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A simple formula showing L1 is a maximal overspace
for two-dimensional real spaces

by B. L. Chalmers and F. T. Metcalf (Riverside, Calif.)

Abstract. It follows easily from a result of Lindenstrauss that, for any real two-
dimensional subspace v of L1, the relative projection constant λ(v;L1) of v equals its
(absolute) projection constant λ(v) = supX λ(v;X). The purpose of this paper is to
recapture this result by exhibiting a simple formula for a subspace V contained in L∞(ν)
and isometric to v and a projection P∞ from C ⊕ V onto V such that ‖P∞‖ = ‖P1‖,
where P1 is a minimal projection from L1(ν) onto v. Specifically, if P1 =

∑2
i=1 Ui ⊗ vi,

then P∞ =
∑2
i=1 ui ⊗ Vi, where dVi = 2vi dν and dUi = −2ui dν.

1. Introduction and preliminaries
Notation. For any two Banach spaces E and X, with E ⊂ X, set

λ(E;X) = infP ‖P‖, where P runs through all projections of X onto E.
The number λ(E;X) is called the relative projection constant of E with
respect to X. The number λ(E) = supX λ(E;X) is called the (absolute) pro-
jection constant of E. Any X for which λ(E;X) = λ(E) is called a maximal
overspace for E.

It follows easily from a result of Lindenstrauss ([5], Theorem 3) that, for
any two-dimensional real subspace v of L1, the relative projection constant
λ(v;L1) of v equals its (absolute) projection constant λ(v); that is, L1 is a
maximal overspace for v. The purpose of this paper is to recapture this result
by exhibiting a simple formula for a subspace V contained in L∞(ν) and iso-
metric to v and a projection P∞ from C⊕V onto V such that ‖P∞‖ = ‖P1‖,
where P1 is a minimal projection from L1(ν) onto v, via the following proce-
dure. First we note the simple fact that v is also (isometric to) a subspace of
L1(R, ν), where ν is some finite measure and λ(v, L1) ≥ λ(v, L1(R, ν)). Sec-
ondly it is shown that λ(v) = λ(v, L1(R, ν)). Specifically, by use of recent
work [2] on minimal L1 projections, we show that there exists a minimal
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projection P1 =
∑2
i=1 Ui ⊗ vi from L1(R, ν) onto v = [v1, v2] and a pro-

jection P∞ =
∑2
i=1 ui ⊗ Vi from C ⊕ V ⊂ L∞(R, ν) onto V = [V1, V2],

such that V is isometric to v and ‖P∞‖ = ‖P1‖, where dVi = 2vidν and
dUi = −2uidν. This procedure was first demonstrated in [1], where v = [1, t]
is the two-dimensional subspace of lines in L1[−1, 1]. In this case P1 was
already known [4] and P∞ : C[−1, 1]→ V = [t, 1− t2] was determined in [1].

It is known that any two-dimensional real Banach space is isometric to a
subspace of the Lebesgue space L1[−1, 1] (see, e.g., [5] and [6]). More gener-
ally, let v = [v1, v2] denote any two-dimensional real subspace of L1(S,Σ, µ),
where it will be assumed that (S,Σ, µ) is an arbitrary complete measure
space. In the following we will construct V = [V1, V2] ⊂ L∞ such that v is
isometric to V and such that λ(V ;C ⊕V ) = λ(v;L1). From the well-known
facts that λ(V ;X) = λ(V ) for C ⊂ X ⊂ L∞ and λ(v) = λ(V ), we can then
conclude that L1 is a maximal overspace for v; i.e., λ(v;L1) = λ(v).

Lemma 1. Any two-dimensional subspace v of L1(S,Σ, µ) is isometric
to a subspace v̂ of lines in L1(R, ν) for some finite measure ν on R, and
λ(v;L1(S,Σ, µ)) ≥ λ(v̂;L1(R, ν)).

P r o o f. Let Z = {s ∈ S : v1(s) = 0}. Define (1̂, t̂ ) = (1, t), t ∈ R, and
(1̂, t̂ )(±∞) = (0,±1). Then, for arbitrary (a1, a2),

‖(a1, a2) · (v1, v2)‖L1(S,Σ,µ)

=
∫
S

|a1v1(s) + a2v2(s)| dµ(s)

=
∫

S−Z

∣∣∣∣a1 + a2
v2(s)
v1(s)

∣∣∣∣ |v1(s)| dµ(s) + |a2|
∫
Z

|v2(s)| dµ(s)

=
∫
R

|a1 + a2t| dν(t) + |a2|ν{−∞} = ‖(a1, a2) · (1̂, t̂ )‖L1(R,ν),

where

ν{t} =



∫
{s∈S−Z:v2(s)/v1(s)=t}

|v1(s)| dµ(s) for |t| <∞,∫
Z

|v2(s)| dµ(s) for t = −∞,

0 for t =∞.
This demonstrates the desired isometry.

