On topological invariants of vector bundles

by Zbigniew Szafraniec (Gdańsk)

Abstract

Let $E \rightarrow W$ be an oriented vector bundle, and let $\mathrm{X}(E)$ denote the Euler number of E. The paper shows how to calculate $\mathrm{X}(E)$ in terms of equations which describe E and W.

Introduction. Let $F=\left(F_{1}, \ldots, F_{k}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}, n-k>0$, be a C^{1}-map such that $W=F^{-1}(0)$ is compact and $\operatorname{rank}[D F(x)] \equiv k$ at every $x \in W$. From the implicit function theorem W is an $(n-k)$-dimensional C^{1}-manifold.

Let $G_{1}, \ldots, G_{s}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, where $m=s+n-k$, be a family of C^{1}-vector functions, and assume that the vectors $G_{1}(x), \ldots, G_{s}(x)$ are linearly independent for every $x \in W$. Define

$$
\begin{aligned}
E & =\left\{(x, y) \in W \times \mathbb{R}^{m} \mid y \perp G_{i}(x), i=1, \ldots, s\right\} \\
& =\left\{(x, y) \in W \times \mathbb{R}^{m} \mid \sum y_{j} G_{i}^{j}(x)=0, i=1, \ldots, s\right\} .
\end{aligned}
$$

Clearly E is an $(n-k)$-dimensional vector bundle over W. In particular, if $s=k$ and $G_{i}=\operatorname{grad} F_{i}$ then E becomes $T W$. Later we shall describe how to orient W and E.

Let $\mathrm{X}(E)$ be the Euler number of the bundle E (see [1], Chapter 5.2). The problem is how to calculate $\mathrm{X}(E)$ in terms of F and G_{1}, \ldots, G_{s}.

Let $S_{R}=\left\{(x, \lambda) \in \mathbb{R}^{n} \times \mathbb{R}^{s} \mid\|x\|^{2}+\|\lambda\|^{2}=R^{2}\right\}$, and let $H: \mathbb{R}^{n} \times \mathbb{R}^{s} \rightarrow$ $\mathbb{R}^{m} \times \mathbb{R}^{k}$ be the map given by

$$
H(x, \lambda)=\left(\sum_{i=1}^{s} \lambda_{i} G_{i}(x), F(x)\right)
$$

where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$.
Take $R>0$ such that $W \subset\left\{x \in \mathbb{R}^{n} \mid\|x\|<R\right\}$. It is easy to see that $H \mid S_{R}: S_{R} \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{k}-\{0\}$. Since $n+s=m+k$, the topological degree

1991 Mathematics Subject Classification: 57R20, 57R22.
Key words and phrases: vector bundles, characteristic classes.
$\operatorname{deg}\left(H \mid S_{R}\right)$ of the map $H \mid S_{R}$ is well defined. We shall prove (see Theorem 4) that

$$
\mathrm{X}(E)=(-1)^{n(s+k)+k} \operatorname{deg}\left(H \mid S_{R}\right) .
$$

As a corollary we get a formula (see Theorem 5) which expresses the Euler characteristic $\chi(W)$ in terms of F. A very similar formula has been proved in [2]. The advantage of the present work is that it is usually easy to find the appropriate value of R. The same is not necessarily true in [2].
2. Preliminaries. We assume that every space $\mathbb{R}^{n}, n>0$, has the canonical orientation corresponding to its canonical ordered basis.

Let $F=\left(F_{1}, \ldots, F_{k}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ be a C^{1}-map as above. For each $x \in W$ there is a natural inclusion $T_{x} W \subset \mathbb{R}^{n}$. Vectors $\xi_{k+1}, \ldots, \xi_{n} \in T_{x} W$ are said to be positively oriented if $\operatorname{grad} F_{1}(x), \ldots, \operatorname{grad} F_{k}(x), \xi_{k+1}, \ldots, \xi_{n}$ form a positively oriented basis in \mathbb{R}^{n}. From now on we assume W to be equipped with this orientation.

