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Decomposition and disintegration
of positive definite kernels on convex ∗-semigroups

by Jan Stochel (Kraków)

Abstract. The paper deals with operator-valued positive definite kernels on a con-
vex ∗-semigroup S whose Kolmogorov–Aronszajn type factorizations induce ∗-semigroups
of bounded shift operators. Any such kernel Φ has a canonical decomposition into a de-
generate and a nondegenerate part. In case S is commutative, Φ can be disintegrated
with respect to some tight positive operator-valued measure defined on the characters of
S if and only if Φ is nondegenerate. It is proved that a representing measure of a pos-
itive definite holomorphic mapping on the open unit ball A• of a commutative Banach
∗-algebra A is supported by the holomorphic characters of A•. A relationship between
positive definiteness and complete positivity is established in the case of commutative
W ∗-algebras.
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Introduction. The general dilation theorem of Sz.-Nagy (cf. [58] and
[53]) states that a Hilbert space operator-valued mapping Θ : S → B(H)
defined on a ∗-semigroup S with a unit is dilatable if and only if it is positive
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definite and satisfies the boundedness condition. In case S has no unit,
the positive definiteness and the boundedness condition are insufficient for
Θ to be dilatable. To preserve dilatability we have to replace the positive
definiteness by a stronger condition called the extension property (cf. [52]
and [42]).

Nevertheless, the positive definiteness and the boundedness condition
are necessary and sufficient for Θ to be predilatable. The latter means that
there are a mapping X : S → B(H,K) and a ∗-representation Π of S in
K such that Θ(s∗t) = X(s)∗X(t) and Π(s) ◦ X(t) = X(st) for s, t ∈ S.
From this point of view it is natural to go a step further, namely to consider
kernels instead of mappings. We also admit some other involutory algebraic
structures, like convex ∗-semigroups, ∗-multiplicative cones and ∗-algebras.
A predilatable kernel whose ∗-representation Π vanishes globally (resp. has
a trivial null space) is called degenerate (resp. nondegenerate). It turns out
that any predilatable kernel has a canonical decomposition into a degenerate
and a nondegenerate part.

Here our goal is to represent a predilatable kernel as an integral with
respect to a tight positive operator-valued measure defined on Σ(S), the
set of all characters of the underlying algebraic structure S (S is assumed
to be commutative). We show that this is possible if and only if the ker-
nel in question is nondegenerate. In case S has a unit, any predilatable (or
equivalently dilatable) kernel has an integral representation with respect
to a regular positive operator-valued measure defined on the σ-algebra of
all Borel subsets of Σ(S) (see [10], [22], [17], [5], [56], [6] and [39] for the
case of scalar functions and [26], [25], [56] and [40] for the case of oper-
ator mappings). Otherwise, the representing (operator-valued) measure is
defined on a δ-ring which is neither a σ-algebra nor a σ-ring. The latter is a
consequence of the fact that, in general, predilatable scalar kernels (or func-
tions) can be represented via Borel measures taking extended real values
(see [18], [3], [28] and [13] for the case of ∗-algebras and [31], [44] and [32]
for the case of ∗-semigroups). This is why we outline in the appendix the
theory of integration with respect to a tight positive operator-valued mea-
sure defined on a δ-ring of Borel subsets of a given topological Hausdorff
space.

Recently Ando and Choi [1] have extended the notion of complete pos-
itivity to the context of nonlinear operator-valued mappings. Basing on the
classical Schoenberg theorem (cf. [38] and [33]), they have generalized the
Stinespring dilation theorem [41] to the case of completely positive nonlin-
ear mappings defined on C∗-algebras. In general, positive definite mappings
need not be completely positive. However, this is the case for holomorphic
mappings defined on commutative W ∗-algebras. Some particular results of
that sort have been established in [46], [11] and [50].
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A substantial part of the present paper, concerning the question of
decomposition and disintegration, has been announced without proofs in
[46].

1. Preliminaries. In the sequel K stands either for the field of real
numbers R or the field of complex numbers C. Given two complex Hilbert
spaces H and K, we denote by B(H,K) the linear space of all bounded
linear mappings from H into K. Set B(H) := B(H,H) and IH := the iden-
tity operator on H. The space B(C,K) will be identified with K. Given
A ⊂ B(H), denote by NA the null space of A (i.e. NA = {f ∈ H : Tf =
0 for all T ∈ A}) and by W ∗(A) the smallest strongly closed complex
∗-subalgebra of B(H) containing A. If {Aω : ω ∈ Ω} is a family of subsets
of H, then

∨
{Aω : ω ∈ Ω} stands for the closed linear span of

⋃
{Aω :

ω ∈ Ω}.
A set S equipped with an associative composition (·) and a mapping

∗ : S → S satisfying (s∗)∗ = s and (st)∗ = t∗s∗ for s, t ∈ S is called a
∗-semigroup (if S has a neutral element e, then e∗ = e). We say that a
∗-semigroup S is convex if it is a convex subset of some (real or complex)
linear space such that s(αt + βu) = αst + βsu, (αt + βu)s = αts + βus
and (αs + βt)∗ = αs∗ + βt∗ for s, t, u ∈ S, α, β ≥ 0, α + β = 1. If,
moreover, S is a convex cone satisfying the last-mentioned equalities for all
α, β ≥ 0 and s, t, u ∈ S, then S is called a ∗-multiplicative cone. Finally,
S is said to be a ∗-algebra over K if S is a linear space over K such that
s(αt+βu) = αst+βsu, (αt+βu)s = αts+βus and (αs+βt)∗ = αs∗+βt∗

for s, t, u ∈ S and α, β ∈ K.

N o t e. Further on, S always stands for any of the algebraic structures
defined in the previous paragraph.

Denote by S(n), n ≥ 1, the set of all products s1 . . . sn with s1, . . . , sn ∈
S. If S is a convex ∗-semigroup (resp. a ∗-multiplicative cone; a ∗-algebra
over K), then [S(n)] stands for the convex hull of S(n) (resp. the set of all
linear combinations with nonnegative coefficients of elements from S(n); the
linear span of S(n)).

We say that a mapping X : S → B(H,K) defined on a convex
∗-semigroup (resp. a ∗-multiplicative cone; a ∗-algebra over K) is affine if
for all s, t ∈ S, the equality X(αs + βt) = αX(s) + βX(t) holds for every
α, β ≥ 0, α + β = 1 (resp. α, β ≥ 0; α, β ∈ K). It will be convenient to
call any B(H,K)-valued mapping defined on a ∗-semigroup affine. We say
that a mapping Π : S → B(H) is multiplicative if Π(st) = Π(s)Π(t) for
s, t ∈ S, and symmetric if Π(s∗) = Π(s)∗ for s ∈ S. Π is said to be a
∗-representation of S in H if Π is symmetric, multiplicative and affine.

Assume S is commutative. A nonzero ∗-representation of S in C will be
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called a character of S. Denote by Σ(S) the collection (1) of all characters of
S. The set Σ(S)∪{0} equipped with the topology of pointwise convergence
on S is a completely regular Hausdorff space and the mapping ŝ : Σ(S) ∪
{0} → C, s ∈ S, defined by ŝ(x) = x(s) for x ∈ Σ(S) ∪ {0}, is continuous.
Put Ŝ := {ŝ : s ∈ S}. A subset C of Σ(S) is said to be Ŝ-bounded if for
every s ∈ S, sup{|ŝ (x)| : x ∈ C} <∞. By the Tikhonov theorem, a closed
subset C of Σ(S) is Ŝ-bounded if and only if C∪{0} is compact. Any closed
Ŝ-bounded subset of Σ(S) is locally compact but not conversely. Denote by
M+(Σ(S)) the convex cone of all positive Radon measures ν on Σ(S) such
that the closed support of ν is Ŝ-bounded and Ŝ ⊂ L2(Σ(S), ν).

If Π is a ∗-representation of S in K, then there exists (cf. [44], Theorem 1)
a unique regular spectral measure E in K defined on Borel subsets of Σ(S)
such that the closed support of E is Ŝ-bounded and

Π(s) =
∫

Σ(S)

ŝ dE , s ∈ S .

Call E the spectral measure of Π. Notice that E(Σ(S))K = K 	NΠ(S), so
E(Σ(S)) = IK if and only if NΠ(S) = {0}.

In case S is also a topological space, Σc(S) stands for the set of all con-
tinuous characters of S. Notice that if S is a ∗-algebra which is a metrizable
topological vector space then Σc(S) is a Borel subset of Σ(S). To show this
take a metric % inducing the topology of S and set (m,n ≥ 1)

Cm,n = {x ∈ Σ(S) ∪ {0} : |x(s)| ≤ m−1 for every s ∈ S
such that %(s, 0) ≤ n−1} .

Then each Cm,n is closed in Σ(S) ∪ {0}, and Σc(S) =
⋂∞
m=1

⋃∞
n=1Σ(S) ∩

Cm,n is a Borel set in Σ(S). We refer the reader to the appendix for further
information concerning measurability and integrability.

2. Predilatable kernels. In this section we recall some basic concepts
from dilation theory. Most of the facts presented below can be found either
in [27] or in [24] (see also [49]).

Let Ω be a nonempty set. A kernel Φ : Ω × Ω → B(H) is said to be
positive definite if

n∑
k=1

n∑
l=1

〈Φ(ωk, ωl)fl, fk〉 ≥ 0

for all finite sequences ω1, . . . , ωn ∈ Ω and f1, . . . , fn ∈ H. It is well known

(1) It may happen that Σ(S) = ∅ for some involutory algebraic structures (even in
the case of Banach ∗-algebras).
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(cf. [27], p. 18) that a positive definite kernel Φ is hermitian symmetric, i.e.

(2.1) Φ(ω1, ω2)∗ = Φ(ω2, ω1) , ω1, ω2 ∈ Ω ,

and positive, i.e. Φ(ω, ω) ≥ 0 for every ω ∈ Ω. Given two positive definite
kernels Φ, Ψ : Ω × Ω → B(H), we write Φ � Ψ in case Ψ − Φ is positive
definite. The relation� is a partial order in the class ofB(H)-valued positive
definite kernels on Ω.

It follows from an operator version of the Kolmogorov–Aronszajn factor-
ization theorem (cf. [27], Proposition 5.1) that a kernel Φ : Ω ×Ω → B(H)
is positive definite if and only if there exists a complex Hilbert space K and
a mapping X : Ω → B(H,K) which factorizes Φ, i.e.

(2.2) Φ(ω1, ω2) = X(ω1)∗X(ω2) , ω1, ω2 ∈ Ω .

It is always possible to choose X in such a way that

(2.3) K = EX
where EX stands for the linear span of the set

⋃
{X(ω)H : ω ∈ Ω}. Call a

pair (K, X) satisfying (2.2) and (2.3) a minimal factorization of Φ. It is well
known (cf. [49], Theorem 1.1) that any two minimal factorizations (K, X)
and (L, Y ) of Φ are unitarily equivalent , i.e. there exists a (unique) unitary
operator U ∈ B(K,L) such that

(2.4) UX(ω) = Y (ω) , ω ∈ Ω .

We say that a kernel Φ : S × S → B(H) is bi-affine if Φ has the transfer
property , i.e.

(2.5) Φ(us, t) = Φ(s, u∗t) , u, s, t ∈ S ,
and each mapping Φ(s, ·), s ∈ S, is affine. It turns out that minimal fac-
torizations share some algebraic properties with positive definite bi-affine
kernels. Namely, if (K, X) is a minimal factorization of a positive definite
bi-affine kernel Φ on S, then X is affine (use Proposition 6.2 of [27]).

If (K, X) is a minimal factorization of a positive definite kernel Φ : S ×
S → B(H) and Π : S → B(K) is such that

(2.6) Π(s)X(t)f = X(st)f , s, t ∈ S , f ∈ H ,
then the triplet (K, X,Π) is called a minimal propagator of Φ. Let R ∈
B(H,K) and Π : S → B(K) be given. We say that the triplet (K, R,Π)
is a minimal dilation of Φ if (K, X,Π) is a minimal propagator of Φ with
X(s) = Π(s)R, s ∈ S. A positive definite bi-affine kernel Φ : S×S → B(H)
is said to be predilatable (resp. dilatable) if it has a minimal propagator (resp.
a minimal dilation). Notice that if (K, X,Π) is a minimal propagator of a
predilatable kernel Φ, then Π has to be a ∗-representation of S. Indeed, it
follows from (2.6) and (2.3) that Π is multiplicative. Since Φ is a positive
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definite bi-affine kernel, X is affine. This in turn implies that so is Π. The
symmetry ofΠ follows from the transfer property (2.5) (cf. [49], Lemma 3.1).

The following lemma describes the null spaces of minimal propagators.

Lemma 2.1. Let (K, X,Π) be a minimal propagator of a predilatable
kernel Φ : S × S → B(H) and let m ≥ 1. Then

NΠ(S(m)) = K 	Qm+1K = NQmΠ(S) ,

where Qj is the orthogonal projection of K onto
∨
{X(s)H : s ∈ [S(j)]}.

P r o o f. Since X is affine, g ∈ K 	Qm+1K if and only if

〈Π(s∗m . . . s
∗
1)g,X(sm+1)f〉 = 〈g,X(s1 . . . smsm+1)f〉 = 0, sj ∈ S , f ∈ H,

or, equivalently, if and only if

〈QmΠ(s∗1)g,X(s2 . . . sm+1)f〉 = 〈Π(s∗1)g,X(s2 . . . sm+1)f〉
= 〈g,X(s1 . . . smsm+1)f〉 = 0 , sj ∈ S , f ∈ H .

Thus g ∈ K 	 Qm+1K if and only if Π(s)g = 0 for every s ∈ S(m) or,
equivalently, if and only if QmΠ(s)g = 0 for every s ∈ S.

Given Φ : S × S → B(H) and f ∈ H, define Φf : S × S → C by

Φf (s, t) = 〈Φ(s, t)f, f〉 , s, t ∈ S .
Assume that Φ is predilatable and (K, X,Π) is a minimal propagator of Φ.
Then for every f ∈ H, the space Kf :=

∨
{X(s)f : s ∈ S} reduces Π to a

∗-representation Πf of S in Kf . Define a mapping Xf : S → Kf by Xf (s) =
X(s)f , s ∈ S, f ∈ H. It is easy to see that for every f ∈ H, (Kf , Xf , Πf )
is a minimal propagator of Φf . Call it the restriction of (K, X,Π) to Kf .

Assume now that a kernel Φ : S × S → B(H) is dilatable and (K, R,Π)
is a minimal dilation of Φ. Define X : S → B(H,K) by X(s) = Π(s)R,
s ∈ S. We show that (Kf , Rf,Πf ) is a minimal dilation of Φf for every
f ∈ H. Indeed, since the orthogonal projection Pf of K onto Kf commutes
with Π, we have Π(s)(IK − Pf )Rf = 0 for every s∈S. This implies that
(IK−Pf )Rf ∈NΠ(S). Since Q2K = K (cf. [49], Theorem 3.5(iii)), Lemma 2.1
leads to NΠ(S) = {0}. Thus (IK−Pf )Rf = 0 and consequently Rf = PfRf .
Now it is easy to check that (Kf , Rf,Πf ) is a minimal dilation of Φf . Call
it the restriction of (K, R,Π) to Kf .

We say that a B(H)-valued mapping Θ defined either on [S(2)] or on S is
positive (resp. positive definite, predilatable) if so is the kernel ΦΘ : S ×S →
B(H) given by

ΦΘ(s, t) := Θ(s∗t) , s, t ∈ S .
A mapping Θ : S → B(H) is said to be dilatable if there are a complex
Hilbert space K, an operator R ∈ B(H,K) and a ∗-representation Π of S
in K such that Θ(s) = R∗Π(s)R for s ∈ S.
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Given t ∈ S and Φ : S × S → B(H) (resp. Θ : S → B(H)), we define a
kernel tΦ : S × S → B(H) (resp. a mapping tΘ : S → B(H)) by

tΦ(u, v) := Φ(tu, tv) , u, v ∈ S (resp. tΘ(s) := Θ(t∗st), s ∈ S) .

3. Criteria of predilatability. We begin with a result which refor-
mulates and improves some criteria of predilatability for positive definite
bi-affine kernels (see [52]–[55] and [24]). All of them can be regarded as
equivalent forms of the boundedness condition introduced by Sz.-Nagy in
[58].

Given a positive definite bi-affine kernel Φ : S × S → B(H), we define
functions κΦ, κΦ : S → R+ by (2)

κΦ(s) := sup{ lim
n→∞

〈Φ((s∗s)nt, (s∗s)nt)f, f〉1/4n : t ∈ S, f ∈ H} , s ∈ S ,

κΦ(s) := sup{ lim
n→∞

〈Φ((s∗s)n, (s∗s)n)f, f〉1/4n : f ∈ H} , s ∈ S .

Theorem 3.1. Let Φ : S × S → B(H) be a positive definite bi-affine
kernel. Then the following conditions are equivalent :

(i) Φ is predilatable,
(ii) κΦ(s) <∞, s ∈ S,
(iii) there exist % : S → R+ and γ : S ×H → R+ such that

%(s2) ≤ %(s)2 , s ∈ S ,
〈Φ(st, st)f, f〉 ≤ %(s)γ(t, f) , s, t ∈ S , f ∈ H ,

(iv) for every f ∈ H, the scalar kernel Φf is predilatable.

If S is commutative, then (i) is equivalent to either of the following two
conditions:

(v) κΦ(s) <∞, s ∈ S,
(vi) for every u ∈ S, the kernel uΦ is predilatable.

