Radial segments and conformal mapping of an annulus onto domains bounded by a circle and a *k*-circle

by TETSUO INOUE (Kobe)

Tadao Kubo in memoriam

Abstract. Let f(z) be a conformal mapping of an annulus $A(R) = \{1 < |z| < R\}$ and let f(A(R)) be a ring domain bounded by a circle and a k-circle. If $R(\varphi) = \{w : \arg w = \varphi\}$, and $\ell(\varphi) - 1$ is the linear measure of $f(A(R)) \cap R(\varphi)$, then we determine the sharp lower bound of $\ell(\varphi_1) + \ell(\varphi_2)$ for fixed φ_1 and φ_2 ($0 \le \varphi_1 \le \varphi_2 \le 2\pi$).

1. Introduction. We denote the *chordal distance* between the points w_1 and w_2 in the extended complex w-plane $\overline{\mathbb{C}}$ by $q(w_1, w_2)$, that is,

$$q(w_1, w_2) = |w_1 - w_2| / \sqrt{(1 + |w_1|^2)(1 + |w_2|^2)}$$

if w_1 and w_2 are both finite, and

$$q(w_1, \infty) = 1/\sqrt{1 + |w_1|^2}$$

We define the *chordal cross ratio* of quadruples w_1, w_2, w_3, w_4 in $\overline{\mathbb{C}}$ by

(1.1)
$$X(w_1, w_2, w_3, w_4) = \frac{q(w_1, w_2)q(w_3, w_4)}{q(w_1, w_3)q(w_2, w_4)}.$$

A Jordan curve Γ in $\overline{\mathbb{C}}$ is called a *k*-circle, where $0 < k \leq 1$, if for all ordered quadruples of points on Γ ,

(1.2)
$$X(w_1, w_2, w_3, w_4) + X(w_2, w_3, w_4, w_1) \le 1/k.$$

This definition of a k-circle was introduced by Blevins [2]. It is well known that a k-circle is a quasicircle (see [1]). One of the simplest k-circles is $\{w : |\arg w| = \arcsin k\}$. Throughout the note the value of arcsin and arccos is restricted between 0 and $\pi/2$.

In this note we consider the class C(k) of conformal mappings w = f(z) of an annulus $A(R) = \{1 < |w| < R\}$ whose images $D_f = f(A(R))$

¹⁹⁹¹ Mathematics Subject Classification: Primary 30C25.

are ring domains with inner boundary $f(|z| = 1) = \{|w| = 1\}$ and outer boundary Γ a k-circle. Let $R(\theta) = \{w : \arg w = \theta\}$ and let $\ell(\theta) - 1$ be the linear measure of $R(\theta) \cap f(A(R))$. Let $D(k, d_0)$ be the ring domain with Mod $D(k, d_0) = \log R$ and with inner boundary $\{|w| = 1\}$ and outer boundary $\{w : |\arg(w + d_0)| = \pi - \arcsin k\}$. Let $f_0(z)$ be a function mapping A(R) onto $e^{i\beta}D(k, d_0)$ and set

$$T(w) = \frac{w_1}{\overline{w}_1} \cdot \frac{1 + \overline{w}_1 w}{w + w_1} \,,$$

where

$$\beta = \arcsin(\sin\theta/(d_0(d_1 + \sqrt{d_1^2 - 1}))),$$

$$w_1 = (d_1 + \sqrt{d_1^2 - 1})e^{i\theta}, \quad d_1 = \sqrt{d_0^2 \cos^2\theta + \sin^2\theta}$$

We show the following theorem dealing with radial segments.

THEOREM. Under the above assumptions, we have the inequalities

(1.3)
$$\ell(\theta) + \ell(\pi - \theta) \ge 2(d_1 + \sqrt{d_1^2 - 1})$$

for $0 \le \theta \le \arccos(\sqrt{d_0^2 - 1/(2d_0)})$, while

(1.4) $\ell(\theta) + \ell(\pi - \theta) \ge 2d_0$

for $\arccos(\sqrt{d_0^2 - 1}/(2d_0)) < \theta \le \pi/2.$

For $0 \le \theta \le \theta_0$, equality is attained only for the function $F(z) = T(f_0(z))$ up to a rotation around the origin, where θ_0 is a positive constant depending only on k, and determined in the proof of the theorem.

We remark that this theorem can be reformulated as an estimate for $\ell(\varphi_1) + \ell(\varphi_2)$ $(0 \le \varphi_1 \le \varphi_2 \le 2\pi)$. For example, (1.3) is equivalent to

(1.5)
$$\ell(\varphi_1) + \ell(\varphi_2) \ge 2(d_2 + \sqrt{d_2^2 - 1})$$

with $d_2 = \sqrt{(1 + d_0^2 + (1 - d_0^2)\cos(\varphi_2 - \varphi_1))/2}$. Let w = f(z) be a conformal mapping of an annulus A(R) (with Γ not necessarily a k-circle). Mityuk [8] obtained the lower bound of $\ell(\theta) + \ell(\pi + \theta)$ ($0 \le \theta \le \pi$). Our theorem yields his result by considering the special case of $\varphi_2 - \varphi_1 = \pi$ and letting $k \to 0$.

