x) + L|(\partial^{\alpha}u(x))_{|\alpha|\leq t}|^a) dx$
 $\leq (2\pi)^n C (\int |g(x)|^{2/(2-a)} dx)^{(2-a)/2} (\int |f(x)|^{2/a} dx)^{a/2} + (2\pi)^n CL (\int |g(x)|^{2/(2-a)} dx)^{(2-a)/2} ||u||_t^a \leq C_1(1+||u||_t^a)$

for some constant C_1 . In the last steps we have used assumptions (10), (11) and the Hölder inequality.

Now, it is easy to see that $||u||_t \leq M$ for some M.

3. Existence theorem for a system of equations. We formulate a similar theorem for a system of equations.

THEOREM 2. Let P_r , r = 1, ..., k, be polynomials of n variables and degrees T_r such that the polynomials $P_r(-i\partial)$ of the variable ∂ have real coefficients. Assume that

(13)
$$1+|\xi|^{T_r} \le C_r P_r(\xi), \quad \xi \in \mathbb{R}^n,$$

for some constants C_r , r = 1, ..., k. Let $t_r \in [0, T_r]$ and

$$m := \sum_{r=1}^{k} \sum_{0 \le l \le t_r} n^l, \quad m' = \sum_{r=1}^{k} \sum_{0 \le l < t_r - n/2} n^l.$$

Suppose that $F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^k$ satisfies the Carathéodory condition and, for any compact set $K \subset \mathbb{R}^n \times \mathbb{R}^m$, there exist a function $h_K \in L^2(\mathbb{R}^n)$ and a constant C_K that

(14)
$$|F(x, (v_{\alpha}^{r})|_{\alpha|\leq t_{r}, r=1,...,k})| \leq h_{K}(x) + C_{K}|(v_{\alpha}^{r})_{t_{r}-n/2\leq |\alpha|\leq t_{r}, r=1,...,k}|$$

for $(x, (v_{\alpha}^{r})_{|\alpha| < t_{r}-n/2, r=1,...,k}) \in K$ a.e. x. (We omit the last term in (14) if m = m'.) Suppose that there exist a sequence of open bounded sets $U_{1} \subset U_{2} \subset \ldots, \bigcup U_{j} = \mathbb{R}^{n}$, and a constant M > 0 such that the system of equations

(15)
$$P_l(D)u^l = \lambda F_j^l(x, (\partial^{\alpha} u^r)_{|\alpha| \le t_r, r=1,\dots,k}), \quad l = 1,\dots,k$$

 $(F = F^1, \ldots, F^k))$, has no solution in the set

$$\left\{ u = (u^1, \dots, u^k) \in \bigotimes_{r=1}^k \mathcal{H}^{t_r} : \sum_{r=1}^k ||u^r||_{t_r}^2 > M^2 \right\}$$

for $j = 1, 2, ..., \lambda = [0, 1]$. The functions F_j^l used above are defined by

$$F_{j}^{l}(x, (v_{\alpha}^{r})_{|\alpha| \le t_{r}, r=1,...,k}) := \begin{cases} F^{l}(x, (v_{\alpha}^{r})_{|\alpha| \le t_{r}, r=1,...,k}) & \text{for } x \in U_{j}, \\ 0 & \text{for } x \notin U_{j}, \end{cases}$$

Under these assumptions, the system of equations

$$P_l(D)u^l = F^l(x, (\partial^{\alpha} u^r)_{|\alpha| \le t_r, r=1,\dots,k}), \quad l = 1,\dots,k,$$

has a solution u in $X_{r=1}^k \mathcal{H}^{t_r}$ for which

$$\sum_{r=1}^{k} \|u^r\|_{t_r}^2 \le M^2.$$

We omit the proof, similar to the proof of Theorem 1.

P. Fijałkowski

EXAMPLE 2 (cf. Example 1). We define a class of systems for which Theorem 2 is valid.

Assume that P_r , r = 1, ..., k, are real polynomials of degrees $T_r = 2t_r$, positive for $\xi \in \mathbb{R}^n$ and such that the polynomials $P_r(-i\partial)$ of the variable ∂ have real coefficients and (13) is valid. Let $F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ satisfy the Carathéodory condition and (14). Assume that there exist constants 0 < a < 2, L > 0 and nonnegative functions $f \in L^{2/a}, g \in L^{2/(2-a)}$ such that

$$\begin{aligned} \langle v_{(0,\dots,0)}, F(x, (v_{\alpha}^{r})_{|\alpha| \leq t_{r}, r=1,\dots,k}) \rangle &\leq 0 \quad \text{if } |v_{(0,\dots,0)}| \geq g(x) \text{ a.e. } x \\ (F = (F^{1}, \dots, F^{k})), \text{ and} \\ |F(x, (v_{\alpha}^{r})_{|\alpha| \leq t_{r}, r=1,\dots,k})| \leq f(x) + L|(v_{\alpha}^{r})_{|\alpha| \leq t_{r}, r=1,\dots,k}|^{a} \\ & \text{if } |v_{(0,\dots,0)}| \leq g(x) \text{ a.e. } x. \end{aligned}$$

These assumptions give (13) and an a priori bound for solutions of the system (15) in the space $X_{r=1}^{k} \mathcal{H}^{t_r}$. The proof is similar to the one in Example 1 so it can be omitted.

References

- S. N. Bernstein, Sur les équations du calcul des variations, Ann. Sci. École Norm. Sup. 29 (1912), 431-485.
- F. E. Browder, Nonlinear functional analysis and nonlinear integral equations of Hammerstein and Urysohn type, in: Contributions to Nonlinear Functional Analysis,
 E. H. Zarantonello (ed.), Academic Press, New York 1971, 425–500.
- [3] P. Fijałkowski, On the equation x''(t) = F(t, x(t)) in the Sobolev space $H^1(\mathbb{R})$, Ann. Polon. Math. 53 (1991), 29–34.
- [4] A. Granas, R. Guenther and J. Lee, Nonlinear boundary value problems for ordinary differential equations, Dissertationes Math. 244 (1985).
- [5] L. Hörmander, The Analysis of Linear Partial Differential Operators, Springer, Berlin 1983.
- [6] M. A. Krasnosel'skiĭ, P. P. Zabreĭko, E. I. Pustyl'nik and P. E. Sobolevskiĭ, Integral Operators in Spaces of Summable Functions, Nauka, Moscow 1966 (in Russian).
- [7] N. G. Lloyd, Degree Theory, Cambridge Univ. Press, 1978.
- B. Przeradzki, On the solvability of singular BVPs for second-order ordinary differential equations, Ann. Polon. Math. 50 (1990), 279-289.

INSTITUTE OF MATHEMATICS UNIVERSITY OF ŁÓDŹ BANACHA 22 90-238 ŁÓDŹ, POLAND

> Reçu par la Rédaction le 1.8.1990 Révisé le 15.1.1991