If (K, X,Π) is a minimal propagator of Φ, then ‖Π(·)‖ = κΦ(·), and
‖Π(·)‖ = κΦ(·) in case S is commutative.

P r o o f. It follows from Theorem 1 of [43] that (i) and (ii) are equivalent
and ‖Π(·)‖=κΦ(·). If Φ is predilatable, then (iii) holds with %(s)=‖Π(s)‖2
and γ(t, f) = 〈Φ(t, t)f, f〉. Conversely, if Φ satisfies (iii), then using the
identity

lim
n→∞

〈Φ((s∗s)nt, (s∗s)nt)f, f〉1/4n = lim
n→∞

〈Φ((s∗s)2
n

t, (s∗s)2
n

t)f, f〉2
−(n+2)

(2) Notice that the limits appearing in the definitions of κΦ and κΦ always exist in
R+ (cf. [51]).
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one can show that Φ satisfies (ii). The equivalence (i)⇔(iv) can be proved es-
sentially in the same way as Theorem 1 of [45] (the sequence an =
f(t∗(s∗s)nt;x, x) from [45], p. 252, has to be replaced by an = 〈Φ((s∗s)nt,
(s∗s)nt)f, f〉).

Assume now that S is commutative. Then, repeating the arguments used
in the proofs of Remark 2 of [55] and Lemma 1 of [47], one can show that (i)
and (v) are equivalent and ‖Π(·)‖ = κΦ(·). Suppose that Φ is predilatable.
We show that uΦ is dilatable for all u ∈ S. Take a minimal propagator
(K, X,Π) of Φ. Then for all g, f1, . . . , fn ∈ H and s1, . . . , sn, t1, . . . , tn ∈ S
we have∣∣∣ n∑

k=1

〈uΦ(sk, tk)fk, g〉
∣∣∣2 =

∣∣∣ n∑
k=1

〈Φ(u, us∗ktk)fk, g〉
∣∣∣2

=
∣∣∣〈 n∑

k=1

X(us∗ktk)fk, X(u)g
〉∣∣∣2 ≤ ‖X(u)g‖2

∥∥∥ n∑
k=1

X(us∗ktk)fk
∥∥∥2

= 〈Φ(u, u)g, g〉
n∑
k=1

n∑
j=1

〈uΦ(s∗ktk, s
∗
j tj)fj , fk〉 .

Since uΦ is a positive definite bi-affine kernel which satisfies (iii) with %(s) =
‖Π(s)‖2 and γ(t, f) = 〈uΦ(t, t)f, f〉, we deduce from Theorem 3.5 of [49]
that uΦ is dilatable. Suppose now that uΦ is predilatable for every u ∈ S.
Then

lim
n→∞

〈Φ((s∗s)n,(s∗s)n)f, f〉1/4n

= lim
n→∞

(〈uΦ((s∗s)n−1, (s∗s)n−1)f, f〉1/4(n−1))(n−1)/n

≤ κuΦ (s) <∞ , s ∈ S , f ∈ H ,
with u = s∗s. Applying (v) we conclude that Φ is predilatable.

Notice that in some particular cases of ∗-semigroups the condition (ii)
of Theorem 3.1 is either needless or follows from the positive definiteness of
the bi-affine kernel in question. This occurs when S is an inverse semigroup
with involution determined by the equality ss∗s = s, a group with involution
s∗ = s−1 or a complex Banach ∗-algebra (with involution which is not
assumed to be continuous).

Proposition 3.2. Let S be a complex Banach ∗-algebra. Then any pos-
itive definite bi-affine kernel on S is predilatable.

P r o o f. Take a minimal factorization (K, X) of Φ. Denote by O#(EX)
the ∗-algebra of all linear operators L : EX → EX such that L∗(EX) ⊂ EX
with involution L# := L∗|EX

. It follows from Theorem 3.11 of [49] that there
exists a ∗-algebra-homomorphism Π : S → O#(EX) which satisfies (2.6).
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Let S1 = S × C be the unitization of S and let Π1(s, α) := Π(s) + αIK
for s ∈ S and α ∈ C. Then for any g ∈ EX , 〈Π1(·)g, g〉 is a positive linear
functional on S1. Thus, by Lemma 37.6(iii) of [9],

|〈Π1(s)g, g〉| ≤ 〈Π1(0, 1)g, g〉‖s‖ = ‖g‖2‖s‖ , g ∈ EX , s ∈ S1 , s = s∗ ,

which implies boundedness of any Π(s), s ∈ S. Therefore (K, X,Π) is a
minimal propagator of (K, X).

The next result shows that continuous operator-valued positive defi-
nite linear mappings on some topological ∗-algebras always have continu-
ous propagators (see [20] for all definitions concerning topological algebras
we need in this paper). If it is not specified otherwise, the continuity of
operator-valued mappings is understood with respect to the uniform opera-
tor topology.

Proposition 3.3. Let S be a locally multiplicatively-convex ∗-algebra
with continuous involution. If Φ : S × S → B(H) is a jointly continuous
positive definite bi-affine kernel , then Φ is predilatable and for any minimal
propagator (K, X,Π) of Φ, Π is continuous. This is the case when Φ = ΦΘ

with some continuous positive definite linear mapping Θ : S → B(H).

P r o o f. Notice first that

‖Φ(s, s)‖1/2 = sup{|〈Φ(s, s)f, f〉|1/2 : ‖f‖ = 1} , s ∈ S ,
so the function S 3 s → ‖Φ(s, s)‖1/2 ∈ R+ is a seminorm on S which, by
the assumptions, is continuous. Thus there exists a continuous submulti-
plicative seminorm % on S such that ‖Φ(s, s)‖ ≤ %(s)2, s ∈ S. Applying
Theorem 3.1(iii) we see that Φ is predilatable. Take a minimal propagator
(K, X,Π) of Φ. It follows from Theorem 3.1 that

‖Π(s)‖ = sup{ lim
n→∞

〈Φ((s∗s)nt, (s∗s)nt)f, f〉1/4n : f ∈ H, t ∈ S}

≤ sup{ lim
n→∞

(%(t)‖f‖)1/2n%(s∗s)1/2 : f ∈ H, t ∈ S} ≤ %(s∗s)1/2 , s ∈ S .

Since the involution “*” and the seminorm % are continuous on S, Π is also
continuous.

4. Degenerate and nondegenerate predilatable kernels. In gen-
eral, nonzero predilatable kernels on S without neutral element may have
zero minimal propagators (this is not the case for S having a neutral el-
ement). From this point of view it is natural to distinguish the class of
predilatable kernels having this pathological property.

Let (K, X,Π) be a minimal propagator of a predilatable kernel Φ :
S × S → B(H). We say that Φ is degenerate (resp. nondegenerate) if
NΠ(S) = K (resp. NΠ(S) = {0}). The definition does not depend on the
choice of (K, X,Π). It is an easy observation that each dilatable kernel is
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nondegenerate (cf. [49], Theorem 3.5(iii)) and that the only predilatable
kernel which is both degenerate and nondegenerate is zero. The class of all
degenerate (resp. nondegenerate) kernels on S forms a convex cone.

Proposition 4.1. If Φ1, Φ2 : S × S → B(H) are degenerate (resp. non-
degenerate) predilatable kernels and α, β ≥ 0, then Φ := αΦ1 + βΦ2 is a
degenerate (resp. nondegenerate) predilatable kernel.

P r o o f. Let (Kj , Xj , Πj) be a minimal propagator of Φj . Set K :=∨
{(
√
αX1(s)f)⊕ (

√
βX2(s)f) : s ∈ S, f ∈ H} and define X : S → B(H,K)

by
X(s)f := (

√
αX1(s)f)⊕ (

√
βX2(s)f) , s ∈ S , f ∈ H .

Then (K, X) is a minimal factorization of Φ such that

Π1 ⊕Π2(s)X(t)f

= (
√
αX1(st)f)⊕ (

√
βX2(st)f) = X(st)f , s, t ∈ S , f ∈ H .

Thus the space K reduces Π1⊕Π2 to a ∗-representation Π and (K, X,Π) is
a minimal propagator of Φ. If Φ1 and Φ2 are degenerate, then Π1⊕Π2 = 0,
which implies that Φ is degenerate. If Φ1 and Φ2 are nondegenerate, then
NΠ(S) ⊂ NΠ1⊕Π2(S) = NΠ1(S) ⊕NΠ2(S) = {0}, so Φ is nondegenerate.

Our goal here is to find characterizations of degenerate and nondegen-
erate predilatable kernels which are not formulated in terms of minimal
propagator. Consider first the case of degenerate kernels.

Theorem 4.2. Let Φ : S × S → B(H) be a positive definite kernel such
that Φ(s, ·) is affine for every s ∈ S. Then Φ is predilatable and degenerate
if and only if Φ(s, tu) = 0 for all s, t, u ∈ S.

P r o o f. Assume that Φ(s, tu) = 0 for all s, t, u ∈ S. Since Φ is positive
definite, it is hermitian symmetric. This implies that Φ(tu, s) = 0 for all
s, t, u ∈ S. Thus Φ has the transfer property (2.5) and consequently Φ is a
bi-affine kernel. It follows from Theorem 3.1 that Φ is predilatable. Take a
minimal factorization (K, X) of Φ. Then, by Lemma 2.1 with m = 1, Φ is
degenerate if and only if X(u) = 0 for u ∈ S(2). This in turn is equivalent
to Φ(s, tu) = 0 for all s, t, u ∈ S (use (2.2) and (2.3)).

For nondegenerate kernels, the following lemma turns out to be very
useful.

Lemma 4.3. Let (K, X,Π) be a minimal propagator of a predilatable
kernel Φ : S×S → B(H). Then Φ is nondegenerate if and only if one of the
following two conditions holds:

(i) K =
∨
{X(s)H : s ∈ [S(2)]},

(ii) IK ∈W ∗(Π(S)).
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If Φ is nondegenerate, then for any n ≥ 2, we have

(iii) K =
∨
{X(s)H : s ∈ [S(n)]},

(iv) IK ∈W ∗(Π(S(n))).

P r o o f. Applying Lemma 2.1 with m = 1 we see that Φ is nondegenerate
if and only if (i) holds.

Denote by Jm the orthogonal projection of K onto K	NΠ(S(m)). Then,
by Lemma 2.1, we have Jm = Qm+1. It follows from the von Neumann
double commutant theorem (cf. [59], Proposition 1) that

(4.1) Jm ∈W ∗(Π(S(m))) , m ≥ 1 .

If (i) holds, then, by (4.1), we have IK = Q2 = J1 ∈ W ∗(Π(S)). Thus
(ii) is fulfilled. Conversely, if (ii) holds, then NΠ(S) = {0}. Therefore Q2 =
J1 = IK, which implies (i).

Assume now that Φ is nondegenerate. We prove (iii) by induction. The
case n = 2 follows from Lemma 2.1. Suppose that (iii) holds for some n ≥ 2.
This means that Qn = IK. By Lemma 2.1, we get K	Qn+1K = NQnΠ(S) =
NΠ(S) = {0}, which proves (iii) for n+ 1.

To prove (iv), notice that Lemma 2.1 and (iii) imply NΠ(S(n)) =
K 	Qn+1K = {0}. Thus, by (4.1), IK = Jn ∈W ∗(Π(S(n))).

The following is a consequence of Lemma 4.3: if S is a topological space
such that the closure of [S(2)] is equal to S and Φ : S × S → B(H) is
a predilatable kernel which is jointly weakly continuous, then Φ is nonde-
generate. Indeed, any minimal factorization (K, X) of Φ is then continuous
in the strong operator topology and consequently

∨
{X(s)H : s ∈ S} =∨

{X(s)H : s ∈ [S(2)]}, which implies the condition (i) of Lemma 4.3.
If S = [S(2)], then the condition (i) of Lemma 4.3 is satisfied and conse-

quently each predilatable kernel on S is automatically nondegenerate. This
occurs when S is a complex Banach ∗-algebra with a bounded left approxi-
mate identity (use the Cohen factorization theorem, cf. [9], Theorem 11.10).
In particular, each C∗-algebra S factors, i.e. S = S(2). The following is a
consequence of Proposition 3.2 and Lemma 4.3.

Corollary 4.4. If S is a complex Banach ∗-algebra such that S = [S(2)],
then each positive definite bi-affine kernel Φ : S × S → B(H) is predilatable
and nondegenerate.

Notice that there exist commutative complex Banach or Fréchet ∗-alge-
bras which factor and do not have bounded approximate identities (cf. [15]
and [29]). On the other hand, Ouzomgi [30] has determined a class of com-
mutative convolution Banach ∗-algebras S having the property: S = S(2) ⇔
S = [S(2)]⇔ S has a bounded approximate identity.
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We are now in a position to prove the aforesaid characterization of non-
degenerate kernels. Below by an ending of a net {xω : ω ∈ Ω} we mean a
set of the form {xω : ω ≥ ω0} with some ω0 ∈ Ω.

Theorem 4.5. A predilatable kernel Φ : S ×S → B(H) is nondegenerate
if and only if for every integer k ≥ 1, there are nets {ek,ω : ω ∈ Ω} ⊂ S and
{βk,ω : ω ∈ Ω} ⊂ C such that

(i) βk,ω = 0 for sufficiently large k (depending on ω),
(ii) limω

∑
k βk,ω〈Φ(s, ek,ωt)f, f〉 = 〈Φ(s, t)f, f〉 for all s, t ∈ S and

f ∈ H,
(iii) any net of the form {

∑
m,n βm,ωβn,ω〈Φ(em,ωt, en,ωt)f, f〉 : ω ∈ Ω}

with t ∈ S and f ∈ H has a bounded ending.

P r o o f. Assume Φ is nondegenerate. Then Lemma 4.3 yields IK ∈
W ∗(Π(S)), which implies that there are nets {ek,ω : ω ∈ Ω} ⊂ S and {βk,ω :
ω ∈ Ω} ⊂ C (k = 1, 2, . . .) such that (i) holds and Tω :=

∑
k βk,ωΠ(ek,ω)

converges in the strong operator topology to IK. Thus
∑
k βk,ωX(ek,ωt)f =

TωX(t)f converges to X(t)f . This, when combined with (2.2), implies (ii)
and (iii).

Assume now that nets {ek,ω : ω ∈ Ω} ⊂ S and {βk,ω : ω ∈ Ω} ⊂ C
satisfy (i)–(iii). Fixing t ∈ S and f ∈ H, we set gω =

∑
k βk,ωX(ek,ωt)f .

It follows from (ii) and (iii) that limω〈gω, h〉 = 〈X(t)f, h〉 for h ∈ EX and
sup{‖gω‖ : ω ≥ ω0} < ∞ for some ω0 ∈ Ω. This and K = EX imply that
the net {gω} ⊂

∨
{X(s)H : s ∈ [S(2)]} converges weakly to X(t)f . Thus, by

Theorem 3.12 of [34], we have X(t)f ∈
∨
{X(s)H : s ∈ [S(2)]} for all t ∈ S

and f ∈ H. In virtue of (2.3), the condition (i) of Lemma 4.3 holds.

Theorem 4.5 asserts, in particular, that if S is a complex ∗-algebra, then
a predilatable kernel Φ on S is nondegenerate if and only if there exists a
net {eω} ⊆ S such that

lim
ω
〈Φ(s, eωt)f, f〉 = 〈Φ(s, t)f, f〉 , s, t ∈ S , f ∈ H ,(4.2)

sup{〈Φ(eωt, eωt)f, f〉 : ω ≥ ω0} <∞ , t ∈ S , f ∈ H ,(4.3)

with ω0 depending on t ∈ S and f ∈ H.

5. Canonical decomposition of predilatable kernels. Repeating
the arguments used in the proof of Theorem 2 in [44], we get the following
decomposition theorem.

Theorem 5.1. Let Φ : S × S → B(H) be a predilatable kernel. Then
there exists a unique pair (ΦD, ΦN) of predilatable kernels on S such that
Φ = ΦD + ΦN, ΦD is degenerate and ΦN is nondegenerate.
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The kernels ΦD and ΦN will be called the degenerate and nondegenerate
parts of Φ, respectively. They have the following properties.

Lemma 5.2. If Φ = Φ1+Φ2, where Φ1, Φ2 : S×S → B(H) are predilatable
kernels, then

(i) Φ1 � ΦD and ΦN � Φ2, provided Φ1 is degenerate,
(ii) Φ1 � ΦN and ΦD � Φ2, provided Φ1 is nondegenerate.

P r o o f. Assume that Φ1 is degenerate (resp. nondegenerate). Then, by
Proposition 4.1, Φ1 + (Φ2)D (resp. Φ1 + (Φ2)N) is degenerate (resp. non-
degenerate), so we can apply Theorem 5.1 to Φ = Φ1 + (Φ2)D + (Φ2)N.
In consequence, Φ1 � Φ1 + (Φ2)D = ΦD and ΦN = (Φ2)N � Φ2 (resp.
Φ1 � Φ1 + (Φ2)N = ΦN and ΦD = (Φ2)D � Φ2).

Now we show that ΦD and ΦN are the greatest elements of suitable classes
of predilatable kernels.

Proposition 5.3. Let Φ : S × S → B(H) be a predilatable kernel. Then
ΦD = max{Ψ : Ψ � Φ, Ψ is a degenerate predilatable kernel} and ΦN =
max{Ψ : Ψ � Φ, Ψ is a nondegenerate predilatable kernel}.

P r o o f. Take a predilatable kernel Ψ � Φ. Since Φ − Ψ is a positive
definite bi-affine kernel on S which satisfies the condition (ii) of Theorem 3.1,
it is predilatable. Thus Φ is the sum of two predilatable kernels Ψ and Φ−Ψ ,
so we can apply Lemma 5.2. If Ψ is degenerate, then, by Lemma 5.2(i), we
have ΦN � Φ−Ψ = ΦD +ΦN−Ψ . This implies that Ψ � ΦD. Similarly we
show that if Ψ is nondegenerate, then Ψ � ΦN.