2. Fundamental lemma. In this section we will verify the following fundamental lemma on the Koebe region for the class C(k).

FUNDAMENTAL LEMMA. Let w = f(z) be a function in C(k). Then the distance $d(\Gamma, 0)$ between the origin and Γ satisfies the inequality

(2.1) $d(\Gamma, 0) \ge d_0.$

Equality holds in (2.1) if and only if D_f is $D(k, d_0)$ up to a rotation around the origin.

This lemma can be restated as follows: The Koebe region for the class C(k) is generated by functions f arising from f_0 by rotations around the origin.

Proof of the fundamental lemma. First we verify this lemma under the condition that $\Gamma = f(|z| = R)$ contains the point at infinity.

Let w' be a point on Γ such that $|w'| = d(\Gamma, 0)$ (=a). We consider the circular symmetrization D_f^* of D_f with respect to the positive real axis.

The following statement is due to Blevins [2]: If Γ contains the point at infinity and a point w' with |w'| = a, then the circular symmetrization D_f^* of D_f with respect to the positive real axis is contained in the domain $D(k, a) = \{w : |\arg(w + a)| < \pi - \arcsin k\} \cap \{|w| > 1\}.$

Using this and a well known Jenkins result on circular symmetrization [6] together with the monotonicity property of the module, we obtain the inequalities

(2.2)
$$\operatorname{Mod} D_f \leq \operatorname{Mod} D_f^* \leq \operatorname{Mod} D(k, a)$$

where equality $\operatorname{Mod} D_f = \operatorname{Mod} D(k, a)$ holds if and only if D_f is obtained from D(k, a) by a rotation around the origin. From the relation

(2.3)
$$\operatorname{Mod} D_f = \operatorname{Mod} D(k, d_0) (= \log R)$$

(2.4)
$$\operatorname{Mod} D_f \leq \operatorname{Mod} D(k, a)$$

and monotonicity of the module, we have

$$(2.5) a \ge d_0 \,,$$

which implies the desired inequality (2.1). It is trivial that equality holds in (2.1) if and only if D_f is $D(k, d_0)$ up to a rotation around the origin (see [6]).

Now we consider the case when Γ does not contain the point at infinity. Without loss of generality we can assume $a = d(\Gamma, 0) \in \Gamma$. For a negative point -d on Γ , the Möbius transformation $\zeta(w) = (1 + dw)/(w + d)$ maps the points a and -d to (1 + ad)/(a + d)(< a) and the point at infinity, respectively. This means that the minimum of $d(\Gamma, 0)$ is attained (if and) only if Γ contains the point at infinity. Therefore the inequality (2.1) holds even when Γ does not contain the point at infinity.

3. Proof of the theorem. Let $w_1 = r_1 e^{i\theta}$ and $w_2 = r_2 e^{i(\pi-\theta)}$ $(= -r_2 e^{-i\theta})$ be the points on Γ such that the segments $(e^{i\theta}, r_1 e^{i\theta})$ and $(-e^{-i\theta}, -r_2 e^{-i\theta})$ are in D_f . Without loss of generality we can assume $r_1 = a, r_2 = at \ (a > 0, t \ge 1)$, because the case with $r_1 \ge r_2$ can be proved analogously.

We consider the Möbius transformation

(3.1)
$$h(w) = \frac{w_1}{\overline{w}_1} \cdot \frac{\overline{w}_1 w - 1}{w_1 - w},$$

T. Inoue

which maps f(A(R)) onto $D(\Gamma')$ with inner boundary $\{|h| = 1\}$ and outer boundary Γ' . Since the chordal cross ratio is invariant under Möbius transformations, Γ' is also a k-circle. Substituting $w = w_1$ and $w = w_2$ into (3.1) we have the inequalities

(3.2)
$$h(w_1) = \infty, \quad h(w_2) = -e^{2i\theta} \frac{a^2 t e^{-2i\theta} + 1}{a e^{i\theta} + a t e^{-i\theta}}.$$

Now the fundamental lemma and $|h(w_2)| \ge d_0$ imply

(3.3)
$$\frac{1+2a^2t\cos 2\theta + a^4t^2}{a^2(1+2t\cos 2\theta + t^2)} \ge d_0^2,$$

