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Affine surfaces with parallel shape operators

by W Lodzimierz Jelonek (Kraków)

Abstract. We study affine nondegenerate Blaschke hypersurfaces whose shape op-
erators are parallel with respect to the induced Blaschke connections. We classify such
surfaces and thus give an exact classification of extremal locally symmetric surfaces, first
described by F. Dillen.

1. Introduction. There are several results concerning the affine hyper-
surfaces whose cubic forms C are parallel with respect to the affine connec-
tion ∇ or to ∇∧ (the Levi-Cività connection of the affine metric). Amongst
others this problem was investigated by M. Magid, K. Nomizu and U. Pinkall
(see for example [3], [6]). The aim of our paper is to characterize affine
hypersurfaces with an equiaffine structure (∇, ξ) whose shape operator is
parallel with respect to ∇ or ∇∧. In particular, we classify such surfaces in
the case when (∇, ξ) is a Blaschke structure .

2. Notations. Let M be a smooth, oriented and connected manifold,
V a real vector space with a fixed orientation form o, dimV = dimM + 1.
When V = Rn+1 we assume o = det, where det is the standard orientation
form on Rn+1. Let f : M → V be an immersion. Any subbundle Ξ of
f∗TV = M × V transversal to f∗(TM) (i.e. f∗TV = f∗(TM)⊕ Ξ) defines
an affine connection in the following way (f∗(X) := df(X)):

π(DXf∗Y ) = f∗(∇XY )

where we denote by D the standard flat connection on any vector space and
π is the projection π : f∗TV → f∗(TM) parallel to Ξ. If ξ is a nowhere
vanishing (n.v.) section of Ξ then it defines a symmetric form g by

DX(f∗Y ) = f∗(∇XY ) + g(X,Y )ξ .
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An immersion f is called nondegenerate if g is a nondegenerate form. In
the rest of our paper we assume this condition for f . ξ defines also the shape
operator S and the transversal connection form τ by (see [5])

DXξ = −f∗(SX) + τ(X)ξ .

With ξ there is associated the volume element νξ = f∗(iξo). The connection
∇ is called equiaffine if there exists an n.v. section ξ of Ξ for which τ = 0
(this means ∇νξ = 0); ξ is then called an equiaffine normal field. For a given
equiaffine connection an equiaffine normal field is uniquely determined up to
a constant factor. An equiaffine structure (∇, ξ) on a hypersurface (M,f)
is called a Blaschke structure when νξ = νg, where νg is the volume element
of the nondegenerate metric g; ξ is then called an affine normal field (see
[4], [5]). For a hypersurface (M,f) with an equiaffine structure (∇, ξ) the
following equations hold:

∇S(X,Y ) = ∇S(Y,X) ,(C)
g(X,SY ) = g(SX, Y ) .(R)

A hypersurface with an equiaffine structure is called an equiaffine sphere if
S = λ IdTM . In that case from (C) it follows that λ is constant.

The conormal field ξ∨ : M → V ∗ is defined by the conditions

〈ξ∨, f∗(TM)〉 = 0 , 〈ξ∨, ξ〉 = 1 ,

where 〈 , 〉 : V ∗ × V → R is the standard bilinear form 〈φ, v〉 := φ(v). ξ∨

is an immersion whenever f is a nondegenerate immersion, and defines a
connection ∇∨ by

DX(ξ∨∗ Y ) = (ξ∨)∗(∇∨XY )−B(X,Y )ξ∨ (B(X,Y ) = g(X,SY )) .

Let ∇∧ be the Levi-Cività connection for g and let (∇, ξ) be an equiaffine
structure. Then

(1) ∇∧ = 1
2 (∇+∇∨) ,

(2) ∇ = ∇∧ +K , ∇∨ = ∇∧ −K ,

where K is a symmetric (1, 2)-tensor. We also have

(3) C(X,Y, Z) = ∇g(X,Y, Z) = −2g(K(X,Y ), Z) .

C is a symmetric form called the cubic form. A Blaschke structure is char-
acterized by the apolarity condition:

(A)
∑

gijC(X, ∂i, ∂j) = 0 .

Denote by R the curvature tensor for ∇. Then

(4) R(X,Y )Z = g(Y,Z)SX − g(X,Z)SY .
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3. The shape operator and the curvature tensor. Now we consider
the equation ∇S = 0.