Let $G_{1}, \ldots, G_{s}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, m=s+n-k$, and the vector bundle E over W be as in the introduction. If $E(x)$ is the fibre of E over $x \in W$ then there is a natural inclusion $E(x) \subset \mathbb{R}^{m}$. Vectors $v_{s+1}, \ldots, v_{m} \in E(x)$ are said to be positively oriented if $G_{1}(x), \ldots, G_{s}(x), v_{s+1}, \ldots, v_{m}$ form a positively oriented basis in \mathbb{R}^{m}. So E is an $(n-k)$-dimensional oriented vector bundle.

Let

$$
E^{\prime}=\left\{(x, y) \in W \times \mathbb{R}^{m} \mid y \in \operatorname{span}\left(G_{1}(x), \ldots, G_{s}(x)\right)\right\}
$$

Then E^{\prime} is a trivial vector bundle over W such that $E \oplus E^{\prime}$ is trivial.
Let $p: W \rightarrow E$ be a C^{1}-section of E such that $p(\bar{x})=0$, for some $\bar{x} \in W$. There are C^{1}-sections $v_{s+1}, \ldots, v_{m}: U \rightarrow E$ defined in some open neighbourhood U of \bar{x} in W such that $v_{s+1}(\bar{x}), \ldots, v_{m}(\bar{x})$ are linearly independent and positively oriented in $E(\bar{x})$. The sections v_{s+1}, \ldots, v_{m} define a trivialization of E over U, and thus there are unique C^{1}-functions $t_{s+1}, \ldots, t_{m}: U \rightarrow \mathbb{R}$ such that $p=\sum_{i=s+1}^{m} t_{i} v_{i}$ over U. Let $\left(x_{k+1}, \ldots, x_{n}\right)$ be a positively oriented coordinate system in some neighbourhood of \bar{x} in W.

Definition. $\operatorname{ind}(p, \bar{x})=\operatorname{sign} \frac{\partial\left(t_{s+1}, \ldots, t_{m}\right)}{\partial\left(x_{k+1}, \ldots, x_{n}\right)}(\bar{x})$.
One can prove that the definition of $\operatorname{ind}(p, \bar{x})$ does not depend on the choice of v_{s+1}, \ldots, v_{m} and $\left(x_{k+1}, \ldots, x_{n}\right)$. Note that if the section p is transversal to the zero-section at \bar{x} then $\operatorname{ind}(p, \bar{x})$ is the index of p at x (see [1], Chapter 5.2).

Let $P=\left(P^{1}, \ldots, P^{m}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a C^{1}-vector function. There are sections $p: W \rightarrow E, p^{\prime}: W \rightarrow E^{\prime}$ such that $P \mid W=p+p^{\prime}$. Let $\widetilde{H}: \mathbb{R}^{n} \times \mathbb{R}^{s} \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{k}$ be given by

$$
\widetilde{H}(x, \lambda)=\left(P(x)+\sum_{d=1}^{s} \lambda_{d} G_{d}(x), F(x)\right) .
$$

Lemma 1. A point $\bar{x} \in \mathbb{R}^{n}$ is in $p^{-1}(0) \subset W$ if and only if there is a unique $\bar{\lambda} \in \mathbb{R}^{s}$ such that $\widetilde{H}(\bar{x}, \bar{\lambda})=0$.

Proof. (\Rightarrow) If $p(\bar{x})=0$ then $P(\bar{x})=p^{\prime}(\bar{x}) \in E^{\prime}(\bar{x})$, where $E^{\prime}(\bar{x})$ is the fibre of E^{\prime} over \bar{x}. The vectors $G_{1}(\bar{x}), \ldots, G_{s}(\bar{x})$ form a basis in $E^{\prime}(\bar{x})$, and thus there is a unique $\bar{\lambda}=\left(\bar{\lambda}_{1}, \ldots, \bar{\lambda}_{s}\right) \in \mathbb{R}^{s}$ such that

$$
P(\bar{x})+\sum_{d=1}^{s} \bar{\lambda}_{d} G_{d}(\bar{x})=0 .
$$

Since $\bar{x} \in W=F^{-1}(0)$, we get $\widetilde{H}(\bar{x}, \bar{\lambda})=0$.
(\Leftarrow) Clearly $\bar{x} \in W, P(\bar{x})=p(\bar{x})+p^{\prime}(\bar{x}) \in \operatorname{span}\left(G_{1}(\bar{x}), \ldots, G_{s}(\bar{x})\right)$, and so $p(\bar{x})=0$.