We end this section with a result which relates the decomposition of a
predilatable kernel Φ to that of Φf , f ∈ H.

Proposition 5.4. Let Φ : S×S → B(H) be a predilatable kernel. Then Φ
is degenerate (resp. nondegenerate) if and only if so is Φf for every f ∈ H.
Moreover , (Φf )D = (ΦD)f and (Φf )N = (ΦN)f for every f ∈ H.

P r o o f. It follows from Theorem 4.2 and the polarization formula for
sesquilinear forms that Φ is degenerate if and only if so is Φf for every
f ∈ H.

Take a minimal propagator (K, X,Π) of Φ. Let (Kf , Xf , Πf ) be the
restriction of (K, X,Π) to Kf , f ∈ H (see Section 2). If Φ is nondegenerate,
then NΠf (S) = NΠ(S) ∩ Kf = {0} for every f ∈ H, which means that
all Φf are nondegenerate. Conversely, if all Φf are nondegenerate, then, by
Lemma 4.3,

X(t)f ∈
∨
{Xf (s) : s ∈ [S(2)]} ⊂

∨
{X(s)H : s ∈ [S(2)]} , t ∈ S , f ∈ H .

Therefore, again by Lemma 4.3, Φ is nondegenerate.
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It follows from the previous two paragraphs that (ΦD)f is degenerate
and (ΦN)f is nondegenerate. Since Φf = (ΦD)f + (ΦN)f , the uniqueness of
the decomposition implies that (Φf )D = (ΦD)f and (Φf )N = (ΦN)f .

6. Weakly predilatable kernels. Here we generalize Theorem 5 of
[44] (and also Theorem 3.2 of [26]) to the context of nonunital commutative
algebraic structures mentioned in Section 1.

Theorem 6.1. Assume S is commutative and Φ : S × S → B(H) is an
arbitrary kernel. Then Φ is predilatable and nondegenerate if and only if so
is Φf for every f ∈ H.

P r o o f. The “only if” part follows from Proposition 5.4. Assume that
Φ : S ×S → B(H) is a kernel such that each Φf , f ∈ H, is predilatable and
nondegenerate. Then (cf. [44], Theorem 3 and [32], Theorem 5; see also [13],
Théorème 15.9.2) for any f ∈ H, there is a unique ν(· ; f) ∈ M+(Σ(S)),
called a representing scalar measure of Φf , such that

(6.1) Φf (s, t) =
∫

Σ(S)

x(s∗t) ν(dx; f) , s, t ∈ S .

Denote by D the class of all Borel subsets A of Σ(S) such that ν(A; f) <∞
for every f ∈ H. Then C(Σ(S)) ⊂ D (see the appendix). Given f, g ∈ H
and A ∈ D, define µ(A; f, g) by

(6.2) µ(A; f, g) := 4−1
4∑
k=1

ikν(A; f + ikg) .

S t e p 1. For every A ∈ D, the function H×H 3 (f, g)→ µ(A; f, g) ∈ C
is a semi-inner product on H such that µ(A; f, f) = ν(A; f) for f ∈ H.

Indeed, since both measures ν(· ; zf) and |z|2ν(· ; f) represent Φzf via
(6.1), they must be equal. Thus

ν(A; zf) = |z|2ν(A; f) , A ∈ D , f ∈ H , z ∈ C ,
which implies that

µ(A; f, f) = ν(A; f) , A ∈ D , f ∈ H ,(6.3)

µ(A; f, g) = µ(A; g, f) , A ∈ D , f, g ∈ H .(6.4)

Take z ≥ 0. Then, applying the polarization formula to both sides of
〈Φ(·,−)zf, g〉 = z〈Φ(·,−)f, g〉, we get

Φzf+g + zΦf−g = Φzf−g + zΦf+g , f, g ∈ H ,(6.5)
Φzf+ig + zΦf−ig = Φzf−ig + zΦf+ig , f, g ∈ H .(6.6)

It follows from (6.5) that the measures ν(· ; zf + g) + zν(· ; f − g) and ν(· ;
zf − g) + zν(· ; f + g), both in M+(Σ(S)), represent the same nondegen-
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erate predilatable kernel Φzf+g + zΦf−g and consequently they are equal.
Similarly (6.6) implies that the measures ν(· ; zf + ig) + zν(· ; f − ig) and
ν(· ; zf − ig) + zν(· ; f + ig) coincide. Combining these two facts we get

(6.7) µ(A; zf, g) = zµ(A; f, g) , A ∈ D , f, g ∈ H , z ≥ 0 .

Using similar arguments we can show that

µ(A; f + g, h) = µ(A; f, h) + µ(A; g, h) , A ∈ D , f, g, h ∈ H ,(6.8)
µ(A;−f, g) = −µ(A; f, g) , A ∈ D , f, g ∈ H ,(6.9)
µ(A; if, g) = iµ(A; f, g) , A ∈ D , f, g ∈ H .(6.10)

Now the conclusion of Step 1 can be easily derived from (6.3)–(6.10).

S t e p 2. Φ is a positive definite bi-affine kernel.

Since all Φf , f ∈ H, are bi-affine, so is Φ. Fix s1, . . . , sm ∈ S and
f1, . . . , fm ∈ H with m ≥ 1. Define a complex Borel measure λ on Σ(S)
by

λ(A) = 4−1
m∑

p,q=1

4∑
k=1

ik
∫
A

x(s∗qsp) ν(dx; fp + ikfq) .

Take C ∈ C(Σ(S)). Then for each p = 1, . . . ,m, there exists a sequence of
simple Borel functions {ϕn,p}∞n=1 defined on C which converges uniformly
on C to the bounded function ŝp|C . Moreover, for each n ≥ 1, we can choose
a Borel partition {Cn,1, . . . , Cn,ln} of C and sequences {βn,p,1, . . . , βn,p,ln} ⊂
C (p = 1, . . . ,m) such that

ϕn,p =
ln∑
j=1

βn,p,jχCn,j .

Set gn,j =
∑m
p=1 βn,p,jfp. Then, using Step 1 and the fact that ν(C; f) <∞

for f ∈ H, we get

λ(C) = lim
n→∞

4−1
m∑

p,q=1

4∑
k=1

ik
∫
C

ϕn,pϕn,q dν(· ; fp + ikfq)

= lim
n→∞

ln∑
j=1

m∑
p,q=1

βn,p,jβn,q,jµ(Cn,j ; fp, fq)

= lim
n→∞

ln∑
j=1

µ(Cn,j ; gn,j , gn,j) ≥ 0 .

Since |t̂ |dν(· ; f) is a finite Radon measure on Σ(S) for all t ∈ S(2) and f ∈ H
(use Proposition 2.1.7 of [5]), we must have λ(Σ(S)) = limC∈C(Σ(S)) λ(C)
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≥ 0. On the other hand, the polarization formula and (6.1) yield
m∑

p,q=1

〈Φ(sq, sp)fp, fq〉 = λ(Σ(S)) ≥ 0 ,

which proves positive definiteness of Φ.
Now the “if” part of the conclusion follows from Step 2, Theorem 3.1

and Proposition 5.4.

7. Disintegration of nondegenerate predilatable kernels. In this
section we present an integral representation for nondegenerate predilatable
kernels defined on a commutative algebraic structure S (see the appendix
for notation and definitions concerning integration).

Let M : R → B(H) be a maximal tight PO measure on Σ(S) whose
closed support is Ŝ-bounded. We say that M is a representing measure of a
kernel Φ : S × S → B(H) if ŝ ∈ L1(M) for every s ∈ S(2) and

(7.1) Φ(s, t) =
∫

Σ(S)

x(s∗t)M(dx) , s, t ∈ S .

M is said to be a representing measure of a mapping Θ : S → B(H) if
ŝ ∈ L1(M) for every s ∈ S and

(7.2) Θ(s) =
∫

Σ(S)

x(s)M(dx) , s ∈ S .

Theorem 7.1. Assume S is commutative and Φ : S × S → B(H) is
an arbitrary kernel. If for every f ∈ H, the kernel Φf is predilatable and
nondegenerate, then Φ has a unique representing measure. Conversely , if Φ
has a representing measure, then Φ is a nondegenerate predilatable kernel.

P r o o f. Suppose that Φ has a representing measure. Then, by Propo-
sition 5 of [44], each scalar kernel Φf is predilatable and nondegenerate
(f ∈ H). In virtue of Theorem 6.1, Φ is also predilatable and nondegener-
ate.

Assume now that each Φf , f ∈ H, is predilatable and nondegenerate.
Then, by Theorem 6.1, so is Φ. Let (K, X,Π) be a minimal propagator of Φ
and let E : B(Σ(S))→ B(K) be the spectral measure of Π (see Section 1).
Since Φ is nondegenerate, we have E(Σ(S)) = IK. Let (Kf , Xf , Πf ) be the
restriction of (K, X,Π) to Kf (see Section 2) and let Pf be the orthogonal
projection of K onto Kf (f ∈ H). Since Kf reduces Π to Πf , the projection
Pf , f ∈ H, commutes with any Π(s), s ∈ S. This implies that∫

Σ(S)

ŝ(x) 〈E(dx)g, Pfh〉 = 〈PfΠ(s)g, h〉 = 〈Π(s)Pfg, h〉
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=
∫

Σ(S)

ŝ(x) 〈E(dx)Pfg, h〉 , s ∈ S , g, h ∈ K ,

which leads to 〈E(·)g, Pfh〉 = 〈E(·)Pfg, h〉 for any g, h ∈ K (cf. [44], Propo-
sition 1). Thus Pf commutes with every projection E(A), A ∈ B(Σ(S)).
This in turn implies that Kf reduces E to the spectral measure Ef of Πf .

Let ν(· ; f) be a representing scalar measure of Φf . By the previous
paragraph, the measure µs,s(· ; f) := 〈Ef (·)Xf (s), Xf (s)〉 coincides with
〈E(·)X(s)f,X(s)f〉 on B(Σ(S)) for all s ∈ S and f ∈ H. Moreover (cf.
[44], p. 356), the measures ν(· ; f) and µs,s(· ; f) are related to each other as
follows:

(7.3) ν(A; f) =
∫
A

|ŝ |−2 dµs,s(· ; f) , A ∈ B(Ds) , f ∈ H , s ∈ S ,

where Ds := {x ∈ Σ(S) : x(s) 6= 0}.
Denote by D the class of all Borel subsets A of Σ(S) such that ν(A; f) <

∞ for every f ∈ H. Then D is a δ-ring which contains D(Σ(S)). We
show that the function H 3 f → ν(A; f) ∈ R+ is continuous for every
A ∈ D.

Consider first the case where A ∈ B(Ds) with some s ∈ S. Let {ϕn}∞n=1

be a sequence of nonnegative simple Borel functions on A, which is increas-
ing and pointwise convergent to |ŝ |−2 on A. It follows from the Lebesgue
monotone convergence theorem and (7.3) that

(7.4) ν(A; f) = lim
n→∞

∫
A

ϕn(x) 〈E(dx)X(s)f,X(s)f〉 , f ∈ H .

Since ϕn is of the form ϕn =
∑ln
j=1 βn,jχAn,j

with {An,1, . . . , An,ln} ⊂ B(A)
and {βn,1, . . . , βn,ln} ⊂ R+, we get

(7.5)
∫
A

ϕn(x) 〈E(dx)X(s)f,X(s)f〉 = 〈Tnf, f〉 , f ∈ H , n ≥ 1 ,

where Tn = X(s)∗(
∑ln
j=1 βn,jE(An,j))X(s) ∈ B(H) for every n ≥ 1. Thus,

by (7.4) and (7.5), the sequence of continuous seminorms H 3 f →
〈Tnf, f〉1/2 ∈ R+, n = 1, 2, . . . , converges pointwise to ν(A; ·)1/2 on the
Hilbert space H. It follows from the Banach–Steinhaus theorem that
ν(A; ·)1/2 is a continuous seminorm.

Assume now that C ∈ C(Σ(S)). Since {Ds : s ∈ S} is an open cover
of the compact set C, there exist s1, . . . , sm ∈ S such that C ⊂

⋃m
k=1Dsk

.
Choose a partition {C1, . . . , Cm} ⊂ B(Σ(S)) of C such that Ck ⊂ Dsk

for
k = 1, . . . ,m. Then, by the previous paragraph, each ν(Ck; ·) is continuous
and consequently so is ν(C; ·) =

∑m
k=1 ν(Ck; ·).
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Let finally A ∈ D. Since each ν(· ; f) is a Radon measure on Σ(S)
(f ∈ H), we have

ν(A; f) = sup{ν(C; f) : C ∈ C(Σ(S)) , C ⊂ A} , f ∈ H .
Applying again the Banach–Steinhaus theorem to the family {ν(C; ·)1/2 :
C ∈ C(Σ(S))} of continuous seminorms (3) on the Hilbert space H, we get
the continuity of ν(A; ·).

Let µ(A; f, g) be defined by (6.2) for A ∈ D, f, g ∈ H. Step 1 of the proof
of Theorem 6.1 states that for every A ∈ D, the function H×H 3 (f, g)→
µ(A; f, g) ∈ C is a semi-inner product on H such that µ(A; f, f) = ν(A; f)
for f ∈ H. Since ν(A; ·) is continuous, there exists a unique positive operator
M(A) ∈ B(H) such that

µ(A; f, g) = 〈M(A)f, g〉 , A ∈ D , f, g ∈ H .
Consequently, M is a maximal tight PO measure such that

〈Φ(s, t)f, f〉 =
∫

Σ(S)

x(s∗t)Mᵀ
f (dx) , s, t ∈ S , f ∈ H .

Thus M satisfies (7.1). Since the closed support of the spectral measure E
is Ŝ-bounded, one can use (7.3) to show that so is the closed support of
M . Finally, the uniqueness of M follows from the polarization formula and
Theorem 3 of [44].

R e m a r k. It is worthwhile to notice that a representing measure M of
Φ can be explicitly described on compact subsets of Σ(S) with the help
of a minimal propagator (K, X,Π) of Φ as follows. Let E be the spectral
measure of Π and let C be a compact subset of Σ(S). Then there exist
s1, . . . , sm∈S such that C ⊂

⋃m
k=1Dsk

. Basing on (7.3), one can show that

M(C) =
m∑
k=1

X(sk)∗
∫
C

( m∑
j=1

|ŝj |2
)−1

dE X(sk) .

This, in turn, can be used to show that the closed support of M is contained
in the closed support A of E. It follows from the proof of Theorem 1 in
[44] that A ⊂ {x ∈ Σ(S) : |x(s)| ≤ ‖Π(s)‖ for all s ∈ S}. Hence (use
Theorem 3.1) the closed support of M is contained in the closed Ŝ-bounded
set {x ∈ Σ(S) : |x(s)| ≤ κΦ(s) for all s ∈ S}.

Though not every predilatable kernel on S has a representing measure
(cf. [44] and [32]), we can disintegrate predilatable kernels on commutative
involutory algebraic structures in the way proposed by the following corol-
lary (see [32], Theorem 4 and [18], Théorème 1 for the scalar case).

(3) That ν(C; ·)1/2 is a seminorm follows from Step 1 of the proof of Theorem 6.1.



Positive definite kernels on ∗-semigroups 261

Corollary 7.2. Assume S is commutative. Let Φ : S ×S → B(H) be a
kernel such that all Φf (f ∈ H) are predilatable. Then there exists a unique
maximal tight PO measure M : R → B(H) on Σ(S) whose closed support
is Ŝ-bounded and such that

(i) ŝ ∈ L1(M), s ∈ S(3),
(ii) Φ(s, ut) =

∫
Σ(S)

x(s∗ut)M(dx), s, t, u ∈ S.

P r o o f. Let M : R→ B(H) be a representing measure of ΦN. Then the
closed support of M is Ŝ-bounded and M fulfils (i). Moreover, in virtue of
Theorem 4.2,

Φ(s, ut) = ΦD(s, ut) + ΦN(s, ut) =
∫

Σ(S)

x(s∗ut)M(dx) , s, t, u ∈ S .

The uniqueness of M is a consequence of that for scalar kernels (see [44],
p. 357 or [32], Theorem 4).

Notice that any maximal tight PO measure on Σ(S) whose closed sup-
port is Ŝ-bounded and which fulfils conditions (i) and (ii) of Corollary 7.2
is necessarily a representing measure of the nondegenerate part ΦN of Φ.

Now we show that representing measures of dilatable kernels on a com-
mutative S are defined on the whole σ-algebra of Borel subsets of Σ(S).

Corollary 7.3. Assume S is commutative and Φ : S × S → B(H) is
an arbitrary kernel. Then the following conditions are equivalent :

(i) Φ is dilatable,
(ii) for every f ∈ H, Φf is dilatable,
(iii) Φ is a nondegenerate predilatable kernel with a representing measure

M : R → B(H) such that R = B(Σ(S)) (or equivalently sup{‖M(A)‖ :
A ∈ R} <∞).

P r o o f. (i)⇒(ii) follows from what has been done in the second part of
Section 2.

(ii)⇒(iii). Assume that all Φf (f ∈ H) are dilatable. Since each dilatable
kernel is automatically nondegenerate, Theorem 7.1 implies that Φ is a non-
degenerate predilatable kernel with a representing measure M : R→ B(H).
In particular, Mᵀ

f is a representing scalar measure of Φf . Let (Lf , ζf , Πf )
be a minimal dilation of Φf and let Gf be the spectral measure of Πf . Then

Φf (s, t) = 〈Πf (s∗t)ζf , ζf 〉 =
∫

Σ(S)

x(s∗t) 〈Gf (dx)ζf , ζf 〉, s, t ∈ S, f ∈ H.