(3.4)
$$a^4 t^2 - a^2 (d_0^2 (1 + 2t \cos 2\theta + t^2) - 2t \cos 2\theta) + 1 \ge 0.$$

From (3.4) we easily obtain either

(3.5)
$$a^{2} \geq \frac{d_{0}^{2}(1+2t\cos 2\theta + t^{2}) - 2t\cos 2\theta}{2t^{2}} + \frac{\sqrt{(d_{0}^{2}(1+2t\cos 2\theta + t^{2}) - 2t\cos 2\theta)^{2} - 4t^{2}}}{2t^{2}}$$

or

(3.6)
$$a^{2} \leq \frac{d_{0}^{2}(1+2t\cos 2\theta + t^{2}) - 2t\cos 2\theta}{2t^{2}} - \frac{\sqrt{(d_{0}^{2}(1+2t\cos 2\theta + t^{2}) - 2t\cos 2\theta)^{2} - 4t^{2}}}{2t^{2}}.$$

Using the fundamental lemma we now show that (3.6) never holds: Let A and B be positive constants such that $A \pm \sqrt{A^2 - 1} = (B \pm \sqrt{B^2 - 1})^2$. Then $B = \sqrt{(A+1)/2}$. If $A = (d_0^2(1+2t\cos 2\theta + t^2) - 2t\cos 2\theta)/2t^2$, we have

$$(3.7) \quad B^{2} = \frac{A+1}{2} = \frac{d_{0}^{2}(1+2t\cos 2\theta + t^{2}) - 2t\cos 2\theta}{4t^{2}} + \frac{1}{2}$$
$$= d_{0}^{2}\frac{1+t^{2}}{4t^{2}} + \frac{(d_{0}^{2}-1)\cos 2\theta}{2t} + \frac{1}{2} \le \frac{d_{0}^{2}}{2} + \frac{d_{0}^{2}-1}{2} + \frac{1}{2} = d_{0}^{2}.$$

On the other hand, the inequality (3.6) implies

(3.8)
$$a^2 \le A - \sqrt{A^2 - 1} = (B - \sqrt{B^2 - 1})^2 \le B^2 \le d_0^2$$
,

contradicting $a \ge d_0 > 1$, because $a = d_0$ would imply $d_0 = B = 1$. Now we utilize (3.5) to obtain

(3.9)
$$(r_1 + r_2)^2 = a^2(1+t)^2$$

$$\geq \frac{(1+t)^2}{2t^2} (d_0^2(1+2t\cos 2\theta + t^2) - 2t\cos 2\theta + \sqrt{(d_0^2(1+2t\cos 2\theta + t^2) - 2t\cos 2\theta)^2 - 4t^2})$$

$$= \frac{(1+t)^2}{t} \left(d_0^2 \left(\frac{1+t^2}{2t} + \cos 2\theta \right) - \cos 2\theta + \sqrt{\left(d_0^2 \left(\frac{1+t^2}{2t} + \cos 2\theta \right) - \cos 2\theta \right)^2 - 1} \right)$$

$$\ge 4(d_0^2(1+\cos 2\theta) - \cos 2\theta + \sqrt{(d_0^2(1+\cos 2\theta) - \cos 2\theta)^2 - 1})$$

$$= 4(d_1 + \sqrt{d_1^2 - 1})^2 \quad (d_1 = \sqrt{d_0^2 \cos^2 \theta + \sin^2 \theta}),$$

which implies $r_1 + r_2 \ge 2(d_1 + \sqrt{d_1^2 - 1})$. Since $\ell(\theta) \ge r_1$ and $\ell(\pi - \theta) \ge r_2$, we obtain the desired inequality (1.3). Using the fundamental lemma and (3.9), we conclude that equality in (1.3) is attained only if t = 1, $r_1 = r_2 = \ell(\theta) = \ell(\pi - \theta) = d_1 + \sqrt{d_1^2 - 1}$, and only if f(A(R)) is a rotation of $D(k, d_0)$ around the origin.

It follows trivially from the fundamental lemma that

(3.10)
$$\ell(\theta) \ge d_0, \quad \ell(\pi - \theta) \ge d_0.$$

For $\arccos(\sqrt{d_0^2 - 1}/(2d_0)) < \theta \le \pi/2$, by a simple calculation, we conclude that

(3.11)
$$d_1 + \sqrt{d_1^2 - 1} < d_0,$$

which implies that the inequality (1.4) is better than (1.3) in this case.