From now on we assume that $\bar{x} \in p^{-1}(0)$. Let $\bar{\lambda} \in \mathbb{R}^{s}$ be as in Lemma 1 . Since $n+s=m+k$, the derivative matrix $D \widetilde{H}(\bar{x}, \bar{\lambda})$ is a square matrix.

Lemma 2. $\operatorname{ind}(p, \bar{x})=(-1)^{n(s+k)+k} \operatorname{sign} \operatorname{det}[D \widetilde{H}(\bar{x}, \bar{\lambda})]$.
Proof. We can find a coordinate system $\left(x_{1}, \ldots, x_{n}\right)$ in \mathbb{R}^{n} such that

$$
\begin{equation*}
\frac{\partial F_{i}}{\partial x_{j}}(\bar{x})=0 \tag{1}
\end{equation*}
$$

for every $1 \leq i \leq k, j \geq k+1$. Let

$$
A=\left[\frac{\partial F_{i}}{\partial x_{j}}(\bar{x})\right]_{1 \leq i, j \leq k}
$$

From (1) and from the fact that $\operatorname{rank}[D F(\bar{x})]=k$ we deduce that $\operatorname{det}[A] \neq 0$.
For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ we write $x=\left(x^{\prime}, x^{\prime \prime}\right)$, where $x^{\prime}=\left(x_{1}, \ldots, x_{k}\right)$ $\in \mathbb{R}^{k}, x^{\prime \prime}=\left(x_{k+1}, \ldots, x_{n}\right) \in \mathbb{R}^{n-k}$. From the implicit function theorem there is a germ of a C^{1}-function $\psi=\left(\psi_{1}, \ldots, \psi_{k}\right):\left(\mathbb{R}^{n-k}, \bar{x}^{\prime \prime}\right) \rightarrow\left(\mathbb{R}^{k}, \bar{x}^{\prime}\right)$ such that

$$
\begin{equation*}
F_{i}\left(\psi\left(x^{\prime \prime}\right), x^{\prime \prime}\right) \equiv 0, \quad 1 \leq i \leq k \tag{2}
\end{equation*}
$$

Since graph $\psi=W$ in some neighbourhood of \bar{x}, we can treat $\left(x_{k+1}, \ldots, x_{n}\right)$ as a coordinate system in some neighbourhood of \bar{x} in W. From (1)
(3) the coordinate system $\left(x_{k+1}, \ldots, x_{n}\right)$ is positively oriented if and only if $\operatorname{det}[A]>0$.

From (1), (2), for every $1 \leq i \leq k, j \geq k+1$ we have

$$
\frac{\partial}{\partial x_{j}}\left[F_{i}\left(\psi\left(x^{\prime \prime}\right), x^{\prime \prime}\right)\right]\left(\bar{x}^{\prime \prime}\right)=\frac{\partial F_{i}}{\partial x_{1}}(\bar{x}) \frac{\partial \psi_{1}}{\partial x_{j}}\left(\bar{x}^{\prime \prime}\right)+\ldots+\frac{\partial F_{i}}{\partial x_{k}}(\bar{x}) \frac{\partial \psi_{k}}{\partial x_{j}}\left(\bar{x}^{\prime \prime}\right)=0
$$

The matrix A is non-singular, and therefore

$$
\begin{equation*}
\frac{\partial \psi_{i}}{\partial x_{j}}\left(\bar{x}^{\prime \prime}\right)=0, \quad \text { for } 1 \leq i \leq k, j \geq k+1 \tag{4}
\end{equation*}
$$

