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Abstract. Let f(z) be a conformal mapping of an annulus A(R) = {1 < |z| < R} and
let f(A(R)) be a ring domain bounded by a circle and a k-circle. If R(ϕ)={w : argw = ϕ},
and `(ϕ)− 1 is the linear measure of f(A(R)) ∩R(ϕ), then we determine the sharp lower
bound of `(ϕ1) + `(ϕ2) for fixed ϕ1 and ϕ2 (0 ≤ ϕ1 ≤ ϕ2 ≤ 2π).

1. Introduction. We denote the chordal distance between the points
w1 and w2 in the extended complex w-plane C by q(w1, w2), that is,

q(w1, w2) = |w1 − w2|/
√

(1 + |w1|2)(1 + |w2|2)

if w1 and w2 are both finite, and

q(w1,∞) = 1/
√

1 + |w1|2.
We define the chordal cross ratio of quadruples w1, w2, w3, w4 in C by

(1.1) X(w1, w2, w3, w4) =
q(w1, w2)q(w3, w4)
q(w1, w3)q(w2, w4)

.

A Jordan curve Γ in C is called a k-circle, where 0 < k ≤ 1, if for all
ordered quadruples of points on Γ ,

(1.2) X(w1, w2, w3, w4) +X(w2, w3, w4, w1) ≤ 1/k .

This definition of a k-circle was introduced by Blevins [2]. It is well known
that a k-circle is a quasicircle (see [1]). One of the simplest k-circles is
{w : | argw| = arcsin k}. Throughout the note the value of arcsin and
arccos is restricted between 0 and π/2.

In this note we consider the class C(k) of conformal mappings w =
f(z) of an annulus A(R) = {1 < |w| < R} whose images Df = f(A(R))
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are ring domains with inner boundary f(|z| = 1) = {|w| = 1} and outer
boundary Γ a k-circle. Let R(θ) = {w : arg w = θ} and let `(θ) − 1 be
the linear measure of R(θ) ∩ f(A(R)). Let D(k, d0) be the ring domain
with ModD(k, d0) = logR and with inner boundary {|w| = 1} and outer
boundary {w : | arg(w + d0)| = π − arcsin k}. Let f0(z) be a function
mapping A(R) onto eiβD(k, d0) and set

T (w) =
w1

w1
· 1 + w1w

w + w1
,

where

β = arcsin(sin θ/(d0(d1 +
√
d2
1 − 1))) ,

w1 = (d1 +
√
d2
1 − 1)eiθ , d1 =

√
d2
0 cos2 θ+sin2 θ .

We show the following theorem dealing with radial segments.

Theorem. Under the above assumptions, we have the inequalities

(1.3) `(θ) + `(π − θ) ≥ 2(d1 +
√
d2
1 − 1)

for 0 ≤ θ ≤ arccos(
√
d2
0 − 1/(2d0)), while

(1.4) `(θ) + `(π − θ) ≥ 2d0

for arccos(
√
d2
0 − 1/(2d0)) < θ ≤ π/2.

For 0 ≤ θ ≤ θ0, equality is attained only for the function F (z) = T (f0(z))
up to a rotation around the origin, where θ0 is a positive constant depending
only on k , and determined in the proof of the theorem.

We remark that this theorem can be reformulated as an estimate for
`(ϕ1) + `(ϕ2) (0 ≤ ϕ1 ≤ ϕ2 ≤ 2π). For example, (1.3) is equivalent to

(1.5) `(ϕ1) + `(ϕ2) ≥ 2(d2 +
√
d2
2 − 1)

with d2 =
√

(1 + d2
0 + (1− d2

0) cos(ϕ2 − ϕ1))/2. Let w = f(z) be a confor-
mal mapping of an annulus A(R) (with Γ not necessarily a k-circle). Mityuk
[8] obtained the lower bound of `(θ) + `(π + θ) (0 ≤ θ ≤ π). Our theorem
yields his result by considering the special case of ϕ2 − ϕ1 = π and letting
k → 0.

2. Fundamental lemma. In this section we will verify the following
fundamental lemma on the Koebe region for the class C(k).

Fundamental Lemma. Let w = f(z) be a function in C(k). Then the
distance d(Γ, 0) between the origin and Γ satisfies the inequality

(2.1) d(Γ, 0) ≥ d0 .

Equality holds in (2.1) if and only if Df is D(k, d0) up to a rotation around
the origin.
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This lemma can be restated as follows: The Koebe region for the class
C(k) is generated by functions f arising from f0 by rotations around the
origin.

P r o o f o f t h e f u n d a m e n t a l l e m m a. First we verify this lemma
under the condition that Γ = f(|z| = R) contains the point at infinity.