Next we discuss the case of equality in (1.3). For the case of $w_1 = a_0 e^{i\theta}$, $w_2 = -a_0 e^{-i\theta}$ $(a_0 = d_1 + \sqrt{d_1^2 - 1})$, we have

$$(3.12) \quad h(w_2) = -e^{2i\theta} \frac{1 + a_0^2 e^{-2i\theta}}{a_0(e^{i\theta} + e^{-i\theta})} = -\frac{a_0^2 + e^{2i\theta}}{2a_0\cos\theta} = -d_0 e^{i\beta} \qquad (\beta \text{ real}),$$
$$a_0^2 + e^{2i\theta} = 2d_0 a_0 e^{i\beta}\cos\theta,$$
$$\sin 2\theta = 2d_0 a_0 \sin\beta\cos\theta,$$
$$\sin \theta = d_0 a_0 \sin\beta,$$
$$\beta = \arcsin(\sin\theta/(d_0 a_0)) \qquad (0 \le \beta < \theta).$$

Now we determine the value θ_0 mentioned in the theorem, as follows: For the extremal function F(z), the point $h(\infty) = -w_1 = -a_0 e^{i\theta}$ must be contained in the complement of $e^{i\beta}D(k, d_0)$, because the extremal function must be conformal. Considering the rotation around the origin through $\pi - \beta$, we see that the point $a_0 e^{i(\theta - \beta)}$ must lie in the closed domain $\{w : |\arg(w - d_0)| \leq \arcsin k\}$. We consider two functions of the angle θ ,

(3.13)
$$Y_1(\theta) = a_0 = \sqrt{(d_0^2 - 1)\cos^2 \theta + 1} + \sqrt{(d_0^2 - 1)\cos^2 \theta},$$

(3.14)
$$Y_2(\theta) = d_0 k / \sin(\theta_2 - \theta) \quad (\theta_2 = \arcsin k),$$

where (3.14) represents the rays $\{w : |\arg(w - d_0)| = \arcsin k\}$ in polar coordinates (Y_2, θ) . The functions $Y = Y_1(\theta)$ and $Y = Y_2(\theta)$ are, respectively, T. Inoue

strictly decreasing and increasing, and their values run from $d_0 + \sqrt{d_0^2 - 1}$ to 1 ($0 \le \theta \le \pi/2$) and from d_0 to ∞ ($0 \le \theta \le \theta_2$), respectively. Therefore the curves $Y = Y_1(\theta)$ and $Y = Y_2(\theta)$ intersect at some point $\theta = \theta_3$ ($< \theta_2$). Since

$$a_0 = \sqrt{(1 - d_0^2)\sin^2\theta + d_0^2} + \sqrt{(1 - d_0^2)\sin^2\theta + d_0^2 - 1}$$

(which implies that $\beta = \beta(\theta)$ is a strictly decreasing function of θ for $0 \leq \theta \leq \pi/2$) and $\beta(\theta) < \theta$, the function $\theta - \beta(\theta)$ is non-negative and strictly increasing for $0 \leq \theta \leq \pi/2$ and varies from 0 to $\pi/2 - \arcsin(1/d_0)$ there. Therefore there exists a constant θ_0 such that $0 \leq \theta - \beta \leq \theta_3$ for $0 \leq \theta \leq \theta_0$. Then the point $a_0 e^{i(\theta - \beta)}$ is contained in $\{w : |\arg(w - d_0)| \leq \arcsin k\}$ for $0 \leq \theta \leq \theta_0$.

Since T(w) is the inverse function of (3.1) the function F(z) maps A(R) onto the extremal domain which has two points $w_1 = a_0 e^{i\theta}$ and $w_2 = a_0 e^{i(\pi-\theta)}$ on the boundary F(|z|=R) for $0 \le \theta \le \theta_0$, and so the theorem has been verified.

References

- [1] L. V. Ahlfors, Quasiconformal reflections, Acta Math. 109 (1963), 291-301.
- D. K. Blevins, Conformal mappings of domains bounded by quasiconformal circles, Duke Math. J. 40 (1973), 877–883.
- [3] —, Harmonic measure and domains bounded by quasiconformal circles, Proc. Amer. Math. Soc. 41 (1973), 559–564.
- [4] —, Covering theorems for univalent functions mapping onto domains bounded by quasiconformal circles, Canad. J. Math. 28 (1976), 627–631.
- [5] W. K. Hayman, Multivalent Functions, Cambridge Univ. Press, 1958.
- J. A. Jenkins, Some uniqueness results in the theory of symmetrization, Ann. of Math. 61 (1955), 106-115.
- [7] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, second ed., Springer, 1973.
- [8] I. P. Mityuk, Principle of symmetrization for the annulus and some of its applications, Sibirsk. Mat. Zh. 6 (1965), 1282–1291 (in Russian).

DEPARTMENT OF APPLIED MATHEMATICS KOBE UNIVERSITY OF MERCANTILE MARINE FUKAE MINAMIMACHI 5-1-1 HIGASHINADA-KU KOBE, JAPAN 658

> Reçu par la Rédaction le 22.10.1990 Révisé le 22.4.1991