There are C^{1}-vector maps $V_{s+1}, \ldots, V_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined in some neighbourhood of \bar{x} such that $V_{s+1}(\bar{x}), \ldots, V_{m}(\bar{x})$ form a positively oriented basis in $E(\bar{x})$. Write $G_{d}=\left(G_{d}^{1}, \ldots, G_{d}^{m}\right), 1 \leq d \leq s$, and $V_{d}=\left(V_{d}^{1}, \ldots, V_{d}^{m}\right)$, $s+1 \leq d \leq m$. Since $s<m$, after an orientation preserving change of coordinates in \mathbb{R}^{m} we may assume that

$$
\begin{array}{ll}
G_{d}^{i}(\bar{x})=\delta_{d i}, & \text { for } 1 \leq d \leq s \\
V_{d}^{i}(\bar{x})=\delta_{d i}, & \text { for } s+1 \leq d \leq m \tag{5}
\end{array}
$$

where $\delta_{d i}$ is the Kronecker delta.
There are C^{1}-functions $T_{1}, \ldots, T_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined in a neighbourhood of \bar{x} such that

$$
P=\sum_{d=1}^{s} T_{d} G_{d}+\sum_{d=s+1}^{m} T_{d} V_{d}
$$

Since $p(\bar{x})=0$, we have $\left(T_{1}(\bar{x}), \ldots, T_{s}(\bar{x})\right)=-\bar{\lambda}$ and $T_{s+1}(\bar{x})=\ldots=$ $T_{m}(\bar{x})=0$. Let $\theta:\left(\mathbb{R}^{n-k}, \bar{x}^{\prime \prime}\right) \rightarrow(W, \bar{x})$ be given by $\theta\left(x^{\prime \prime}\right)=\left(\psi\left(x^{\prime \prime}\right), x^{\prime \prime}\right)$, and let $p^{i}=P^{i} \circ \theta, t_{i}=T_{i} \circ \theta, g_{d}^{i}=G_{d}^{i} \circ \theta$ and $v_{d}^{i}=V_{d}^{i} \circ \theta$. Then
(6) $\quad\left(t_{1}\left(\bar{x}^{\prime \prime}\right), \ldots, t_{s}\left(\bar{x}^{\prime \prime}\right)\right)=-\bar{\lambda}, \quad t_{s+1}\left(\bar{x}^{\prime \prime}\right)=\ldots=t_{m}\left(\bar{x}^{\prime \prime}\right)=0$.

Let $Z: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{1}-function and let $z: \mathbb{R}^{n-k} \rightarrow \mathbb{R}$ be given by $z=Z \circ \theta$. From (4) we have

$$
\begin{equation*}
\frac{\partial z}{\partial x_{j}}\left(\bar{x}^{\prime \prime}\right)=\sum_{i=1}^{k} \frac{\partial Z}{\partial x_{i}}(\bar{x}) \frac{\partial \psi_{i}}{\partial x_{j}}\left(\bar{x}^{\prime \prime}\right)+\frac{\partial Z}{\partial x_{j}}(\bar{x})=\frac{\partial Z}{\partial x_{j}}(\bar{x}) \tag{7}
\end{equation*}
$$

for $k+1 \leq j \leq n$.
Take $i \in\{s+1, \ldots, m\}, j \in\{k+1, \ldots, n\}$. Then

$$
p^{i}=\sum_{d=1}^{s} t_{d} g_{d}^{i}+\sum_{d=s+1}^{m} t_{d} v_{d}^{i}
$$

and therefore, from (5) and (6),

$$
\frac{\partial p^{i}}{\partial x_{j}}\left(\bar{x}^{\prime \prime}\right)=-\sum_{d=1}^{s} \bar{\lambda}_{d} \frac{\partial g_{d}^{i}}{\partial x_{j}}\left(\bar{x}^{\prime \prime}\right)+\frac{\partial t_{i}}{\partial x_{j}}\left(\bar{x}^{\prime \prime}\right)
$$

and so, from (7), we have

$$
\frac{\partial t_{i}}{\partial x_{j}}\left(\bar{x}^{\prime \prime}\right)=\frac{\partial P^{i}}{\partial x_{j}}(\bar{x})+\sum_{d=1}^{s} \bar{\lambda}_{d} \frac{\partial G_{d}^{i}}{\partial x_{j}}(\bar{x})
$$