This means that Mᵀ
f (·) and 〈Gf (·)ζf , ζf 〉 are representing scalar measures

of Φf (f ∈ H). Consequently, Mᵀ
f (·) = 〈Gf (·)ζf , ζf 〉 for all f ∈ H, which

implies that R = B(Σ(S)) (use the fact that M is maximal).
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(iii)⇒(i). Assume now that M : B(Σ(S)) → B(H) is a representing
measure of Φ. Then C, the closed support of M , is Ŝ-bounded. It follows
from the Naimark dilation theorem (cf. [27], Theorem 6.4) that there exist
a complex Hilbert space K, a spectral measure E : B(Σ(S)) → B(K) and
R ∈ B(H,K) such that K =

∨
{E(A)RH : A ∈ B(Σ(S))} and M(A) =

R∗E(A)R for A ∈ B(Σ(S)). The last equality can be used to show that
E is also supported by C. Since ŝ is bounded on C, the operator Π(s) :=∫
Σ(S)

x(s)E(dx) is bounded for every s ∈ S and

Φ(s, t) = R∗
∫

Σ(S)

x(s∗t)E(dx)R = (Π(s)R)∗Π(t)R , s, t ∈ S .

This implies that Φ is dilatable (cf. [49], Proposition 5.6).

8. Continuity of predilatable mappings on topological ∗-alge-
bras. Theorem 7.1 can be used to settle the question of continuity of pos-
itive linear mappings defined on some commutative topological ∗-algebras
A. Notice first that the set A\ [A(2)] is not involved in the definition of pos-
itivity, so it is natural to restrict our attention to the case A = [A(2)]. Let
A be a complex ∗-algebra equipped with a linear topology. We distinguish
the following four properties of A:

(P.1) each character of A is continuous,
(P.2) each positive linear functional on A is predilatable (4),
(P.3) each positive linear functional on A is continuous,
(P.4) each positive linear operator-valued mapping on A is continuous.

It is obvious that (P.4)⇒(P.3) and (P.3)⇒(P.1). Below we show that
under some additional assumptions on A, (P.3)⇒(P.2). The property (P.1)
is connected with the Mazur–Michael problem (cf. [20]) whether each mul-
tiplicative linear functional on a Fréchet algebra is continuous.

Denote by A1 = A × C the unitization of A. It is obvious that A has
the property (P.1) if and only if so does A1. Below we show that the same
is true for (P.2).

Proposition 8.1. A commutative complex ∗-algebra A has the property
(P.2) if and only if so does A1.

P r o o f. The “only if” part follows from Corollary 2 in [43]. To prove
the “if” part, take a positive linear functional ϕ on A. It follows from the
Cauchy–Schwarz inequality that

|bϕ(a)|2 = |ϕ(b∗(ab))|2 ≤ ϕ(b∗b) · bϕ(a∗a) , a, b ∈ A .

(4) Or unitary in the terminology of [18].
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This implies that for any b ∈ A, bϕ can be extended to a positive linear
functional bϕ̃ on A1 (cf. [9], Theorem 37.11). It follows from our assump-
tions that bϕ̃ and consequently bϕ are predilatable for all b ∈ A. Thus, by
Theorem 3.1(vi), ϕ is predilatable.

The following proposition will help us to establish some other relation-
ships between conditions just introduced.

Proposition 8.2. Let A be a commutative complex ∗-algebra such that
A = [A(2)] and let Θ : A → B(H) be a positive linear mapping. If A is an
F -space with property (P.1) and each functional 〈bΘ(·)f, f〉 (f ∈ H, b ∈ A)
is predilatable, then Θ is continuous. If A is locally multiplicatively-convex
and each functional 〈bΘ(·)f, f〉 (f ∈ H, b ∈ A) is continuous, then Θ is
predilatable.

P r o o f. Assume A is an F -space with property (P.1) and 〈bΘ(·)f, f〉
is predilatable for all f ∈ H and b ∈ A. Then, by Theorem 3.1(vi), each
functional 〈Θ(·)f, f〉 is predilatable. Fix f ∈ H and set ϕ(·) := 〈Θ(·)f, f〉. It
follows from Theorem 7.1 (see also [18] and [32]) that ϕ has a representing
scalar measure µ ∈ M+(Σ(A)). Take C ∈ C(Σ(A)) and define a linear
functional ϕC on A via ϕC(a) :=

∫
C
x(a)µ(dx) for a ∈ A. Notice that

ϕC is continuous. Indeed, by (P.1), each seminorm A 3 a → |x(a)| ∈ R+

(x ∈ Σ(A)) is continuous on A. Consequently, the seminorm %C defined
by %C(a) := sup{|x(a)| : x ∈ C} for a ∈ A is lower semicontinuous. Since
A is an F -space, %C is continuous. However, |ϕC | ≤ µ(C)%C , so ϕC is
continuous for every C ∈ C(Σ(A)). Moreover, one can show that the net
{ϕC : C ∈ C(Σ(A))} is pointwise bounded and pointwise convergent to
ϕ. In virtue of the Banach–Steinhaus theorem (cf. [34], Theorem 2.5), the
linear functional ϕ(·) = 〈Θ(·)f, f〉 is continuous for every f ∈ H. Since A
is an F -space, the continuity of Θ follows again from the Banach–Steinhaus
theorem.

Assume A is a locally multiplicatively-convex algebra and each func-
tional 〈bΘ(·)f, f〉 (f ∈ H, b ∈ A) is continuous. Then, by Theorem 3.1(iii),
〈bΘ(·)f, f〉 is predilatable for all b ∈ A and f ∈ H. Using Theorem 3.1(vi)
we see that 〈Θ(·)f, f〉 is predilatable for every f ∈ H. Consequently, by
Theorem 7.1, Θ is predilatable.

Theorem 8.3. Let A be a commutative complex ∗-algebra. If A is an
F -space, A = [A(2)] and A1 has the properties (P.1) and (P.2), then A has
the property (P.4). If A is a locally multiplicatively-convex algebra and A1

has the property (P.3), then A has the properties (P.1) and (P.2).

P r o o f. The first assertion follows from Propositions 8.1 and 8.2. Assume
that A is a locally multiplicatively-convex algebra and A1 has the property
(P.3). It is enough to show that A has the property (P.2). Take a positive
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linear functional ϕ on A. Then, similarly to the proof of Proposition 8.1, we
show that each bϕ (b ∈ A) extends to a positive linear functional bϕ̃ on A1.
It follows from our assumptions that all bϕ̃ are continuous. Consequently,
by Theorem 3.1(iii), every bϕ is predilatable. This in turn implies that ϕ is
predilatable.

It is well known (cf. [9], Theorem 37.3 and Lemma 37.6(iv)) that any Ba-
nach ∗-algebra has the properties (P.1) and (P.2). Thus Theorem 8.3 can be
regarded as a generalization of the Murphy theorem (cf. [9], Theorem 37.14)
to the case of nonnormed topological ∗-algebras. Other examples of locally
multiplicatively-convex algebras with the properties (P.1) and (P.2) can be
found in [20].

Now we show that positive bi-affine kernels on commutative Banach
∗-algebras which factorize induce continuous positive linear mappings.

Proposition 8.4. Let A be a commutative complex Banach ∗-algebra
such that A = [A(2)] and let Φ : A×A → B(H) be a positive bi-affine kernel.
Then there exists a continuous positive linear mapping Θ : A → B(H)
having a representing measure on Σc(A) such that

Φ(a, b) = Θ(a∗b) , a, b ∈ A .

P r o o f. It follows from Proposition 3.2 that all Φf (f ∈ H) are predi-
latable. Thus, by Theorem 7.1, Φ has a representing measure M on Σc(A).
Since A = [A(2)], we can define Θ : A → B(H) by (7.2). Then Θ is a pos-
itive linear mapping and M is its representing measure. Since any Banach
∗-algebra has the properties (P.1) and (P.2), the continuity of Θ follows from
Theorem 8.3.

Proposition 8.4 suggests the possibility of localizing representing mea-
sures of continuous predilatable kernels on the continuous characters of the
considered topological ∗-algebra.

Proposition 8.5. Let A = [A(2)] be a commutative locally multi-
plicatively-convex ∗-algebra with continuous involution and let Φ : A×A →
B(H) be a jointly continuous positive bi-affine kernel. Then there is a posi-
tive linear mapping Θ : A → B(H) having a representing measure supported
by Σc(A) and such that Φ = ΦΘ.

P r o o f. Applying Proposition 3.3 to Φf we deduce that each Φf is
predilatable. Consequently, by Theorem 7.1, Φ is predilatable and it has
a representing measure M defined on Σ(A). Let (K, X,Π) be a minimal
propagator of Φ and let W be the C∗-algebra generated by Π(A) ∪ {IK}.
Then CΠ := {x ◦Π : x ∈ Σ(W)} is a compact subset of Σ(A) ∪ {0}. Put
AΠ := CΠ \ {0}. Since Σ(W) = Σc(W) and Π is continuous (use Propo-
sition 3.3), we get AΠ ⊂ Σc(A). It follows from the proof of Theorem 1 in
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[44] that the spectral measure E of Π is supported by AΠ . Consequently,
so is the spectral measure Ef of Πf for every f ∈ H (see the proof of The-
orem 7.1). This, in turn, implies (see the proof of Theorem 3 in [44]) that
for any f ∈ H, the closed support of Mᵀ

f is contained in AΠ . Now an easy
verification shows that M is also supported by AΠ . The mapping Θ can be
defined by (7.2).

We end this section with an open question. It is well known (cf. [27],
Theorem 9.3) that if A is a Banach ∗-algebra with continuous involution
and with a bounded two-sided approximate identity, then any linear positive
definite mapping Θ on A is dilatable. If in addition A is commutative, then
to have dilatability we can assume less, namely that Θ is a linear positive
mapping. Since in this case A=[A(2)] (by the Cohen factorization theorem),
the question is:

Question 1. Let A be a commutative Banach ∗-algebra such that A =
[A(2)]. Does there exist a positive linear mapping on A which is not dila-
table?

9. Disintegration of holomorphic positive definite mappings on
commutative Banach ∗-algebras. In this and subsequent sections we
investigate holomorphic positive definite mappings acting either on a Ba-
nach ∗-algebra A or on the open unit ball A• of A. To avoid any confusion,
we denote by A� the ∗-semigroup (A, ·, ∗) with involution and multiplica-
tion inherited from A. Notice that (A•, ·, ∗) is a ∗-semigroup if and only if
the involution of A is isometric, i.e. ‖a∗‖ = ‖a‖ for a ∈ A. It turns out
that any positive definite holomorphic mapping on A• is predilatable (and
consequently representable by measures, provided A is commutative). Since
this is not the case for A�, our main interest is directed at the ∗-semi-
group A•.

We refer the reader to [7], [8] and [12] for holomorphy in topological
vector spaces. Given a complex Hilbert space H and k ≥ 0, denote by
Ls
k(A,H) and Pk(A,H) the Banach spaces of continuous k-linear symmetric

mappings from Ak into B(H) and continuous k-homogeneous polynomials
from A into B(H), respectively, with the corresponding norms

‖Ψ‖ = sup{‖Ψ(a1, . . . , ak)‖ : ‖aj‖ ≤ 1, j = 1, . . . , k} , Ψ ∈ Ls
k(A,H) ,

‖Θ‖ = sup{‖Θ(a)‖ : ‖a‖ ≤ 1} , Θ ∈ Pk(A,H) .

It follows from Proposition 1 of [7] that the mapping Pk(A,H) 3 Θ → Θ# ∈
Ls
k(A,H) defined by

Θ#(a1, . . . , ak) =
1
k!

1∑
i1=0

. . .

1∑
ik=0

(−1)k−(i1+...+ik)Θ(i1a1 + . . .+ ikak)
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is a linear homeomorphism. The last equality is called the polarization
formula.

The following lemma states necessary (and also sufficient) conditions for
an operator-valued mapping to be a holomorphic ∗-representation of A�
(resp. A•).

Lemma 9.1. Let A be a Banach ∗-algebra (resp. a Banach ∗-algebra with
isometric involution) and let Π be a holomorphic ∗-representation of A�
(resp. A•) in a complex Hilbert space K. Then for any k ≥ 0, there is a
∗-representation Πk ∈ Pk(A,K) of A� such that

(i) Πk(a)Πl(b) = 0, k 6= l, a, b ∈ A,
(ii) Π(a) =

∑∞
k=0Πk(a) (norm convergence), a ∈ A (resp. a ∈ A•).

If A has a unit e, then for every k ≥ 0, Πk(e) is an orthogonal projection
reducing Π to Πk and Πk(e)Πl(e) = 0 for all k 6= l.

P r o o f. Because of similarity, we consider here only the case of the
∗-semigroupA•. The mappingΠ, being holomorphic, has the representation
(cf. [8], Proposition 5.5)

Π(a) =
∞∑
k=0

Πk(a) , a ∈ A• ,

where Πk ∈ Pk(A,K) and Πk(a) = (k!)−1(dk/dzk)Π(za)|z=0 for a ∈ A.
Since Π preserves multiplication, the following equalities hold:

Πk(ab) = (k!)−1 d
k

dzk
Π(zab)

∣∣∣∣
z=0

=
(

(k!)−1 d
k

dzk
Π(za)

∣∣∣∣
z=0

)
Π(b)

= Πk(a)Π(b) , a ∈ A , b ∈ A• , k ≥ 0 .

Thus

(9.1) Πk(ab) = Πk(a)Π(b) , a ∈ A , b ∈ A• , k ≥ 0 .

By a similar argument we show that

(9.2) Πk(ab) = Π(a)Πk(b) , a ∈ A• , b ∈ A , k ≥ 0 .

Since Πk is k-homogeneous and (9.1) holds, we get

Πk(a)Πl(b) = (l!)−1 d
l

dzl
Πk(a)Π(zb)

∣∣∣∣
z=0

= (l!)−1 d
l

dzl
Πk(zab)

∣∣∣∣
z=0

= (l!)−1

(
dl

dzl
zk
∣∣∣∣
z=0

)
Πk(ab) , a, b ∈ A , k, l ≥ 0 .

Thus

(9.3) Πk(a)Πl(b) =
{
Πk(ab) if k = l ,
0 if k 6= l ,

a, b ∈ A ,
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which shows (i). To prove that Πk preserves involution notice that if Θ is a
holomorphic B(K)-valued function on an open disc D ⊂ C centered at zero,
then

dkΘ†

dzk
=
(
dkΘ

dzk

)†
, k ≥ 0 ,

where Θ†(z) := Θ(z)∗ for z ∈ D. In particular, setting Θ(z) := Π(za) for
|z| < ‖a‖−1, a being a nonzero element of A, we get

Πk(a)∗ = (k!)−1

(
dkΘ

dzk

)†
(0) = (k!)−1 d

kΘ†

dzk
(0) = Πk(a∗) , a ∈ A .

The last equality is a consequence of

Θ†(z) = Π(za)∗ = Π(za∗) , |z| < ‖a‖−1 .

This completes the proof of the first part of the conclusion.
Assume now that A has a unit e. Since any Πk is a ∗-representation

of A�, Πk(e) is an orthogonal projection. Moreover, by (9.1) and (9.2), we
have

Πk(e)Π(a) = Πk(ea) = Πk(a) = Πk(ae) = Π(a)Πk(e) , a ∈ A• , k ≥ 0 ,

which implies that for every k ≥ 0, the orthogonal projection Πk(e) reduces
Π to Πk. This and (9.3) complete the proof.

Let A be a commutative Banach ∗-algebra with isometric involution
and a unit e. Given k ≥ 0, denote by Σh(A�) (resp. Σh(A•)) the set of
all holomorphic characters of A� (resp. A•). Set Σh

k (A�) := Σh(A�) ∩
Pk(A) with Pk(A) := Pk(A,C) and Σh

k (A•) := Σh(A•) ∩ Pk(A•) with
Pk(A•) := Pk(A)|A• . Then the topological spaces Σh

k (A�) and Σh
k (A•) are

homeomorphic via the usual restriction mapping. Moreover, Σh(A•) can be
described as follows (the case of A� can be treated similarly).

Proposition 9.2. If A is a unital commutative Banach ∗-algebra with
isometric involution, then

(i) for every k ≥ 0, Σh
k (A•) is a compact subset of Σ(A•),

(ii) Σh(A•) =
⋃∞
k=0Σ

h
k (A•),

(iii) Σh
k (A•) ∩Σh

j (A•) = ∅ for k 6= j,
(iv) Σh(A•) ∪ {0} is compact.

P r o o f. Let e be the unit of A. Notice that

(9.4) x(e) = 1 = ‖x‖ , x ∈ Σh
k (A�) , k ≥ 1 .

Indeed, since x is multiplicative and bounded on A•, we must have ‖x‖ ≤ 1.
On the other hand, x(e)2 = x(e), so x(e) = 1 (because otherwise x = 0 6∈
Σh
k (A�)).
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(i) Since Σh
0 (A•) = {1}, we can assume that k ≥ 1. It follows from (9.4)

that Σh
k (A•) ⊂×{Ca : a ∈ A•}, where Ca = {z ∈ C : |z| ≤ 1} for a ∈ A•.