Proposition 1. Let (M,f) be a nondegenerate hypersurface with an
equiaffine structure (∇, ξ). Then the following conditions are equivalent :

(a) ∇S = 0 . (b) ∇∧S = 0 . (c) ∇∨S = 0 .

P r o o f. From (2) it follows that

∇S(X,Y ) = ∇∧S(X,Y )− SK(X,Y ) +K(X,SY ) ,(5)
∇∨S(X,Y ) = ∇∧S(X,Y ) + SK(X,Y )−K(X,SY ) .(6)

(b)⇒(a),(c). Let ∇∧S = 0. Then from (5) and (C) it follows that

−SK(X,Y ) +K(X,SY ) = −SK(Y,X) +K(Y, SX) .

As K is symmetric we obtain

(7) K(X,SY ) = K(SX, Y ) .

From (3) we then have

∇g(SX, Y, Z) = ∇g(X,SY,Z) = ∇g(X,Y, SZ)

as ∇g is symmetric. Hence using (R) and (3) we get

g(K(SX, Y ), Z) = g(K(X,Y ), SZ) = g(SK(X,Y ), Z)

for any X,Y, Z. As g is nondegenerate this means K(SX, Y ) = SK(X,Y )
and from (5), (6) we obtain ∇S = 0, ∇∨S = 0.

(a)⇒(b). From (R) and ∇S = 0 we have

∇g(X,SY,Z) = ∇g(X,Y, SZ)

for any X, Y , Z, which implies K(X,SY ) = SK(X,Y ) as above. Hence
from (6) we get ∇∧S = 0.

In a similar way one can prove (c)⇒(b) in view of the equality ∇g =
−∇∨g, which follows from (1) and ∇∧g = 0.

R e m a r k. Note that the equivalence ∇S = 0⇔ ∇∧S = 0 distinguishes
the shape operator from other affine tensors. For example the equivalence
∇C = 0⇔ ∇∧C = 0 does not hold (see [3], [6]).

Theorem 1. Let (M,f) be a nondegenerate hypersurface with an equi-
affine structure (∇, ξ) and let S be the shape operator. Then the following
conditions are equivalent :

(a) R.S = 0 where R acts on S as a derivation, i.e.

(R(X,Y ).S)Z = R(X,Y )(SZ)− S(R(X,Y )Z) = 0 .

(b) Either S = λ IdTM or (S2 = 0 and rankS ≤ 1).
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P r o o f. Fix x0 ∈M . Denote Sx0 also by S. Condition (a) is equivalent
to

(8) g(Y,Z)S2X − g(X,Z)S2Y = g(SY,Z)SX − g(SX,Z)SY .

Let λ, µ ∈ C be two eigenvalues of S and let X, Y ∈ T cx0
M be eigenvectors

of S, SX = λX, SY = µY . From (8) we obtain

(λ2 − µλ)g(Y,Z)X = (µ2 − µλ)g(X,Z)Y

for every Z. It follows that λ2 − µλ = 0, µ2 − µλ = 0, which implies µ = λ.
Therefore S has exactly one real eigenvalue.

It follows that either S = λI or there exist two nonzero vectors X,Y ∈
Tx0M such that SX = λX and SY = λY +X. From (8) we then obtain

g(Y, Z)λ2X − g(X,Z)(λ2Y + 2λX) = g(Y, Z)λ2X − g(X,Z)λ2Y ,

which means that λg(X,Z)X = 0 for all Z, and thus λ = 0. If we take in
the equation (8) X as above then we obtain

−g(X,Z)S2Y = 0

for all Z, Y , hence S2 = 0. This implies that in that case (a) is equivalent to
g(SY,Z)SX = g(SX,Z)SY . Hence for all X, Y , SX and SY are linearly
dependent. It follows that rank S ≤ 1.

As M is connected, assuming condition (a), if there exists a point x0

such that Sx0 = λI and λ 6= 0 then S = λI on the whole of M . Otherwise
S2 = 0 and rankS ≤ 1 on M .

Corollary 1. Let (M,f) be a nondegenerate hypersurface with an equi-
affine structure (∇, ξ) and a parallel shape operator. Then either (M,f) is
an equiaffine sphere or (S2 = 0 and rankS = 1).

Corollary 2. A locally strongly convex hypersurface (M,f) with an
equiaffine structure (∇, ξ) is an equiaffine sphere if and only if its shape
operator is ∇-parallel.