Let $m_{i j}$ be the above expression, and let $M=\left[m_{i j}\right]_{s+1 \leq i \leq m, k+1 \leq j \leq m}$. From (1) and (5) it is easy to see that the derivative matrix $D \widetilde{H}(\bar{x}, \bar{\lambda})$ has the form

$$
\left[\begin{array}{ccc}
? & ? & I \\
? & M & 0 \\
A & 0 & 0
\end{array}\right]
$$

where I is the $s \times s$ identity matrix, so $\operatorname{det}[D \widetilde{H}(\bar{x}, \bar{\lambda})]=(-1)^{n(s+k)+k} \times$ $\operatorname{det}[M] \operatorname{det}[A]$. By (3),

$$
\operatorname{ind}(p, \bar{x})=(-1)^{n(s+k)+k} \operatorname{sign} \operatorname{det}[D \widetilde{H}(\bar{x}, \bar{\lambda})]
$$

3. Main theorem. Let $H: \mathbb{R}^{n} \times \mathbb{R}^{s} \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{k}$ be given by

$$
H(x, \lambda)=\left(\sum_{i=1}^{s} \lambda_{i} G_{i}(x), F(x)\right)
$$

Lemma 3. $H^{-1}(0)=W \times\{0\}$.
Proof. If $(x, \lambda) \in H^{-1}(0)$ then $F(x)=0$, i.e. $x \in W$. By our assumption, the vectors $G_{1}(x), \ldots, G_{s}(x)$ are linearly independent, and so $\lambda=0$.

Let $B_{R}=\left\{(x, \lambda) \mid\|x\|^{2}+\|\lambda\|^{2}<R^{2}\right\}$ and $S_{R}=\partial B_{R}$. Since W is compact, by the above lemma there is $R>0$ such that $H^{-1}(0) \subset B_{R}$. Hence $H \mid S_{R}: S_{R} \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{k}-\{0\}$. Let $\operatorname{deg}\left(H \mid S_{R}\right)$ be the topological degree of $H \mid S_{R}$.

Theorem 4. $\mathrm{X}(E)=(-1)^{n(s+k)+k} \operatorname{deg}\left(H \mid S_{R}\right)$.
Proof. Let $D_{R}=\left\{x \in \mathbb{R}^{n} \mid\|x\|<R\right\}$. For each C^{1}-map $P: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ there are sections $p: W \rightarrow E, p^{\prime}: W \rightarrow E^{\prime}$ such that $P \mid W=p+p^{\prime}$. For each $\varepsilon>0$ we can choose P so that

$$
\begin{equation*}
\sup _{x \in D_{R}}\|P(x)\|<\varepsilon \tag{1}
\end{equation*}
$$

(2) if $p(x)=0$ then $\operatorname{ind}(p, x) \neq 0$, i.e. p is transversal to the zero-section.

Let $\widetilde{H}=\widetilde{H}(x, \lambda)=\left(P(x)+\sum_{i=1}^{s} \lambda_{i} G_{i}(x), F(x)\right)$. From (1) and Lemma 3 we can show (using Cramer's rule) that $\widetilde{H}^{-1}(0)$ lies close to $W \times\{0\}$ and thus, for small $\varepsilon, \widetilde{H}^{-1}(0) \subset B_{R}$. The manifold W is compact and so, from (2) and Lemma $1, \widetilde{H}^{-1}(0)$ is finite, say $\widetilde{H}^{-1}(0)=\left\{\left(x^{1}, \lambda^{1}\right), \ldots,\left(x^{m}, \lambda^{m}\right)\right\}$.