By the Tikhonov theorem, ×{Ca : a ∈ A•} is compact in the topology
of pointwise convergence on A•. Thus we only have to prove that Σh

k (A•)
is closed in ×{Ca : a ∈ A•}. Take a net {xω} ⊂ Σh

k (A�) converging
pointwise to a function x : A → C. By the polarization formula, the net
{x#

ω } converges pointwise onAk to a function y, which is k-linear, symmetric
and x(a) = y(a, . . . , a) for a ∈ A. This means that x is a k-homogeneous
polynomial. Moreover, by (9.4), we have ‖x‖ ≤ 1. Thus x ∈ Pk(A). Using
again (9.4), we show that x 6= 0, which yields x ∈ Σh

k (A�).
(ii) and (iii) can be easily deduced from Lemma 9.1. So we only have to

show that Σh(A•) ∪ {0} is compact. Take a net {xω : ω ∈ Ω} ⊂ Σh(A•) ∪
{0}. Set Ωk := {ω ∈ Ω : xω ∈ Σh

k (A•)} (k ≥ 0), Ω∞ := {ω ∈ Ω : xω = 0}.
Assume first that there exists k ∈ N ∪ {∞} (N := {0, 1, . . .}) such that
Ωk is cofinal with Ω (i.e. for every ω ∈ Ω there exists ω′ ∈ Ωk such that
ω′ ≥ ω). Then {xω : ω ∈ Ωk} is a subnet of {xω : ω ∈ Ω} which consists of
elements of the compact set Σh

k (A•), where Σh
∞(A•) := {0}. Consequently,

there exists a subnet of {xω} which converges to an element of Σh
k (A•).

Consider now the other possibility, where for every k ∈ N ∪ {∞} there
exists ωk ∈ Ω such that {ω ∈ Ω : ω ≥ ωk} ∩ Ωk = ∅. We show that
{xω} converges to 0. Without loss of generality we can assume that {ωk}
is increasing. Take a ∈ A• and ε > 0. Then there exists k ∈ N such that
‖a‖k ≤ ε. If ω ≥ ωk, then either ω ∈ Ω∞ and then |xω(a)| = 0 ≤ ε, or
ω ∈ Ωj with j ≥ k+ 1 and then |xω(a)| ≤ ‖a‖j ≤ ‖a‖k ≤ ε because of (9.4).
In both cases {xω(a)} converges to 0 for every a ∈ A•.

It is worthwhile to notice that if a Banach ∗-algebra A has an isometric
involution and a bounded approximate identity bounded by 1, then A• =
A(2)
• . Indeed, if a ∈ A•, then there exists α > 0 such that ‖a‖ < α2 < 1.

Applying Theorem 4.3 of [16] to α−2a, we get b, c ∈ A such that α−2a = bc,
‖b‖ ≤ 1 and ‖c‖ ≤ 1. Thus a = (αb)(αc) ∈ A(2)

• . In particular, if A has a
unit, then A• = A(2)

• ; hence Theorem 7.1 can be applied to any predilatable
mapping on A•.

Theorem 9.3. Let A be a unital commutative Banach ∗-algebra with
isometric involution. Then for a mapping Θ : A• → B(H), the following
conditions are equivalent :

(i) for every f ∈ H, 〈Θ(·)f, f〉 is a positive definite holomorphic func-
tion,

(ii) Θ is a predilatable holomorphic mapping ,
(iii) Θ has a representing measure supported by Σh(A•),
(iv) there exists a (unique) sequence of polynomials Θk ∈ Pk(A,H),
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k ≥ 0, such that each Θk is positive definite and

Θ(a) =
∞∑
k=0

Θk(a) (norm convergence) , a ∈ A• .

A mapping Θ : A → B(H) is positive definite continuous and k-homo-
geneous if and only if it has a representing measure supported by Σh

k (A�),
k ≥ 0.

P r o o f. (i)⇒(ii). Since Θ is a weakly holomorphic operator-valued map-
ping, it is holomorphic (cf. [12], Exercise 14C(b)). In particular, it is con-
tinuous, so there exist α ∈ (0, 1) and β > 0 such that ‖Θ(a)‖ ≤ β for every
a ∈ α · A•. Take a ∈ A•. Then (a∗a)n ∈ α · A• for n large enough and
consequently

(9.5) lim
n→∞

〈Θ((a∗a)n)f, f〉1/2n ≤ lim
n→∞

(β‖f‖2)1/2n ≤ 1 , f ∈ H .

Thus, by Theorems 3.1 and 6.1, Θ is predilatable.
(ii)⇒(iii). Assume that Θ is a predilatable holomorphic mapping. Take

a minimal propagator (K, X,Π) of ΦΘ. Since (9.5) holds for all a ∈ A•,
Theorem 3.1 gives

(9.6) ‖Π(a)‖ ≤ 1 , a ∈ A• .

Now we show that Π is holomorphic. If f = X(b)h with b ∈ A• and h ∈ H,
then the function 〈Π(·)f, f〉 = 〈Θ(b∗(·)b)h, h〉 is holomorphic. This implies
that 〈Π(·)f, f〉 is holomorphic for every f ∈ EX . If f ∈ K, then there exists
a sequence {fn}∞n=1 ⊂ EX convergent to f . Since, in virtue of (9.6), we have

|〈Π(a)f, f〉 − 〈Π(a)fn, fn〉|
≤ |〈Π(a)f, f〉 − 〈Π(a)f, fn〉|+ |〈Π(a)f, fn〉 − 〈Π(a)fn, fn〉|
≤ (‖f‖+ ‖fn‖)‖f − fn‖ , a ∈ A• ,

〈Π(·)fn, fn〉 converges uniformly on A• to 〈Π(·)f, f〉. Thus, by Proposi-
tion 6.5 of [8], the function 〈Π(·)f, f〉 is holomorphic for all f ∈ K. This
in turn implies that Π is holomorphic itself. Let W be the C∗-algebra gen-
erated by Π(A•) ∪ {IK}. As we know (see the proof of Proposition 8.5)
the representing measure M of Θ is supported by a locally compact set
AΠ := {x ◦Π : x ∈ Σ(W)} \ {0}. Since the superposition of holomorphic
mappings is again holomorphic (cf. [8], Theorem 6.4), we get AΠ ⊂ Σh(A•),
which proves (iii).

(iii)⇒(iv). Assume now that Θ has a representing measure M supported
by Σh(A•). It follows from Proposition 9.2(i) that the restriction of the
measureM to B(Σh

k (A•)) is bounded. Consequently, so is its homeomorphic
image Mk on B(Σh

k (A�)). Using again Proposition 9.2 and Theorem A.3 of
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the appendix, we get

(9.7) Θ(a)f =
∞∑
k=0

Θk(a)f (norm convergence) , a ∈ A• , f ∈ H ,

where

(9.8) Θk(a) =
∫

Σh
k(A�)

x(a)Mk (dx) , a ∈ A , k ≥ 0 .

In virtue of Theorem 7.1, each Θk is positive definite. Applying the polar-
ization formula to members of Σh

k (A�) and using the integral formula (9.8),
one can show that Θk is a k-homogeneous polynomial. Since Mk is bounded,
(9.4) yields sup{‖Θk(a)‖ : ‖a‖ ≤ 1} <∞, which implies the continuity of Θk
(k ≥ 0). It follows from Theorem 5.2 of [8] and (9.7) that the vector-valued
mapping Θ(·)f is holomorphic on A• for all f ∈ H. Thus Θ is holomorphic
and consequently

∑∞
k=0Θk(a) converges in the operator norm topology for

every a ∈ A•.
(iv)⇒(i) is obvious. The last part of the conclusion can be deduced from

the above discussion.

10. Holomorphic positive definite mappings on noncommuta-
tive Banach ∗-algebras. Theorem 9.3 states, among other things, that
any holomorphic positive definite mapping on the open unit ball of a com-
mutative Banach ∗-algebra with isometric involution can be represented as a
series of holomorphic homogeneous polynomials which are positive definite.
Below we show that the same is true for the noncommutative case.

To begin with consider the C∗-algebra Cm of all complex m-tuples with
coordinatewise defined algebraic operations, equipped with the supremum
norm (note that (Cm)• = Dm, where D = {z ∈ C : |z| < 1}). Then Theo-
rem 9.3 leads to the following result (its one-dimensional version has been
announced in [46] without proof; see also [11] and [50] for scalar versions).
Below N = {0, 1, . . .}.
Proposition 10.1. Let Θ be a B(H)-valued mapping defined on Dm

(resp. Cm), m ≥ 1. Assume that for every f ∈ H, 〈Θ(·)f, f〉 is holomorphic
and positive definite. Then there is a net {Tn : n ∈ Nm} ⊂ B(H) of positive
operators such that

(i) Θ(z) =
∑

n∈Nm

znTn , z ∈ Dm (resp. z ∈ Cm) ,

where the series converges in the operator norm topology.

P r o o f. Consider first the case of Dm. It is easy to see that Σh
k (Cm� )

consists of monomials of the form Cm 3 z→ zn ∈ C, where n = (n1, . . . , nm)
∈ Nm and |n| :=

∑m
j=1 nj = k. Thus, by Theorem 9.3 and Theorem A.3 of
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the appendix, there exists a net {Tn : n ∈ Nm} ⊂ B(H) of positive operators
such that for each z ∈ Dm, the series

∑
n znTn converges unconditionally

to Θ(z) in the strong operator topology. We show that the series is in fact
convergent in the norm topology (our proof is a modification of that of
Lemma 1 of [1]). Notice first that since all the operators Tn are positive,

(10.1) ‖znTn‖ ≤ ‖Θ(|z|)‖ , z ∈ Dm , n ∈ Nm ,

where |z| := (|z1|, . . . , |zm|) for z = (z1, . . . , zm)∈Dm. If z ∈ Dm, then there
exists α ∈ R such that |zj | < α < 1 for every j = 1, . . . ,m. Thus, in view of
(10.1), ∑

n

‖znTn‖ =
∑
n

α|n|‖(α−1z)nTn‖ ≤
∑
n

α|n|‖Θ(α−1|z|)‖

= (1− α)−m‖Θ(α−1|z|)‖ <∞ .

If Θ is defined on Cm, then the functions Θ(α(·)), α > 0, being holomor-
phic and positive definite on Dm, are of the form (i). Hence the uniqueness
of Taylor’s expansion leads to the conclusion.

We are now in a position to prove the aforementioned result (it resembles
Theorem 2 of [1]).

Theorem 10.2. Let A be a Banach ∗-algebra with isometric involution
(resp. a Banach ∗-algebra). Then a mapping Θ : A• → B(H) (resp. Θ :
A → B(H)) is positive definite and holomorphic if and only if there exists
a (unique) sequence of polynomials Θk ∈ Pk(A,H) (k ≥ 0) such that

(i) for every k ≥ 0, Θk is positive definite,
(ii) Θ(a) =

∑∞
k=0Θk(a) (norm convergence), a ∈ A• (resp. a ∈ A).

Moreover , if Θ : A• → B(H) is positive definite and holomorphic, then
it is predilatable.

P r o o f. Assume Θ is defined on A• (the other case can be proved sim-
ilarly). The “if” part of the conclusion follows from Theorem 5.2 of [8]. To
prove the “only if” part assume that Θ is positive definite and holomorphic.
Then the continuous k-homogeneous polynomials Θk ∈ Pk(A,H), k ≥ 0,
given by

(10.2) Θk(a) = (k!)−1 d
k

dzk
Θ(za)

∣∣∣∣
z=0

, a ∈ A , k ≥ 0 ,

fulfil (ii) (use Proposition 5.5 of [8]). Thus all we have to prove is that each
Θk is positive definite. For an n-tuple a = (a1, . . . , an) of elements of A• we
define a holomorphic function Ψa : D→ B(Hn) by

Ψa(z) := [Θ(za∗qap)]
n
p,q=1 , z ∈ D .
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Since Θ is positive definite, for all finite sequences {fi}mi=1 ⊂ Hn and
{zi}mi=1 ⊂ D,

m∑
i,j=1

〈Ψa(z∗j zi)fi, fj〉 =
m∑
i=1

n∑
p=1

m∑
j=1

n∑
q=1

〈Θ((zjaq)∗(ziap))fi,p, fj,q〉 ≥ 0 ,

where fi = fi,1 ⊕ . . . ⊕ fi,n. Hence Ψa is a positive definite holomorphic
function on D. By Proposition 10.1, there are positive operators Tk∈B(Hn),
k ≥ 0, (depending on a) such that

Ψa(z) =
∞∑
k=0

Tkz
k , z ∈ D .

Since Tk = (k!)−1(dk/dzk)Ψa(z)|z=0, we can apply (10.2) to get

[Θk(a∗qap)]
n
p,q=1 =

[
(k!)−1 d

k

dzk
Θ(za∗qap)

∣∣∣∣
z=0

]n
p,q=1

= (k!)−1 d
k

dzk
[Θ(za∗qap)]

n
p,q=1

∣∣∣∣
z=0

= Tk ≥ 0 , k ≥ 0 .

However, Θk is k-homogeneous, so the matrix [Θk(a∗qap)]
n
p,q=1 is positive for

all a1, . . . , an ∈ A and n ≥ 1. This is equivalent to the positive definiteness
of Θk.

That Θ is predilatable can be proved similarly to the implication (i)⇒(ii)
of Theorem 9.3, but now we must use the criterion (ii) of Theorem 3.1.

Theorem 10.2 states that any positive definite holomorphic mapping de-
fined on A• is automatically predilatable. On the other hand, basing on
Theorem 3.1, one can show that if A is an arbitrary Banach ∗-algebra, then
any positive definite k-homogeneous polynomial Θ ∈ Pk(A,H) is predi-
latable. However, this is not the case for all positive definite holomorphic
mappings on the ∗-semigroup A�.

Example 10.3. Consider A = C, H = C and Θ : A → B(H) given by

Θ(a) = exp(a) , a ∈ A .
Then Θ is a positive definite holomorphic function. However, it is not predi-
latable. Suppose, by contradiction, that Θ has a minimal propagator
(K, X,Π). Then

exp(|b|2(|a|2 − 1)) = ‖Π(a)X(b)‖2 exp(−|b|2)
≤ ‖Π(a)‖2‖X(b)‖2 exp(−|b|2) = ‖Π(a)‖2 , a, b ∈ A ,

which is impossible when |a| > 1.

Following Szafraniec [57] we give examples of positive definite holomor-
phic mappings on A• which are not dilatable (though they are predilatable).
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Example 10.4. Suppose Ψ : A → B(H) is a positive linear mapping of
a C∗-algebra A with a unit e such that the range of Ψ is commutative and
Ψ(e) = IH. Then, by Proposition 1.2.2 of [2] (see also [27], Proposition 9.5),
Ψ is dilatable and

‖Ψ(a)‖ ≤ ‖a‖ , a ∈ A .
Consequently, for any a ∈ A•, the operator Θ(a) := (IH − Ψ(a))−1 exists
and Θ(a) =

∑∞
k=0 Ψ(a)k. It is clear that Θ : A• → B(H) is holomorphic.

Moreover, according to Proposition 4 of [57], the polynomials Ψ(·)k are pos-
itive definite and consequently so is Θ. By Theorem 10.2, Θ is predilatable.
However, contrary to Corollary 2 in [57], Θ is not dilatable, because Θ is
not bounded on A•.

11. Completely positive k-linear mappings. In this and the next
two sections we discuss the relationship between the notions of positive def-
initeness and complete positivity. Let us recall the definitions. Given two
C∗-algebras A and B, we say (following [1]) that a mapping Θ : A → B
(resp. Θ : A• → B) is completely positive if for every n ≥ 1, the n-square
B-valued matrix [Θ(ai,j)]ij is positive whenever so is the n-square A-valued
(resp. A•-valued) matrix [ai,j ]ij . Similarly a mapping Θ : Ak → B is
said to be completely positive (k ≥ 1) if the n-square B(H)-valued ma-
trix [Θ(a1,ij , . . . , ak,ij)]ij is positive whenever so are the n-square A-valued
matrices [ap,ij ]ij for p = 1, . . . , k. It turns out that any completely posi-
tive mapping is automatically positive definite. The question is whether the
reverse implication holds within the class of holomorphic mappings.

First we answer the question in the affirmative for k-linear mappings
defined on C∗-algebras (recall that the positive definiteness of a mapping
Θ : Ak → B(H) is understood with respect to the direct product Ak� of k
copies of the ∗-semigroup A�).

Proposition 11.1. Let A be a Banach ∗-algebra with continuous in-
volution and with a bounded two-sided approximate identity , and let Θ :
Ak → B(H) be a k-linear mapping , k ≥ 1. Then the following conditions
are equivalent :

(i) Θ is positive definite,
(ii) Θ is continuous and positive definite,
(iii) there are a complex Hilbert space K, an operator R ∈ B(H,K) and

linear ∗-representations Πj : A → B(K) (1 ≤ j ≤ k) such that

Πi(a)Πj(b) = Πj(b)Πi(a) , i 6= j , a, b ∈ A ,(11.1)
Θ(a1, . . . , ak) = R∗Π1(a1) . . . Πk(ak)R , a1, . . . , ak ∈ A .(11.2)

If A is a C∗-algebra, then (i) holds if and only if Θ is completely positive.
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P r o o f. (i)⇒(ii). Suppose that Θ is positive definite. If k = 1, then
the continuity of Θ follows from Theorem 9.3 of [27] and Theorem 37.3 of
[9]. So assume k > 1. Since the linear mappings Θ(a∗1a1, . . . , a

∗
k−1ak−1, ·)

(a1, . . . , ak−1 ∈ A) are positive definite, they are continuous. However,

a∗b = 2−1[(a+b)∗(a+b)−a∗a−b∗b−i((a+ib)∗(a+ib)−a∗a−b∗b)] , a, b ∈ A,

so the linear mappings Θ(a∗1b1, . . . , a
∗
k−1bk−1, ·) (a1, . . . , ak−1 ∈ A, b1, . . .