R e m a r k. When rankS > 1 we do not have to assume that (∇, ξ) is an
equiaffine structure to deduce Corollary 1. We show that an affine structure
(∇, ξ) such that ∇S = 0 and rankS > 1 is an equiaffine structure, i.e. τ = 0.
For an affine structure (∇, ξ) the Codazzi equation has the form (see [5])

(C1) ∇S(X,Y )−∇S(Y,X) = τ(X)SY − τ(Y )SX .

If SX = 0 then take Y such that SY 6= 0. From (C1) we obtain τ(X) =
0. Let now X be a vector for which SX 6= 0. Since rankS > 1 there
exists Y such that SX and SY are linearly independent. (C1) implies that
τ(X)SY = τ(Y )SX, which means τ(X) = 0 also in that case and proves
the equality τ = 0.
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Corollary 3. Let (M,f) be a nondegenerate hypersurface with an affine
structure (∇, ξ) for which the shape operator is ∇-parallel. If there exists
x0 ∈ M such that rankSx0 > 1 then (∇, ξ) is an equiaffine structure and
S = λI.

4. The classification theorem. F. Dillen [1] obtained examples of
surfaces with locally symmetric Blaschke connections and parallel shape
operators. These examples are given by

x(u, v) = (u cos(v) + f(v), u sin(v) + g(v), v) ,
x(u, v) = (u cosh(v) + f(v), u sinh(v) + g(v), v) .

Note that the examples are not in one-to-one correspondence with pairs
(f, g) of smooth functions; for example, (f, g) and (f + h cos, g + h sin) give
the same surface. Each of these examples is affinely equivalent to one of the
surfaces (R2, fi,φ) given below, which are special cases of Dillen’s examples.

Let φ ∈ C∞(R) be any smooth function. Set

v1(x) := (cosx,− sinx, 0) , V1(x) := (sinx, cosx, 0) ,
v2(x) := (coshx, sinhx, 0) , V2(x) := (sinhx, coshx, 0) .

Then we have
V ′i = vi , i = 1, 2 (f ′ := df/dx) .

Let wi := (w1
i , w

2
i , 0) = w1

i e1 + w2
i e2 satisfy the equation

(9) w′′i = φvi − Vi
and define ui := wi − xe3. Set ε1 = 1, ε2 = −1.

If we define fi,φ : R2 → R3 by

fi,φ(x1, x2) := ui(x1) + x2vi(x1)

then
ξi,φ(x1, x2) := −Vi(x1)

is an affine normal field for (R2, fi,φ) and it is easy to check directly the
equalities

Γ 2
11 = −εix2 + φ(x1) , Γ ijk = 0 for other i, j, k ,

S∂1 = ∂2 , S∂2 = 0 ,
g(∂1, ∂1) = 1 , g(∂1, ∂2) = εi , g(∂2, ∂2) = 0 ,

in the standard coordinates on R2. fi,φ is not uniquely determined by φ (by
virtue of (9)). In particular, for φ = 0 we can take as fi,0 the immersion fi:

f1(x1, x2) := (sinx1 + x2 cosx1, cosx1 − x2 sinx1,−x1) ,

f2(x1, x2) := (− sinhx1 + x2 coshx1,− coshx1 + x2 sinhx1,−x1) .
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Lemma. Let S be a parallel shape operator on an affine surface (M,f),
dimM = 2, such that S2 = 0 and rankS = 1. Then around any x0 ∈ M
there exists a local chart on M with canonical basis {∂1 = ∂/∂x1, ∂2 =
∂/∂x2} for which

(S1) S∂1 = ∂2 , S∂2 = 0 ,

and g(∂1, ∂1) = 1, g(∂1, ∂2) = ε where ε ∈ {−1, 1}. The frame {∂1, ∂2} is
∇∧-parallel.

P r o o f (we follow [1]). Let X be a local field on M satisfying

(10) g(X,X) = 1, g(X,SX) = ε .

Then X and SX are linearly independent. From (10) we obtain

(11) g(∇∧YX,X) = 0 , g(∇∧YX,SX) = 0 ,

which follows from ∇∧S = 0, ∇∧g = 0 and from (R). This means ∇∧X = 0
and also ∇∧SX = 0 as ∇∧S = 0. Take

(12) ∂1 = X , ∂2 = SX .

Then
[∂1, ∂2] = ∇∧∂1∂2 −∇∧∂2∂1 = 0 ,

which means that there exists a chart (U, x1, x2) on M such that ∂i = ∂/∂xi.
From (12) it also follows that ∇∧∂i = 0.