Then $p^{-1}(0)=\left\{x^{1}, \ldots, x^{m}\right\}$ and according to the definition of $\mathrm{X}(E)$ (see [1], Chapter 5.2) and Lemma 2

$$
\mathrm{X}(E)=\sum_{j=1}^{m} \operatorname{ind}\left(p, x^{j}\right)=(-1)^{n(s+k)+k} \sum_{j=1}^{m} \operatorname{sign} \operatorname{det}\left[D \widetilde{H}\left(x^{j}, \lambda^{j}\right)\right]
$$

Clearly the last sum equals $\operatorname{deg}\left(\widetilde{H} \mid S_{R}\right)$, and since $H \mid S_{R}$ and $\widetilde{H} \mid S_{R}$ are homotopic for ε small enough, we conclude that

$$
\mathrm{X}(E)=(-1)^{n(s+k)+k} \operatorname{deg}\left(H \mid S_{R}\right)
$$

Clearly $T W=\left\{(x, y) \in W \times \mathbb{R}^{n} \mid y \perp \operatorname{grad} F_{i}(x), i=1, \ldots, k\right\}$. It is well known that $\mathrm{X}(T W)=\chi(W)$, where $\chi(W)$ is the Euler characteristic of W. Let $H: \mathbb{R}^{n} \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{k}$ be given by

$$
H(x, \lambda)=\left(\sum_{i=1}^{k} \lambda_{i} \operatorname{grad} F_{i}(x), F(x)\right)
$$

As above, there is $R>0$ such that $H^{-1}(0) \subset B_{R}$ and so we have a continuous map $H \mid S_{R}: S_{R} \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{k}-\{0\}$. As a consequence of Theorem 4 we have

Theorem 5. $\chi(W)=(-1)^{k} \operatorname{deg}\left(H \mid S_{R}\right)$.
A very similar version of the above theorem has been proved in [2].
Example 1. Let $W=S^{2}=\left\{x \in \mathbb{R}^{3} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-1=0\right\}$, let $G=G(x)=\left(3+x_{1} x_{2}-x_{3}^{2}, x_{1} x_{2}-x_{2}, x_{1}-x_{2} x_{3}\right)$, and let $E_{1}=\{(x, y) \in$ $\left.S^{2} \times \mathbb{R}^{3} \mid y \perp G(x)\right\}$. Then

$$
\begin{aligned}
H & =H(x, \lambda) \\
& =\left(3 \lambda+x_{1} x_{2} \lambda-x_{3}^{2} \lambda, x_{1} x_{2} \lambda-x_{2} \lambda, x_{1} \lambda-x_{2} x_{3} \lambda, x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-1\right)
\end{aligned}
$$

and $R=2$. Thanks to a computer program written by Marek Izydorek and Sławomir Rybicki from the Mathematical Department of the Technical University of Gdańsk we have been able to calculate that $\operatorname{deg}\left(H \mid S_{2}\right)=0$, so $\mathrm{X}(E)=0$.

Example 2. Let $G=G(x)=\left(3 x_{1}+x_{1} x_{2}^{2}, 3 x_{2}+x_{2} x_{3}, 3 x_{3}\right)$, and let $E_{2}=\left\{(x, y) \in S^{2} \times \mathbb{R}^{3} \mid y \perp G(x)\right\}$. Then

$$
H=H(x, \lambda)=\left(3 x_{1} \lambda+x_{1} x_{2}^{2} \lambda, 3 x_{2} \lambda+x_{2} x_{3} \lambda, 3 x_{3} \lambda, x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-1\right)
$$

and $R=2$. As above we have calculated that $\operatorname{deg}\left(H \mid S_{2}\right)=-2$, so $\mathrm{X}(E)=2$.
The author wants to express his gratitude to Marek Izydorek and Sławomir Rybicki for their cooperation.

References

[1] M. W. Hirsch, Differential Topology, Springer, New York 1976.
[2] Z. Szafraniec, The Euler characteristic of algebraic complete intersections, J. Reine Angew. Math. 397 (1989), 194-201.

INSTITUTE OF MATHEMATICS
UNIVERSITY OF GDAŃSK
WITA STWOSZA 57
80-952 GDAŃSK, POLAND

Reçu par la Rédaction le 5.10.1990
Révisé le 4.11.1991