. . . , bk−1 ∈ A) are continuous as well. Using the Cohen factorization the-
orem ([9], Theorem 11.10), we conclude that all linear mappings Θ(a1, . . .
. . . , ak−1, ·) (a1, . . . , ak−1 ∈ A) are continuous. In the same way we show
that Θ is continuous with respect to any other variable with the remaining
ones being fix. Thus (cf. [34], Theorem 2.17) the multilinear map Θ is
jointly continuous.

(ii)⇒(iii). Suppose that Θ is continuous and positive definite. The proof
of (ii)⇒(iii) will be divided into a few steps.

S t e p 1. Θ is dilatable on the ∗-semigroup Ak�.

It follows from the continuity of Θ that the condition (iii) of Theorem 3.1
holds for Φ = ΦΘ. In the terminology of [27], Θ satisfies the boundedness
condition. Since A has a bounded two-sided approximate identity and Θ is
jointly continuous, all the assumptions of Theorem 6.2 of [27] are satisfied.
Therefore Θ is dilatable on Ak�.

Take a minimal dilation (K, R,Π) of Θ. It follows from Proposi-
tion 6.2(a) of [27] that Π is k-linear. Moreover, by (i)⇒(ii), Π is contin-
uous.

S t e p 2. If a bounded net {aω} ⊂ Ak is such that all nets of the form
{aωb}, b ∈ Ak, are convergent in Ak, then the net {Π(aω)} is convergent in
the strong operator topology. Moreover , if {a′ω} ⊂ Ak is another bounded net
such that limω a′ωb = limω aωb for all b ∈ Ak, then (SOT) limωΠ(a′ω) =
(SOT) limωΠ(aω).

Since Π is continuous and {aω} is bounded, the net {Π(aω)} is bounded
too. Take a vector g ∈ K of the form Π(b)Rf with b ∈ Ak and f ∈ H.
Then ‖Π(aω)g −Π(aτ )g‖ = ‖Π(aωb)Rf −Π(aτb)Rf‖ for ω, τ ∈ Ω. This
implies that {Π(aω)g} is a Cauchy net in K. Since the set of all g’s is total
in K, the net {Π(aω)} is convergent in the strong operator topology. Using
the same kind of argument, one can show the other part of Step 2.

Arguing similarly to the previous paragraph we show

S t e p 3. If {eω} is a bounded two-sided approximate identity of A, then
(SOT) lim(ω1,...,ωk)Π(eω1 , . . . , eωk

) = IK.
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Let {eω} be a fixed bounded two-sided approximate identity of A. Set
Πj,ω(a) := Π(eω, . . . , eω, a, eω, . . . , eω) with a ∈ A in the jth position,
1 ≤ j ≤ k. In virtue of Step 2, the net {Πj,ω(a)} converges in the strong
operator topology to an operator Πj(a), a ∈ A. It is obvious that all the
mappings Πj : A → B(K) are linear. Moreover, again by Step 2, the def-
inition of Πj(a) does not depend on the choice of a bounded two-sided
approximate identity of A.

S t e p 4. For every j = 1, . . . , k, Πj preserves involution.

To show this, notice that {e∗ω} is a bounded two-sided approximate iden-
tity of A and Πj,ω(a)∗ = Π(e∗ω, . . . , e

∗
ω, a
∗, e∗ω, . . . , e

∗
ω) for a ∈ A. Thus for

every a ∈ A, the net {Πj,ω(a)∗} converges in the strong operator topology
to Πj(a∗). On the other hand, {Πj,ω(a)∗} converges in the weak operator
topology to Πj(a)∗. Thus Πj(a∗) = Πj(a)∗ for every a ∈ A.

S t e p 5. Πi(a)Πj(b) = Πj(b)Πi(a), i 6= j, a, b ∈ A.

Without loss of generality we can assume that i = 1 and j = 2. It follows
from Step 4 that

〈Π1(a)Π2(b)g, h〉 = 〈Π2(b)g,Π1(a∗)h〉(11.3)
= lim

ω
〈Π(eω, b, eω, . . . , eω)g,Π(a∗, e∗ω, e

∗
ω, . . . , e

∗
ω)h〉

= lim
ω
〈Π(aeω, eωb, e2ω, . . . , e

2
ω)g, h〉 , g, h ∈ K .

In the same manner we show that

(11.4) 〈Π2(b)Π1(a)g, h〉 = lim
ω
〈Π(eωa, beω, e2ω, . . . , e

2
ω)g, h〉 , g, h ∈ K .

Since {e2ω} is a bounded two-sided approximate identity, we can apply Step 2
to deduce that the nets {Π(aeω, eωb, e2ω, . . . , e

2
ω)} and {Π(eωa, beω, e2ω, . . .

. . . , e2ω)} are convergent in the strong operator topology to the same limit.
This, when combined with (11.3) and (11.4), leads to the desired equality.

The next step can be proved similarly:

S t e p 6. For every j = 1, . . . , k, Πj preserves multiplication.

To complete the proof of (ii)⇒(iii), it is enough to show that for all
a1, . . . , ak ∈ A, Π(a1, . . . , ak) = Π1(a1) . . . Πk(ak). The latter can be proved
with the help of Steps 2–4 as follows:

〈Π(a1, . . . , ak)g, h〉 = lim
ω1
〈Π(a1eω1 , eω1a2, . . . , eω1ak)g, h〉

= 〈lim
ω1

Π(eω1 , a2, . . . , ak)g, lim
ω1

Π(a∗1, e
∗
ω1
, . . . , e∗ω1

)h〉

= lim
ω1
〈Π(eω1 , a2, . . . , ak)g,Π1(a1)∗h〉

= lim
ω1

lim
ω2
〈Π(eω2eω1 , a2eω2 , eω2a3, . . . , eω2ak)g,Π1(a1)∗h〉
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= lim
ω1

lim
ω2
〈Π(eω1 , eω2 , a3, . . . , ak)g,Π(e∗ω2

, a∗2, e
∗
ω2
, . . . , e∗ω2

)Π1(a1)∗h〉

= lim
ω1

lim
ω2
〈Π(eω1 , eω2 , a3, . . . , ak)g,Π2(a2)∗Π1(a1)∗h〉 = . . .

= lim
ω1

. . . lim
ωk

〈Π(eω1 , . . . , eωk
)g,Πk(ak)∗ . . . Π1(a1)∗h〉

= 〈Π1(a1) . . . Πk(ak)g, h〉 , g, h ∈ K .
The implication (iii)⇒(i) is obvious.
Assume that A is a C∗-algebra. If Θ is positive definite, then it is of

the form (11.2) with Πj satisfying (11.1). Thus, by Proposition 4 of [57],
the k-linear mapping Ak 3 (a1, . . . , ak) → Π1(a1) . . . Πk(ak) ∈ B(K) is
completely positive. Hence so is Θ. The converse implication can be easily
verified with the help of the Gelfand–Naimark theorem. This completes the
proof of Proposition 11.1.

In case A is commutative, positive definite k-linear mappings can be
described with the aid of spectral measures. Below ξ1 ⊗ . . .⊗ ξk stands for
the k-fold tensor product of functions ξ1, . . . , ξk : X → C defined on a set
X , i.e. ξ1 ⊗ . . .⊗ ξk(x1, . . . , xk) := ξ1(x1) . . . ξk(xk) , x1, . . . , xk ∈ X .
Proposition 11.2. Let A be a commutative Banach ∗-algebra with con-

tinuous involution and with a bounded two-sided approximate identity , and
let Θ : Ak → B(H) be a k-linear positive definite mapping , k ≥ 1. Then
there exist a complex Hilbert space K, an operator R ∈ B(H,K) and a regular
spectral measure E : B(Σ(A)k)→ B(K) such that

Θ(a1, . . . , ak) = R∗
( ∫
Σ(A)k

â1 ⊗ . . .⊗ âk dE
)
R , a1, . . . , ak ∈ A .

P r o o f. It follows from Proposition 11.1 that there are a complex Hilbert
space K, an operator R ∈ B(H,K) and linear ∗-representations Πj : A →
B(K), 1 ≤ j ≤ k, which satisfy (11.1) and (11.2). Let Ej be the spectral
measure of Πj , 1 ≤ j ≤ k. The condition (11.1) yields that any two measures
Ei and Ej commute. Since Σ(A) is a locally compact Hausdorff space and
the measures Ej are regular, there exists a (unique) regular spectral measure
E on B(Σ(A)k) such that (5)

E(A1 × . . .×Ak) = E1(A1) . . . Ek(Ak) , A1, . . . , Ak ∈ B(Σ(A)) .
This in turn implies that

Π1(a1) . . . Πk(ak) =
∫

Σ(A)k

â1 ⊗ . . .⊗ âk dE , a1, . . . , ak ∈ A ,

so, by (11.2), the proof is complete.

(5) This can be deduced from Proposition 3 of [48] via Lemmas 11.2 and 11.3 of [4]
(see the proof of Proposition 4 of [48]).
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12. Multiplicative k-homogeneous polynomials. It is of special in-
terest to know whether k-homogeneous characters of A� come from k-fold
tensor products of (linear) characters of the ∗-algebra A. A partial answer
to the question is given in Proposition 12.2. In order to prove it, we need
the notion of kth symmetric power of a topological space (see [19] for sym-
metrization of measurable spaces).

In the sequel G(X ) stands for the multiplicative group of all topological
automorphisms of a topological space X . Given an integer k ≥ 1, set Gk :=
G({1, . . . , k}) and define the group monomorphism ∆k : Gk → G(X k) by

∆k(σ)(x1, . . . , xk) := (xσ(1), . . . , xσ(k)) , x1, . . . , xk ∈ X .
The mapping ∆k induces an equivalence relation ∼= on X as follows:

x ∼= y ⇔ ∃σ ∈ Gk : y = ∆k(σ)x (x,y ∈ X k) .

In case X is a locally compact Hausdorff space, the relation ∼= can be de-
scribed in another equivalent way (use Urysohn’s lemma; cf. [35], Theo-
rem 2.12):

(P.5) x ∼= y⇔ ∀ ξ ∈ C0(X ) : ξ⊗ . . .⊗ξ(x) = ξ⊗ . . .⊗ξ(y) (x,y ∈ X k) ,

where C0(X ) stands for the space of all complex-valued continuous functions
on X which vanish at infinity. Denote by Γk : X k → S(X k) the quotient
mapping from X k onto the quotient space S(X k) := X k/ ∼=. Then

(P.6) Γ−1
k Γk(A) = A ⇔ ∀ σ ∈ Gk : ∆k(σ)A = A (A ⊂ X k) .

Equip S(X k) with the quotient topology (i.e. D is open in S(X k) if and only
if Γ−1

k (D) is open in X k). It follows from (P.6) that

(P.7) if D is an open subset of X k such that ∆k(σ)D = D for all σ ∈ Gk,
then Γk(D) is an open subset of S(X k).

Though, in general, taking quotient spaces makes topology worse, this is
not the case for the relation ∼= at least from the following point of view.

Lemma 12.1. If X is a compact (resp. a locally compact) Hausdorff space,
then so is S(X k), k ≥ 1.

P r o o f. To make the proof clearer we write G, ∆ and Γ instead of Gk,
∆k and Γk, respectively. Assume X is a locally compact Hausdorff space.
First we show that S(X k) is a Hausdorff space. Take x1,x2 ∈ X k such that
Γ (x1) 6= Γ (x2). Since Γ (x1) and Γ (x2) are finite, there are two disjoint
open subsets D1 and D2 of X k such that Γ (xj) ⊂ Dj , j = 1, 2. Define new
open sets Aj :=

⋂
{∆(σ)Dj : σ ∈ G} ⊂ Dj , j = 1, 2. Then ∆(σ)Aj = Aj

for all σ ∈ G and consequently, by (P.7), Γ (Aj) is an open subset of S(X k),
j = 1, 2. Since for all σ ∈ G, xj ∼= ∆(σ)xj , we get ∆(σ)xj ∈ Γ (xj) ⊂ Dj ,
which in turn implies that xj ∈ Aj , j = 1, 2. Thus Γ (xj) ∈ Γ (Aj), j = 1, 2.
However, the sets D1 and D2 and consequently A1 and A2 are disjoint, so
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the same remains true for Γ (A1) and Γ (A2). Indeed, if Γ (A1)∩Γ (A2) 6= ∅,
then, by (P.6), we obtain

A1 ∩A2 = Γ−1Γ (A1) ∩ Γ−1Γ (A2) = Γ−1(Γ (A1) ∩ Γ (A2)) 6= ∅ ,
which contradicts A1 ∩A2 = ∅.

To show that S(X k) is locally compact take x ∈ S(X k). Then, because
Γ (x) is finite and X k is a locally compact Hausdorff space, there exists
an open set D, whose closure D is compact, such that Γ (x) ⊂ D. Set
A :=

⋂
{∆(σ)D : σ ∈ G} ⊂ D. Then, just as in the previous paragraph, we

show that Γ (A) is an open neighbourhood of Γ (x). Since Γ (A) ⊂ Γ (D) and
Γ (D) is compact, so is Γ (A).

Finally, if X is a compact Hausdorff space, then so is S(X k), the image
of the compact Hausdorff space X k via the continuous mapping Γk.

We are now in a position to present a partial answer to the question
mentioned at the beginning of this section. Below ιk, k ≥ 1, stands for the
multiplicative mapping from A into Ak defined by

ιk(a) := (a, . . . , a), a ∈ A .

Proposition 12.2. Let A be a commutative Banach ∗-algebra with con-
tinuous involution, having a bounded two-sided approximate identity , and
let x : A → C be an arbitrary function. Then for any k ≥ 1, the following
conditions are equivalent :

(i) x is a character of A� of the form x = y ◦ ιk, where y : Ak → C is
k-linear and positive definite,

(ii) there exist (linear) characters x1, . . . , xk of the ∗-algebra A such that
x = (x1 ⊗ . . .⊗ xk) ◦ ιk.

(iii) x is a k-homogeneous character of A� and x# is positive definite.

Moreover , if x satisfies (i), then x ∈ Σh
k (A�).

P r o o f. Denote by X the locally compact Hausdorff space Σ(A).

S t e p 1. The set Â := {â : a ∈ A} is uniformly dense in C0(X ).

For if a ∈ A and ε > 0, then the set Ca,ε := {x ∈ X : |x(a)| ≥ ε} is
compact in X (as a closed subset of the compact set X ∪{0}) and |â(x)| < ε

for all x ∈ X \ Ca,ε. Thus â ∈ C0(X ) for all a ∈ A. Since the ∗-algebra Â
separates the points of X and for any x ∈ X , there exists ξ ∈ Â such that
ξ(x) 6= 0, the denseness of Â in C0(X ) follows from the Stone–Weierstrass
theorem.

Notice that for every ξ∈C0(X ), the function ξ⊗k := ξ⊗. . .⊗ξ is constant
on any coset Γk(x) with x ∈ X k. Thus there exists a unique continuous
function ξ�k : S(X k)→ C such that ξ⊗k = ξ�k ◦ Γk.
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S t e p 2. The linear span V of the set {â�k : a ∈ A} is uniformly dense
in C0(S(X k)).

For if ξ ∈ C0(X ), then ξ⊗k ∈ C0(X k) and consequently ξ�k ∈C0(S(X k)).
Thus V is a symmetric subalgebra of C0(S(X k)), which separates points of
S(X k). The latter is a consequence of the following:

(P.8) x ∼= y ⇔ ∀ a ∈ A : (â⊗. . .⊗â)(x) = (â⊗. . .⊗â)(y) (x,y ∈ X k) .

((P.8) can be deduced from (P.5) via Step 1.) Suppose now that x ∈ X k.
Then, by Urysohn’s lemma, there exists ξ ∈ C0(X ) such that ξ⊗k(x) 6= 0.
This and Step 1 enable us to find a ∈ A such that â⊗k(x) 6= 0. In other
words, we have proved that for every x ∈ S(X k), there exists ϕ ∈ V such that
ϕ(x) 6= 0. Consequently, by the Stone–Weierstrass theorem, V is uniformly
dense in C0(S(X k)).

(i)⇒(ii). Assume that x is a character of A� of the form x = y◦ιk, where
y : Ak → C is k-linear and positive definite. Applying Proposition 11.2 to y
we get a finite regular positive Borel measure µ on X k such that

x(a) =
∫
Xk

â⊗k dµ , a ∈ A .

Since x is a character of A�, we get∫
S(Xk)

â�k b̂�k dµ̃ =
∫

S(Xk)

â�k dµ̃
∫

S(Xk )̂

b�k dµ̃ , a, b ∈ A ,

where µ̃ is a regular measure on S(X k) defined by µ̃(A) := µ(Γ−1
k (A)),

A ∈ B(S(X k)). Applying Step 2 to the above equality we get

(12.1)
∫

S(Xk)

ϕψ dµ̃ =
∫

S(Xk)

ϕdµ̃
∫

S(Xk)

ψ dµ̃ , ϕ, ψ ∈ C0(S(X k)) .

Let C be the closed support of µ̃. Since x is nonzero, C 6= ∅. Suppose
that there are x1, x2 ∈ C such that x1 6= x2. Then, by Urysohn’s lemma,
there are nonnegative functions ϕ,ψ ∈ C0(S(X k)) such that ϕ(x1) = 1 =
ψ(x2) and ϕψ = 0. It follows from (12.1) that either

∫
S(Xk)

ϕdµ̃ = 0 or∫
S(Xk)

ψ dµ̃ = 0, which contradicts x1, x2 ∈ C. We have proved that there
exists x = (x1, . . . , xk) ∈ X k such that C = {Γk(x)}. This in turn implies
that

x(a) =
∫
C

â�k dµ̃ = µ̃(C)â�k(Γk(x)) = µ̃(C)x1(a) . . . xk(a) , a ∈ A .