Proposition 2. Let (M,f) be a nondegenerate hypersurface in R3 with
an equiaffine structure (∇, ξ) and a parallel shape operator , which is not a
sphere. Then ∇R = 0 (i.e. ∇ is locally symmetric) if and only if (∇, cξ) is
a Blaschke structure for a certain nonzero c ∈ R.

P r o o f. Note that in our case the equation

(K) K(X, ∂2) = 0

is equivalent to ∇R = 0. Indeed, from (4) and ∇S = 0 it follows that

∇R(W,X, Y )Z = ∇g(W,Y,Z)SX −∇g(W,X,Z)SY .

We have to show that ∇R(W,∂1, ∂2, Z) = 0 for all W,Z, which by (S1) is
equivalent to

∇g(W,∂2, Z)∂2 = 0 .
By (3) this is equivalent to g(W,K(∂2, Z)) = 0. Hence ∇R = 0 is equivalent
to (K).
⇐ Let (U, x1, x2) be a chart on M as in the Lemma. The apolarity

condition (A) in our case has the form (as g11 = 0, g12 = ε, g22 = −1)

(A1) 2εC(X, ∂1, ∂2)− C(X, ∂2, ∂2) = 0 .
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From Proposition 1 using (3) we get K(∂2, ∂2) = S2K(∂1, ∂1) = 0, hence
C(X, ∂2, ∂2) = 0. From (A1) we obtain

C(X, ∂1, ∂2) = −2g(X,K(∂1, ∂2)) = 0 ,

hence K∂2 = 0, which implies ∇R = 0.
⇒ ∇R = 0 implies (K), hence K∂2 = 0, by virtue of (3) yielding the

apolarity condition (A1); hence ∇ is a Blaschke connection.

Theorem 2. Let (M,f) be a nondegenerate hypersurface in R3 with an
equiaffine structure (∇, ξ) such that ∇S = 0 and ∇R = 0. Then one of the
conditions below holds:

(a) (M,f) is a nondegenerate quadratic surface.
(b) (M,f) is affinely equivalent to one of the surfaces (R2, fi,φ).
(c) S = 0, i.e. (M,f) is an improper equiaffine sphere.

P r o o f. From the Lemma, (2) and (K) we have ∇∂2∂2 = ∇∂1∂2 = 0,
∇∂1∂1 = Γ 2

11∂2 as S(∇∂1∂1) = ∇∂1∂2 = 0. Hence

(13) εΓ 2
11 = g(∇∂1∂1, ∂1) = −(1/2)∇g(∂1, ∂1, ∂1)

in view of (3) as ∇∂1∂1 = K(∂1, ∂1). This implies that

∂2Γ
2
11 = ε∇g(∂2,∇∂1∂1, ∂1) + εg(∇∂2∇∂1∂1, ∂1) .

But (K) and (3) imply

∇g(∂2,∇∂1∂1, ∂1) = −2g(K(∂2, ∂1),∇∂1∂1) = 0

and we also have

(14) ∇∂2∇∂1∂1 = R(∂2, ∂1)∂1 .

It follows from (14) that

∂2Γ
2
11 = εg(R(∂2, ∂1)∂1, ∂1) = εg(−g(∂2, ∂1)S∂1, ∂1)

= −εg(∂2, ∂1)g(∂2, ∂1) = −ε .
This implies that

Γ 2
11 = −εy2 + φ(y1)

for a certain φ ∈ C∞(R). Hence the immersion f ◦ ψ−1, where ψ(p) =
(y1(p), y2(p)) and f1,φ when ε = 1 or f2,φ in the case ε = −1 define the
same structure on ψ(U), i.e.

g = gi,φ , ∇ = ∇i,φ .
Our theorem is then a consequence of the following theorem (see [2]).

Theorem. Let (M,fi) be two nondegenerate hypersurfaces in Rn+1 with
equiaffine structures (∇i, ξi) such that g1 = g2, ∇1 = ∇2. Then there exists
an affine isomorphism A ∈ AGL(n+ 1) such that Af1 = f2.
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R e m a r k. From the proof of Theorem 2 it is clear that (R2, fi,φ) is
affinely equivalent to (R2, fi,ψ) if and only if φ(x) = γψ(γx + a) + b where
γ = ±1 and a, b ∈ R (see (13)).
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