Let w′ be a point on Γ such that |w′| = d(Γ, 0) (=a). We consider the
circular symmetrization D∗f of Df with respect to the positive real axis.

The following statement is due to Blevins [2]: If Γ contains the point
at infinity and a point w′ with |w′| = a, then the circular symmetrization
D∗f of Df with respect to the positive real axis is contained in the domain
D(k, a) = {w : | arg(w + a)| < π − arcsin k} ∩ {|w| > 1}.

Using this and a well known Jenkins result on circular symmetrization [6]
together with the monotonicity property of the module, we obtain the in-
equalities

(2.2) ModDf ≤ ModD∗f ≤ ModD(k, a)

where equality ModDf = ModD(k, a) holds if and only if Df is obtained
from D(k, a) by a rotation around the origin. From the relation

(2.3) ModDf = ModD(k, d0)(= logR) ,
(2.4) ModDf ≤ ModD(k, a)

and monotonicity of the module, we have

(2.5) a ≥ d0 ,

which implies the desired inequality (2.1). It is trivial that equality holds in
(2.1) if and only if Df is D(k, d0) up to a rotation around the origin (see [6]).

Now we consider the case when Γ does not contain the point at infinity.
Without loss of generality we can assume a = d(Γ, 0) ∈ Γ. For a negative
point −d on Γ, the Möbius transformation ζ(w) = (1 + dw)/(w + d) maps
the points a and −d to (1 + ad)/(a + d)(< a) and the point at infinity,
respectively. This means that the minimum of d(Γ, 0) is attained (if and)
only if Γ contains the point at infinity. Therefore the inequality (2.1) holds
even when Γ does not contain the point at infinity.

3. Proof of the theorem. Let w1 = r1e
iθ and w2 = r2e

i(π−θ)

(= −r2e−iθ) be the points on Γ such that the segments (eiθ, r1eiθ) and
(−e−iθ,−r2e−iθ) are in Df . Without loss of generality we can assume
r1 = a, r2 = at (a > 0, t ≥ 1), because the case with r1 ≥ r2 can be
proved analogously.

We consider the Möbius transformation

(3.1) h(w) =
w1

w1
· w1w − 1
w1 − w

,
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which maps f(A(R)) onto D(Γ ′) with inner boundary {|h| = 1} and outer
boundary Γ ′. Since the chordal cross ratio is invariant under Möbius trans-
formations, Γ ′ is also a k-circle. Substituting w = w1 and w = w2 into (3.1)
we have the inequalities

(3.2) h(w1) =∞, h(w2) = −e2iθ a
2te−2iθ + 1

aeiθ + ate−iθ
.

Now the fundamental lemma and |h(w2)| ≥ d0 imply

(3.3)
1 + 2a2t cos 2θ + a4t2

a2(1 + 2t cos 2θ + t2)
≥ d2

0 ,

(3.4) a4t2 − a2(d2
0(1 + 2t cos 2θ + t2)− 2t cos 2θ) + 1 ≥ 0 .

From (3.4) we easily obtain either

a2 ≥ d2
0(1 + 2t cos 2θ + t2)− 2t cos 2θ

2t2
(3.5)

+

√
(d2

0(1 + 2t cos 2θ + t2)− 2t cos 2θ)2 − 4t2

2t2
or

a2 ≤ d2
0(1 + 2t cos 2θ + t2)− 2t cos 2θ

2t2
(3.6)

−
√

(d2
0(1 + 2t cos 2θ + t2)− 2t cos 2θ)2 − 4t2

2t2
.

Using the fundamental lemma we now show that (3.6) never holds: Let A
and B be positive constants such that A±

√
A2 − 1 = (B±

√
B2 − 1)2. Then

B =
√

(A+ 1)/2. If A = (d2
0(1 + 2t cos 2θ + t2)− 2t cos 2θ)/2t2, we have

B2 =
A+ 1

2
=
d2
0(1 + 2t cos 2θ + t2)− 2t cos 2θ

4t2
+

1
2

(3.7)

= d2
0

1 + t2

4t2
+

(d2
0 − 1) cos 2θ

2t
+

1
2
≤ d2

0

2
+
d2
0 − 1

2
+

1
2

= d2
0 .