Since x is a nonzero character of A� and A = A(2), we must have µ̃(C) = 1,
which completes the proof of (i)⇒(ii).
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(ii)⇒(iii). Assume that x = (x1⊗ . . .⊗xk)◦ιk, where x1, . . . , xk ∈ Σ(A).
Then the function x∼ : Ak → C defined by

x∼(a1, . . . , ak) =
1
k!

∑
σ∈Gk

xσ(1)(a1) . . . xσ(k)(ak)

is a k-linear symmetric form such that x = x∼◦ιk. Thus, by the uniqueness of
symmetric extensions (cf. [12], Theorem 4.7), x# = x∼. Fix finite sequences
{αi}li=1 ⊂ C and {ai}li=1 ⊂ Ak with ai := (ai,1, . . . , ai,k). Then the equality
x# = x∼ implies

k!
l∑

p,q=1

x#(a∗qap)αpαq

=
∑
σ∈Gk

l∑
p,q=1

xσ(1)(aq,1)xσ(1)(ap,1) . . . xσ(k)(aq,k)xσ(k)(ap,k)αpαq

=
∑
σ∈Gk

∣∣∣ l∑
p=1

αpxσ(1)(ap,1) . . . xσ(k)(ap,k)
∣∣∣2 ≥ 0 ,

which yields the positive definiteness of x#.
Since (iii)⇒(i) is obvious, the proof of Proposition 12.2 is complete.

In case A is a commutative W ∗-algebra (i.e. A is a commutative C∗-
algebra which as a Banach space is dual to some other Banach space), the
answer to the question mentioned at the beginning of this section is in
the affirmative for continuous k-homogeneous characters of A�. Another
question is whether any k-homogeneous character of A� is continuous.

First we show that a symmetric k-linear extension of a continuous k-
homogeneous character of A� is positive definite. Notice that, in general,
such an extension need not be multiplicative (e.g. if A = C2, then the
symmetric bilinear form defined by

A×A 3 ((z1, z2), (w1, w2))→ 2−1(z1w2 + w1z2) ∈ C
is not multiplicative on A2, though its restriction to the diagonal of A2 is
multiplicative).

Lemma 12.3. Let A be a commutative W ∗-algebra and let x ∈ Pk(A) be
a character of A�, k ≥ 1. Then x# is positive definite.

P r o o f. It follows from Theorem of [36] and Theorem I.7.1 of [14] that
A can be identified up to an isometric ∗-isomorphism of normed ∗-algebras
with L∞(X , ν), the W ∗-algebra of all complex Borel functions on a locally
compact Hausdorff space X which are essentially bounded with respect to a
positive Borel measure ν on X (see also [37], Proposition 1.18.1). So without
loss of generality we can assume that A = L∞(X , ν) and k ≥ 2.



Positive definite kernels on ∗-semigroups 281

Fix finite sequences {αi}li=1 ⊂ C and {ai}li=1 ⊂ Ak with ai := (ai,1, . . .
. . . , ai,k). All we have to show is that

∑l
p,q=1 x

#(a∗qap)αpαq ≥ 0. Denote
by P the set of all nonzero idempotents in A and by linP the linear span
of P. Since linP is norm dense in A and x# is continuous, we can assume
without loss of generality that F := {ai,j : 1 ≤ i ≤ l, 1 ≤ j ≤ k} ⊂ linP.
This in turn implies that there exists a finite set C := {c1, . . . , cm} ⊂ P such
that cpcq = 0 for all p 6= q and F ⊂ lin C. Notice that the ∗-algebras Cm
and lin C are ∗-isomorphic via Cm 3 (z1, . . . , zm) → z1c1 + . . . + zmcm ∈
lin C. Thus we have reduced the general situation to the case where x is a
multiplication preserving k-homogeneous polynomial on A = Cm. An easy
verification shows that x must be of the form x = (x1⊗ . . .⊗xk) ◦ ιk, where
x1, . . . , xk ∈ Σ(Cm) = {1, . . . ,m}. So the positive definiteness of x# follows
from Proposition 12.2.

We now pass on to the case of a compact Hausdorff space X = Σ(A),
attached to a commutative W ∗-algebra (6) A. For an integer k ≥ 1, define
the continuous mapping ϑk : X k → Σh

k (A�) by

ϑk(x1, . . . , xk) = (x1 ⊗ . . .⊗ xk) ◦ ιk , x1, . . . , xk ∈ X .

Then (P.8) yields

x ∼= y ⇔ ϑk(x) = ϑk(y) , x,y ∈ X k .

Thus there exists a unique (necessarily continuous) one-to-one mapping Ξk :
S(X k)→ Σh

k (A�) such that ϑk = Ξk ◦ Γk. It turns out that Ξk is onto.

Theorem 12.4. If A is a commutative W ∗-algebra, then for every k ≥ 1,
the mapping Ξk : S(Σ(A)k)→ Σh

k (A�) is a homeomorphism.

P r o o f. By Lemma 12.3 and Proposition 12.2, the mapping Ξk is one-
to-one and onto. On the other hand, Lemma 12.1 implies that S(Σ(A)k) is
a compact Hausdorff space, so Ξk is a closed mapping. Consequently, Ξk is
a homeomorphism.

13. Positive definiteness versus complete positivity. In this sec-
tion we show that the notions of positive definiteness and complete posi-
tivity coincide within the class of holomorphic mappings on commutative
W ∗-algebras. Notice that there are completely positive mappings which are
not holomorphic.

To begin with we prove a version of Lemma 12.3 for positive definite
k-homogeneous polynomials.

(6) That X is a compact Hausdorff space follows from the fact that any W ∗-algebra
has a unit.
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Lemma 13.1. Let A be a commutative W ∗-algebra and let Θ ∈ Pk(A,H)
be a positive definite polynomial , k ≥ 1. Then Θ# is positive definite.

P r o o f I. By Theorem 9.3, we have

(13.1) Θ#(a1, . . . , ak) =
∫

Σh
k(A�)

x#(a1, . . . , ak)M(dx), a1, . . . , ak ∈ A,

where M is a representing measure of Θ. Applying Lemma 12.3 to (13.1) we
see that 〈Θ#(·)f, f〉 is positive definite for all f ∈ H. This and Theorem 6.1
complete the proof.

P r o o f II (independent of Theorem 9.3). Similarly to the proof of
Lemma 12.3, we reduce the general situation to the case of A = Cm. Then,
by Proposition 10.1, we have

Θ# =
∑
|n|=k

x#
n Tn ,

where Tn are positive operators on H and xn are monomials on Cm of the
form xn(z) = zn, z ∈ Cm. It is enough to show that any x#

n Tn is positive
definite. It follows from Lemma 12.3 that x#

n is positive definite. Let (K, X)
be a minimal factorization of x#

n . Then
l∑

p,q=1

〈x#
n (a∗qap)Tnfp, fq〉H =

∥∥∥ l∑
p=1

X(ap)⊗
√
Tnfp

∥∥∥2

K⊗H
≥ 0

for all finite sequences {fi}li=1 ⊂ H and {ai}li=1 ⊂ Ak, which completes the
proof.

We are now in a position to show that positive definite continuous homo-
geneous polynomials on commutative W ∗-algebras are completely positive.

Proposition 13.2. Let A be a commutative W ∗-algebra and let Θ ∈
Pk(A,H) (k ≥ 1). Then the following conditions are equivalent :

(i) for every f ∈ H, 〈Θ(·)f, f〉 is positive definite,
(ii) there are a complex Hilbert space K, an operator R ∈ B(H,K) and

linear ∗-representations Πj : A → B(K) (1 ≤ j ≤ k) such that

Πi(a)Πj(b) = Πj(b)Πi(a) , a, b ∈ A , 1 ≤ i, j ≤ k ,
Θ(a) = R∗Π1(a) . . . Πk(a)R , a ∈ A ,

(iii) Θ is completely positive,
(iv) there exists a (necessarily unique) regular semispectral measure E :

B(S(X k))→ B(H) such that

(13.2) Θ(a) =
∫

S(Xk)

â�k dE , a ∈ A (X = Σ(A)) .



Positive definite kernels on ∗-semigroups 283

Moreover , Θ is a ∗-representation of A� if and only if E is a spectral mea-
sure.

P r o o f. (i)⇒(ii) is a consequence of Theorem 9.3, Lemma 13.1 and
Proposition 11.1. That (ii) implies (iii) follows from Proposition 4 of [57].
Since any completely positive mapping is automatically positive definite,
(iii)⇒(iv) can be deduced from Lemma 13.1 and Proposition 11.2 (the
uniqueness of E in (13.2) follows from Step 2 of the proof of Proposi-
tion 12.2). The proof of (iv)⇒(i) is straightforward. If the measure E in
(13.2) is spectral, then obviously Θ is a ∗-representation of A�. Conversely,
if Θ is a ∗-representation of A� given by (13.2), then the uniform denseness
of the linear span of {â�k : a ∈ A} in C0(S(X k)) (see Step 2 of the proof of
Proposition 12.2) implies∫

S(Xk)

ϕψ dE =
∫

S(Xk)

ϕdE
∫

S(Xk)

ψ dE , ϕ, ψ ∈ C0(S(X k)) .

Thus (cf. [26], Theorem 2.1), E must be a spectral measure.

In virtue of Theorem 9.3, any holomorphic positive definite function on
the open unit ball of a commutative W ∗-algebra can be represented as a
series of holomorphic homogeneous polynomials which are positive definite.
Thus we can apply Proposition 13.2 (and also Theorem 9.3) to get

Theorem 13.3. Let A be a commutative W ∗-algebra and let Θ : A• →
B(H) (resp. Θ : A → B(H)) be a holomorphic mapping. Then the following
conditions are equivalent :

(i) for every f ∈ H, 〈Θ(·)f, f〉 is positive definite,
(ii) Θ is completely positive.

Considering positive definite functions on commutative W ∗-algebras
leads to a result which resembles Theorem 7 of [1]. Its precise formulation
is left to the reader. We end this section with two open questions.

Question 2. Is any positive definite k-homogeneous polynomial on a
(commutative) C∗-algebra A continuous ?

Question 3. Is it true that Θ# is positive definite for any contin-
uous positive definite k-homogeneous polynomial Θ on a (commutative)
C∗-algebra A ?

Basing on the Gelfand–Naimark theorem, one can easily reduce Ques-
tion 3 to the case A = C0(A), where A is a closed subset of Cm with some
m ≥ 1. Moreover, if the answer to Question 3 is in the affirmative, then The-
orem 12.4, Proposition 13.2 and Theorem 13.3 also hold for commutative
C∗-algebras.
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14. Appendix. For the convenience of the reader we collect in this
section basic facts concerning integration of scalar functions with respect to
positive operator-valued measures defined on δ-rings (see [23] for another
approach).

Let X be a topological Hausdorff space and let B(X ) stand for the σ-
algebra of Borel sets in X (i.e. the σ-algebra generated by open sets in X ).
Denote by C(X ) and D(X ) the families of all compact subsets of X and of
all relatively compact Borel subsets of X , respectively. Let R be a δ-ring
of Borel subsets of X (i.e. R is a ring closed under countable intersections)
containing D(X ). We say that a (σ-additive) measure µ : R→ R+ is tight if

µ(A) = sup{µ(C) : C ⊂ A, C ∈ C(X )} , A ∈ R .

It is well known (cf. [21], Theorem 1.2) that every tight measure µ : R→ R+

has a unique tight (=Radon) extension µᵀ : B(X )→ R+.
Let H be a complex Hilbert space. A mapping M : R→ B(H) is said to

be a tight positive operator-valued measure (in short: a tight PO measure)
on X if for every f ∈ H, Mf (·) := 〈M(·)f, f〉 is a tight measure. Given a
tight PO measure M : R→ B(H), set

DM := {A ∈ B(X ) : Mᵀ
f (A) <∞ for all f ∈ H} .

We say thatM is maximal if R=DM . One can show (see the proof of Theo-
rem 7.1) that each tight PO measure can be extended to a (unique) maximal
one. By a semispectral measure we understand a positive-operator-valued
mapping defined on a σ-algebra, which is σ-additive in the weak opera-
tor topology. A semispectral measure E is said to be spectral if for every
A ∈ B(X ), E(A) is an orthogonal projection. Notice that if M is a tight PO
measure whose values are orthogonal projections, then its unique maximal
extension is a regular spectral measure.

Let M : R→ B(H) be a tight PO measure on X and let p ≥ 1. Denote
by Lp(M) the linear space of all complex Borel functions ξ on X such that∫
X |ξ|

p dMᵀ
f <∞ for all f ∈ H. Set

‖ξ‖p,M := sup
{( ∫
X

|ξ|p dMᵀ
f

)1/p

: f ∈ H , ‖f‖ = 1
}
, ξ ∈ Lp(M) .

Below we show that ‖ξ‖p,M < ∞ for every ξ ∈ Lp(M). We say that a
property P (concerning points of X ) holds a.e. [M ] if the set {x ∈ X : x
does not have the property P} is in R and has M -measure 0.

We are now in a position to show that for any ξ ∈ L1(M), the integral∫
X ξ dM converges in the weak operator topology. The following result has

been announced in [46].

Theorem A.1. Let M : R→ B(H) be a maximal tight PO measure on a
topological Hausdorff space X . Then for every ξ ∈ L1(M), there is a unique
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operator
∫
X ξ dM ∈ B(H) such that

(i)
〈 ∫
X

ξ dMf, f
〉

=
∫
X

ξ dMᵀ
f , f ∈ H .

The integral
∫
X ξ dM has the following properties :

(ii)
∫
X

χA dM = M(A) , A ∈ R ,

(iii)
∫
X

(αξ + βη) dM = α
∫
X

ξ dM + β
∫
X

η dM,

α, β ∈ C, ξ, η ∈ L1(M) ,

(iv)
( ∫
X

ξ dM
)∗

=
∫
X

ξ dM , ξ ∈ L1(M) ,

(v) if ξ ∈ L1(M) and ξ ≥ 0 a.e. [M ], then
∫
X

ξ dM ≥ 0 ,

(vi) if ξ, η ∈ L1(M) and ξ = η a.e. [M ], then
∫
X

ξ dM =
∫
X

η dM ,

(vii)
∣∣∣〈∫
X

ξ dMf, g
〉∣∣∣2≤ ∫

X

|ξ| dMᵀ
f

∫
X

|ξ| dMᵀ
g , ξ ∈ L1(M), f, g ∈ H,

(viii) ‖ξ‖1,M =
∥∥∥ ∫
X

|ξ| dM
∥∥∥ , ξ ∈ L1(M) ,

(ix)
∥∥∥ ∫
X

ξ dM
∥∥∥ ≤ ∥∥∥ ∫

X

|ξ| dM
∥∥∥ , ξ ∈ L1(M) .

P r o o f. The uniqueness of the operator
∫
X ξ dM satisfying (i) follows

from the polarization formula. So we only have to prove that such an op-
erator exists. Denote by T the set of all complex functions ξ on X of the
form

(A.1) ξ =
m∑
k=1

αkχAk

with α1, . . . , αm ∈ C, A1, . . . , Am ∈ R and m ≥ 1. Then T ⊂ L1(M).
If ξ ∈ T is of the form (A.1), then we set

∫
X ξ dM :=

∑m
k=1 αkM(Ak).

Since 〈
∑m
k=1 αkM(Ak)f, f〉 =

∫
X ξ dM

ᵀ
f for every f ∈ H, the definition

of
∫
X ξ dM does not depend on αk’s and Ak’s representing ξ via (A.1).

Since R is a ring of sets, we can assume, without loss of generality, that
the sets Ak, k = 1, . . . ,m, are pairwise disjoint. Thus, by the Cauchy–
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Schwarz inequality,∣∣∣〈 ∫
X

ξ dMf, g
〉∣∣∣ ≤ m∑

k=1

|αk| |〈M(Ak)1/2f,M(Ak)1/2g〉|(A.2)

≤
m∑
k=1

(|αk|1/2‖M(Ak)1/2f‖)(|αk|1/2‖M(Ak)1/2g‖)

≤
( m∑
k=1

|αk|‖M(Ak)1/2f‖2
)1/2( m∑

k=1

|αk|‖M(Ak)1/2g‖2
)1/2

=
( m∑
k=1

|αk|〈M(Ak)f, f〉
)1/2( m∑

k=1

|αk|〈M(Ak)g, g〉
)1/2

=
( ∫
X

|ξ| dMᵀ
f

)1/2( ∫
X

|ξ| dMᵀ
g

)1/2

, f, g ∈ H ,

which means that (vii) holds for any ξ ∈ T .
Assume now that ξ ∈ L1(M). Then there exists a sequence {ξn}∞n=1

of simple Borel complex functions on X such that |ξn| ≤ |ξ| and ξ(x) =
limn→∞ ξn(x) for every x ∈ X . Since

∫
X |ξn| dM

ᵀ
f ≤

∫
X |ξ| dM

ᵀ
f < ∞ for

every f ∈ H and M is maximal, we get ξn ∈ T , n ≥ 1. Set Tn :=
∫
X ξn dM ,

n ≥ 1. Then, directly from the definition of
∫
X ξn dM , we get

|〈(Tm − Tn)f, f〉| ≤
∫
X

|ξm − ξn| dMᵀ
f , f ∈ H , m, n ≥ 1 .

We have limm→∞, n→∞
∫
X |ξm − ξn| dMᵀ

f = 0 for every f ∈ H by the
Lebesgue dominated convergence theorem, hence the above inequality im-
plies that for every f ∈ H, the sequence {〈Tnf, f〉}∞n=1 is convergent. It
follows from the Banach–Steinhaus and the Riesz–Fischer theorems that
there exists T ∈ B(H) such that {Tn} converges to T in the weak operator
topology. Set ∫

X

ξ dM := (WOT) lim
n→∞

∫
X

ξn dM .

Analysis similar to that presented above shows that the definition of
∫
X ξ dM

is independent of the choice of {ξn}∞n=1 (consequently, both definitions of∫
X ξ dM coincide in case ξ ∈ T ). Next, by the Lebesgue dominated conver-

gence theorem,∫
X

ξ dMᵀ
f = lim

n→∞

∫
X

ξn dM
ᵀ
f = lim

n→∞

〈 ∫
X

ξn dMf, f
〉

=
〈 ∫
X

ξ dMf, f
〉
, f ∈ H ,
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which proves (i). Likewise, (A.2) implies∣∣∣〈 ∫
X

ξ dMf, g
〉∣∣∣2 = lim

n→∞

∣∣∣〈 ∫
X

ξn dMf, g
〉∣∣∣2

≤ lim
n→∞

∫
X

|ξn| dMᵀ
f

∫
X

|ξn| dMᵀ
g =
∫
X

|ξ| dMᵀ
f

∫
X

|ξ| dMᵀ
g , f, g ∈ H,

which shows (vii).
The conditions (ii)–(vi) can be drawn from (i) via standard arguments.

To prove (viii) take ξ ∈ L1(M). Then, by (v), the operator
∫
X |ξ| dM is

positive and consequently

‖ξ‖1,M = sup
{ ∫
X

|ξ| dMᵀ
f : f ∈ H, ‖f‖ = 1

}
= sup

{〈 ∫
X

|ξ| dMf, f
〉

: f ∈ H, ‖f‖ = 1
}

=
∥∥∥ ∫
X

|ξ| dM
∥∥∥ , ξ ∈ L1(M) ,

which shows (viii). The inequality (ix) can be derived from (vii) and (viii)
as follows:∥∥∥ ∫
X

ξ dM
∥∥∥ = sup

{∣∣∣〈 ∫
X

ξ dMf, g
〉∣∣∣ : f, g ∈ H, ‖f‖ = 1 = ‖g‖

}
≤ sup

{( ∫
X

|ξ| dMᵀ
f

)1/2( ∫
X

|ξ| dMᵀ
g

)1/2

: f, g ∈ H, ‖f‖ = 1 = ‖g‖
}

= ‖ξ‖1,M =
∥∥∥ ∫
X

|ξ| dM
∥∥∥ , ξ ∈ L1(M) .

One of the consequences of Theorem A.1 is that a complex Borel function
ξ on X is in Lp(M) if and only if ‖ξ‖p,M <∞.

Corollary A.2. Let M : R → B(H) be a maximal tight PO measure
on a topological Hausdorff space X and let p ≥ 1. Then

‖ξ‖p,M =
∥∥∥ ∫
X

|ξ|p dM
∥∥∥1/p

<∞ , ξ ∈ Lp(M) .

P r o o f. Indeed, if ξ ∈ Lp(M), then |ξ|p ∈ L1(M). Applying Theo-
rem A.1(viii) to |ξ|p we get

‖ξ‖p,M = (‖ |ξ|p‖1,M )1/p =
∥∥∥ ∫
X

|ξ|p dM
∥∥∥1/p

<∞ .

The linear mapping L1(M) 3 ξ →
∫
X ξ dM ∈ B(H) can be regarded as

a unique “linear extension” of the measure M , which is continuous in the
following sense.
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Theorem A.3. Let M : R→ B(H) be a maximal tight PO measure on a
topological Hausdorff space X . Then the linear mapping Λ : L1(M)→ B(H)
defined by

(i) Λ(ξ) =
∫
X

ξ dM , ξ ∈ L1(M) ,

has the following properties:

(ii) Λ(χA) = M(A) , A ∈ R,
(iii) if ξ, ξn ∈ L1(M), ξn → ξ a.e. [M ] and |ξn| ≤ η a.e. [M ] for some

η ∈ L1(M), then Λ(ξn)→ Λ(ξ) in the strong operator topology.

Conversely , if Λ : L1(M)→ B(H) is a linear mapping satisfying (ii) and
(iii), then Λ is given by (i).

P r o o f. Assume that Λ is given by (i). Then (ii) follows from Theo-
rem A.1. To prove (iii), take ξ, ξn, η ∈ L1(M) such that ξn → ξ a.e. [M ] and
|ξn| ≤ η a.e. [M ]. Without loss of generality we can assume that ξn ≥ 0 and
ξ = 0. Set Tn :=

∫
X ξn dM , n ≥ 1. It follows from Theorem A.1 that Tn ≥ 0

and 〈Tnf, f〉 =
∫
X ξn dM

ᵀ
f for all n ≥ 1 and f ∈ H. Thus, by the Lebesgue

dominated convergence theorem, 〈Tnf, f〉 → 0 for every f ∈ H. In virtue of
the Banach–Steinhaus theorem, there exists α > 0 such that ‖Tn‖ ≤ α for
each n ≥ 1. Consequently,

‖Tnf‖2 = ‖T 1/2
n T 1/2

n f‖2 ≤ ‖T 1/2
n ‖2‖T 1/2

n f‖2

= ‖Tn‖〈Tnf, f〉 ≤ α〈Tnf, f〉 , f ∈ H ,
which implies that Tn → 0 in the strong operator topology.

Assume now that Λ : L1(M) → B(H) is a linear mapping having the
properties (ii) and (iii). Let T be as in the proof of Theorem A.1. Then
(ii) implies that Λ(ξ) =

∫
X ξ dM for every ξ ∈ T . If ξ ∈ L1(M), then

there exists a sequence {ξn}∞n=1 ⊂ T such that ξn → ξ (pointwise) and
|ξn| ≤ |ξ| (see the proof of Theorem A.1). Since the linear mappings Λ and
L1(M) 3 ξ →

∫
X ξ dM ∈ B(H) have the property (iii), we get Λ(ξ) =

(SOT) limn→∞ Λ(ξn) = (SOT) limn→∞
∫
X ξn dM =

∫
X ξ dM .

Define an equivalence relation ≈ in the set of all complex Borel functions
on X as follows:

ξ ≈ η ⇔ ξ = η a.e. [M ] .
In case M is maximal and p ≥ 1, the restriction of ≈ to Lp(M) can be
described as follows:

ξ ≈ η ⇔ ‖ξ − η‖p,M = 0 , ξ, η ∈ Lp(M) .

Denote by Lp(M) the quotient space Lp(M)/≈ and by ‖ · ‖p,M the quotient
norm.
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Theorem A.4. Let M : R→ B(H) be a maximal tight PO measure on
a topological Hausdorff space X and let p ≥ 1. Then (Lp(M), ‖ · ‖p,M ) is a
Banach space.

P r o o f. Let {ξk}∞n=1 ⊂ Lp(M) with
∑∞
k=1 ‖ξk‖p,M < ∞. Denote by A

the Borel set {x ∈ X :
∑∞
k=1 |ξk(x)| <∞} and put S := {f ∈ H : ‖f‖ = 1}.

Then, by Fatou’s lemma and the Minkowski inequality,( ∫
X

( ∞∑
k=1

|ξk|
)p
dMᵀ

f

)1/p

≤
∞∑
k=1

( ∫
X

|ξk|p dMᵀ
f

)1/p

≤
∞∑
k=1

‖ξk‖p,M <∞ , f ∈ S ,

which implies that Mᵀ
f (X \ A) = 0 for every f ∈ H. Since M is maximal,

X \A ∈ R. Define a Borel function ξ on X by ξ := χA
∑∞
k=1 ξk. Then, again

by Fatou’s lemma and the Minkowski inequality,( ∫
X

∣∣∣ξ− n∑
k=1

ξk

∣∣∣p dMᵀ
f

)1/p

=
( ∫
A

∣∣∣ ∞∑
k=n+1

ξk

∣∣∣p dMᵀ
f

)1/p

≤
∞∑

k=n+1

( ∫
X

|ξk|p dMᵀ
f

)1/p

≤
∞∑

k=n+1

‖ξk‖p,M , f ∈ S ,

which implies that limn→∞ ‖ξ −
∑n
k=1 ξk‖p,M ≤ limn→∞

∑∞
k=n+1 ‖ξk‖p,M

= 0. We have proved that any absolutely convergent series in Lp(M) is
convergent in Lp(M), which completes the proof.

Let M be a maximal tight PO measure on X . Let L∞(M) stand for the
linear space of all complex Borel functions on X which are Mᵀ

f -essentially
bounded for every f ∈ H. Set

‖ξ‖∞,M := sup{‖ξ‖L∞(Mᵀ
f
) : f ∈ H, ‖f‖ = 1} , ξ ∈ L∞(M) .

Using the classical Hölder inequality, one can show that if p, q ∈ [1,∞],
p−1 +q−1 = 1, ξ ∈ Lp(M) and η ∈ Lq(M), then ξη ∈ L1(M) and ‖ξη‖1,M ≤
‖ξ‖p,M‖η‖q,M . It turns out that ‖ξ‖∞,M < ∞ for every ξ ∈ L∞(M). This
is a consequence of the following proposition.

Proposition A.5. Let M : R→ B(H) be a maximal tight PO measure
on a topological Hausdorff space X . Then a Borel function ξ : X → C is in
L∞(M) if and only if ‖ξ‖∞,M <∞. Moreover ,

‖ξ‖∞,M = min{α ≥ 0 : M({x ∈ X : |ξ(x)| > α}) = 0} , ξ ∈ L∞(M) .

P r o o f. First we show that

(A.3) Mᵀ
f+g(A)1/2 ≤Mᵀ

f (A)1/2 +Mᵀ
g (A)1/2 , f, g ∈ H , A ∈ B(X) .
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Indeed, since for every C ∈ C(X), 〈M(C)(·), (−)〉 is a semi-inner product
on H, (A.3) holds for all f, g ∈ H and C ∈ C(X ). However, Mᵀ

f+g, M
ᵀ
f , Mᵀ

g

are C(X )-inner regular, so the inequality extends to the whole class B(X ).
Take ξ ∈ L∞(M). Setting A(α) := {x ∈ X : |ξ(x)| > α} for α ∈ R, we

define % : H → R+ by

%(f) := ‖ξ‖L∞(Mᵀ
f
) = inf{α ≥ 0 : Mᵀ

f (A(α)) = 0} , f ∈ H .

Then

(A.4) %(f + g) ≤ max{%(f), %(g)} , f, g ∈ H ,
for if α > max{%(f), %(g)}, then Mᵀ

f (A(α)) = 0 = Mᵀ
g (A(α)) and conse-

quently, by (A.3), Mᵀ
f+g(A(α)) = 0, which implies that %(f + g) ≤ α.

The next property of % is easily seen to be true:

(A.5) %(αf) = %(f) , α ∈ C \ {0} , f ∈ H .
Now we show that % is lower semicontinuous, i.e. H(ε) := {g ∈ H : %(g) ≤ ε}
is closed for any ε ≥ 0. For if {fn} ⊂ H(ε) converges to an f ∈ H and
α > ε, then Mᵀ

fn
(A(α)) = 0 for all n. Consequently, Mᵀ

fn
(C) = 0 for every

C ∈ C(X ) such that C ⊂ A(α) and for all n. This in turn implies that

Mᵀ
f (C) = 〈M(C)f, f〉 = lim

n→∞
〈M(C)fn, fn〉 = 0 , C ∈ C(X ) , C ⊂ A(α) .

Since Mᵀ
f is C(X )-inner regular, Mᵀ

f (A(α)) = 0. Thus %(f) ≤ α for every
α > ε or equivalently f ∈ H(ε), which shows that H(ε) is closed.

Since H =
⋃∞
n=1H(n) and H(n), n ≥ 1, are closed, we can apply the

Baire theorem to get n0 ≥ 1 such that int(H(n0)) 6= ∅. Using (A.4) and
(A.5) one can show that H(n0) = H, which implies that ‖ξ‖∞,M ≤ n0 <∞.

Since M is maximal, the family R has the following property:

(A.6) if An ∈ R and M(An) = 0 for n ≥ 1 ,

then
⋃
n

An ∈ R and M
(⋃

n

An

)
= 0 .

Using (A.6), one can easily verify the other part of the conclusion.

The definition of Lp(M) can be extended to the case of p =∞ by setting
L∞(M) := L∞(M)/ ≈. In case M is maximal, Proposition A.5 leads to

ξ ≈ η ⇔ ‖ξ − η‖∞,M = 0 , ξ, η ∈ L∞(M) ,

which implies that the quotient norm in L∞(M) is well defined. Denote it
by ‖ · ‖∞,M . Using Proposition A.5 and the property (A.6) one can show
that (L∞(M), ‖ · ‖∞,M ) is a Banach space. In other words, Theorem A.4
holds for p =∞.

It is worthwhile to notice that the definition of Lp(M), 1 ≤ p ≤ ∞, car-
ries over without substantial changes to the case of a semispectral measure
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M defined on an arbitrary σ-algebra A of subsets of a set X . A careful
verification of the proofs shows that all the results of the appendix remain
true for such an M . Even in this case Lp(M) can be essentially larger than
L∞(M) for all p∈ [1,∞). However, if M is a spectral measure, all the spaces
Lp(M), p ≥ 1, coincide with L∞(M).

Proposition A.6. Let E : A → B(H) be a spectral measure and let
p ∈ [1,∞). Then Lp(E) = L∞(E) and ‖ · ‖p,E = ‖ · ‖∞,E.

P r o o f. Let S := {f ∈ H : ‖f‖ = 1}. For f ∈ S, set µf (·) := 〈E(·)f, f〉 =
‖E(·)f‖2 and Hf :=

∨
{E(A)f : A ∈ A}. Then Hf reduces E to a spec-

tral measure Ef in Hf . Moreover, there exists a (unique) unitary operator
Uf ∈ B(Hf , L2(µf )) such that Uf (E(A)f) = χA for all A ∈ A. Thus the
measure Ff := UfEfU

−1
f acts in L2(µf ) according to the formula

Ff (A)ξ = χAξ , A ∈ A , ξ ∈ L2(µf ) .

This implies that for every h ∈ Hf ,

µh(A) = 〈Ff (A)Uf (h), Uf (h)〉 = 〈χA · Uf (h), Uf (h)〉

=
∫
A

|Uf (h)|2 dµf , A ∈ A ,

which yields

(A.7) dµh = |Uf (h)|2 dµf , h ∈ Hf .
We now return to our proof. Without loss of generality we can assume
that E 6= 0. Take ξ ∈ Lp(E) and set A(α) := {x ∈ X : |ξ(x)| > α}
for α ∈ R. We show that E(A(α)) = 0 for every α > ‖ξ‖p,E . Suppose,
contrary to our claim, that E(A(α)) 6= 0 for some α > ‖ξ‖p,E . Then there
exists f ∈ S such that E(A(α))f 6= 0. This implies that µf (A(α)) > 0. Set
ϕ := µf (A(α))−1/2χA(α) and h := U−1

f (ϕ). Then h ∈ Hf ∩ S and, by (A.7),

α ≤
( ∫
X

|ξ|p|ϕ|2 dµf
)1/p

=
( ∫
X

|ξ|p dµh
)1/p

≤ ‖ξ‖p,E ,

which contradicts α > ‖ξ‖p,E . Thus ξ ∈ L∞(E) and ‖ξ‖∞,E ≤ ‖ξ‖p,E .
Assume now that ξ ∈ L∞(E). Take α > ‖ξ‖∞,E . Then, by Proposi-

tion A.5, we have E(A(α)) = 0, which implies

sup
f∈S

( ∫
X

|ξ|p dµf
)1/p

≤ α(sup
f∈S
〈E(X )f, f〉)1/p = α‖E(X )‖1/p = α .

The last equality follows from the fact that E(X ) is a nonzero orthogonal
projection on H. Thus ξ ∈ Lp(E) and ‖ξ‖p,E ≤ ‖ξ‖∞,E .

We end the appendix with an example of a semispectral measure M
acting in an infinite-dimensional complex Hilbert space for which all the
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spaces Lp(M), p ∈ [1,∞), are essentially larger than L∞(M).

Example A.7. Let (X ,A, µ) be a probability space and let {%n}∞n=1 be a
sequence of measurable functions on X such that 0 ≤ %n(x) ≤ %n+1(x) ≤ 1
and limk→∞ %k(x) = 1 for all x ∈ X and n ≥ 1. Define a semispectral
measure M : A→ B(l2) by

M(A){αn} :=
{
αn
∫
A

%n dµ
}
, A ∈ A , {αn} ∈ l2 .

Here l2 stands for the Hilbert space of all square summable complex se-
quences. Using the Lebesgue monotone convergence theorem and Proposi-
tion A.5, one can show that Lp(M) = Lp(µ) and ‖ · ‖p,M = ‖ · ‖Lp(µ) for all
p ∈ [1,∞]. Thus taking an appropriate measure µ and a sequence {%n}∞n=1

leads to the desired example.
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[18] R. Godement, Sur la théorie des représentations unitaires, Ann. of Math. 53
(1951), 68–124.

[19] A. Guichardet, Symmetric Hilbert Spaces and Related Topics, Lecture Notes in
Math. 261, Springer, Berlin 1972.

[20] T. Husa in, Multiplicative Functionals on Topological Algebras, Res. Notes in Math.
85, Pitman, Boston 1983.
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