On the other hand, the inequality (3.6) implies

(3.8) a2 ≤ A−
√
A2 − 1 = (B −

√
B2 − 1)2 ≤ B2 ≤ d2

0 ,

contradicting a ≥ d0 > 1, because a = d0 would imply d0 = B = 1.
Now we utilize (3.5) to obtain

(r1 + r2)2 = a2(1 + t)2(3.9)

≥ (1 + t)2

2t2
(d2

0(1 + 2t cos 2θ + t2)− 2t cos 2θ

+
√

(d2
0(1 + 2t cos 2θ + t2)− 2t cos 2θ)2 − 4t2)



Radial segments and conformal mapping of annulus 161

=
(1 + t)2

t

(
d2
0

(
1 + t2

2t
+ cos 2θ

)
− cos 2θ

+

√(
d2
0

(
1 + t2

2t
+ cos 2θ

)
− cos 2θ

)2

− 1
)

≥ 4(d2
0(1 + cos 2θ)− cos 2θ +

√
(d2

0(1 + cos 2θ)− cos 2θ)2 − 1)

= 4(d1 +
√
d2
1 − 1)2 (d1 =

√
d2
0 cos2 θ + sin2 θ) ,

which implies r1 + r2 ≥ 2(d1 +
√
d2
1 − 1). Since `(θ) ≥ r1 and `(π− θ) ≥ r2,

we obtain the desired inequality (1.3). Using the fundamental lemma and
(3.9), we conclude that equality in (1.3) is attained only if t = 1, r1 = r2 =
`(θ) = `(π−θ) = d1 +

√
d2
1 − 1, and only if f(A(R)) is a rotation of D(k, d0)

around the origin.
It follows trivially from the fundamental lemma that

(3.10) `(θ) ≥ d0, `(π − θ) ≥ d0 .

For arccos(
√
d2
0 − 1/(2d0)) < θ ≤ π/2, by a simple calculation, we conclude

that

(3.11) d1 +
√
d2
1 − 1 < d0 ,

which implies that the inequality (1.4) is better than (1.3) in this case.
Next we discuss the case of equality in (1.3). For the case of w1 = a0e

iθ,
w2 = −a0e

−iθ (a0 = d1 +
√
d2
1 − 1), we have

(3.12) h(w2) = −e2iθ 1 + a2
0e
−2iθ

a0(eiθ + e−iθ)
= −a

2
0 + e2iθ

2a0 cos θ
= −d0e

iβ (β real) ,

a2
0 + e2iθ = 2d0a0e

iβ cos θ ,
sin 2θ = 2d0a0 sinβ cos θ ,

sin θ = d0a0 sinβ ,
β = arcsin(sin θ/(d0a0)) (0 ≤ β < θ) .

Now we determine the value θ0 mentioned in the theorem, as follows:
For the extremal function F (z), the point h(∞) = −w1 = −a0e

iθ must be
contained in the complement of eiβD(k, d0), because the extremal function
must be conformal. Considering the rotation around the origin through
π − β, we see that the point a0e

i(θ−β) must lie in the closed domain {w :
|arg (w − d0)| ≤ arcsin k}. We consider two functions of the angle θ,

(3.13) Y1(θ) = a0 =
√

(d2
0 − 1) cos2 θ + 1 +

√
(d2

0 − 1) cos2 θ ,
(3.14) Y2(θ) = d0k/ sin(θ2 − θ) (θ2 = arcsin k) ,

where (3.14) represents the rays {w : |arg (w − d0)| = arcsin k} in polar co-
ordinates (Y2, θ). The functions Y = Y1(θ) and Y = Y2(θ) are, respectively,
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strictly decreasing and increasing, and their values run from d0 +
√
d2
0 − 1

to 1 (0 ≤ θ ≤ π/2) and from d0 to ∞ (0 ≤ θ ≤ θ2), respectively. Therefore
the curves Y = Y1(θ) and Y = Y2(θ) intersect at some point θ = θ3 (< θ2).
Since

a0 =
√

(1− d2
0) sin2 θ + d2

0 +
√

(1− d2
0) sin2 θ + d2

0 − 1

(which implies that β = β(θ) is a strictly decreasing function of θ for 0 ≤
θ ≤ π/2) and β(θ) < θ, the function θ − β(θ) is non-negative and strictly
increasing for 0 ≤ θ ≤ π/2 and varies from 0 to π/2 − arcsin(1/d0) there.
Therefore there exists a constant θ0 such that 0 ≤ θ−β ≤ θ3 for 0 ≤ θ ≤ θ0.
Then the point a0e

i(θ−β) is contained in {w : | arg(w − d0)| ≤ arcsin k} for
0 ≤ θ ≤ θ0.

Since T (w) is the inverse function of (3.1) the function F (z) maps A(R)
onto the extremal domain which has two points w1 = a0e

iθ and w2 =
a0e

i(π−θ) on the boundary F (|z| = R) for 0 ≤ θ ≤ θ0, and so the theorem
has been verified.
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