Finally, any projection from L1(R, ν) onto v̂ clearly induces a projection
onto v, of the same norm, from the subspace of L1(S,Σ, µ) consisting of
functions constant on the level sets of (v2/v1)(s). Hence

λ(v;L1(S,Σ, µ)) ≥ λ(v̂;L1(R, ν)).
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Thus, assume without loss in the sequel that v = [~v ] = [1̂, t̂ ] ⊂ L1(R, ν),
and denote the norm of an element x in L1(R, ν) by ‖x‖1. Also, denote
the sphere in R2 given by ‖~a‖ = ‖~a · ~v‖1 = %, for ~a ∈ R2, by S(%). The
following result is from the theory of finite-rank minimal projections in L1,
as applied to the present two-dimensional situation ([2], Theorems 2 and 3
and Lemma 4; see especially the geometric interpretation in §3).

Theorem A ([2]). There exists a minimal projection P1 =
∑2
i=1 Ui ⊗ vi

from L1(R, ν) onto v such that , for some non-singular matrix M and all
r ∈ R, ~U(r) is a point on S(‖P1‖) such that a tangent line at ~U(r) is
perpendicular (in the Euclidean sense) to the direction given by M~v(r).

Since M is non-singular and M~v(r), r ∈ R, defines a line not passing
through the origin, it follows that the directions given by M~v(r) describe
monotonically an arc subtending π radians (as r moves from −∞ to ∞).
As a consequence of this and the perpendicularity of a tangent line at ~U(r)
with the direction of M~v(r), note, for future reference, that we may assume
~U(∞) = −~U(−∞). Also, note that tan−1 [U2(r)/U1(r)] is monotonic in
r ∈ R (assume without loss, increasing).

Let

(1) ~V0(r) =
∫
R

~v(s)sgn+[~U(r) · ~v(s)] dν(s), r ∈ R ,

where

sgn+(t) =
{
−1, t < 0 ,
+1, 0 ≤ t .

Hence the “Lebesgue function”

LP1(r) = ~U(r) · ~V0(r) =
∫
R

|~U(r) · ~v(s)| dν(s) = ‖~U(r) · ~v‖1 = ‖P1‖

for all r ∈ R.
We now seek to define a function r(t) so that ~U(r(t)) ·~v(t) = 0. Because

of possible “flat portions” on the sphere S(‖P1‖), this cannot always be
accomplished exactly when ~v(t) is perpendicular to a direction on a “flat
portion”, and hence we need the following more technical definition for r(t).
Let

a(r, t) =
|~U(r) · ~v(t)|
|~U(r)| |~v(t)|

;

i.e., a(r, t) is the absolute value of the cosine of the angle between ~U(r) and
~v(t). Then let

a0(t) = inf
r∈R

a(r, t)
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and define

(2) r(t) = lim inf
a(r,t)→a0(t)

r .

Next define

(3) ~V (t) = ε(t)~V0(r(t)σ), t ∈ R ,

where ε(t) = sgn+[~U(∞) · ~v(t)], and σ = σ(t) = ± is chosen so that
a(r(t)σ, t) = a0(t) if 0 < a0(t), and σ = σ(t) is suppressed if a0(t) = 0.
Note that a0(t) > 0 implies that ~U(r(t)) lies on a “flat portion” of S(‖P1‖).

Lemma 2. The two-dimensional space v = [1̂, t̂ ] ⊂ L1(R, ν) is isometric
to V = [V1(t), V2(t)] ⊂ L∞(R, ν), where ~V (t) = (V1(t), V2(t)) is given by (3)
or , more simply , by (4) below.

P r o o f. For arbitrary ~a ∈ R2,

‖~a · ~v‖1 =
∫
R

|~a · ~v(s)| dν(s) =
∫
R

~a · ~v(s) sgn+[~a · ~v(s)] dν(s)

= sup
~b∈R2

∣∣∣ ∫
R

~a · ~v(s)sgn+[~b · ~v(s)] dν(s)
∣∣∣

= sup
t∈R

∣∣∣~a · ∫
R

~v(s) sgn+[~U(r(t)) · ~v(s)] dν(s)
∣∣∣

= sup
t∈R

∣∣∣~a · ε(t) ∫
R

~v(s)sgn+[~U(r(t)σ(t)) · ~v(s)] dν(s)
∣∣∣ ,

since, as is easy to see by the construction of ~U(r(t)), the points ~U(r(t)),
t ∈ R, cover all “non-flat portions” of the sphere S(‖P1‖) lying in a half-
space. Thus, we conclude that

‖~a · ~v‖1 = sup
t∈R
|~a · ~V (t)| = ‖~a · ~V ‖∞ .

Finally, it is immediate that V ⊂ L∞(R, ν), since v ⊂ L1(R, ν).

Lemma 3. 2~v is the Radon–Nikodym derivative with respect to ν of
the signed measure with cumulative distribution function given by ~V (t) −
~V (−∞).

P r o o f. From (3) note that

(4) ~V (t) =
( ∫

[−∞,t]

−
∫

(t,∞]

)
~v dν =

t∫
−∞

2~v dν −
∞∫
−∞

~v dν.

N o t e 1. It follows from (4) that ~V (∞) = −~V (−∞).
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N o t e 2. If ν is absolutely continuous with respect to Lebesgue measure,
then V ⊂ C(R).

2. Main result

Theorem 1. Let P1 =
∑2
i=1 Ui⊗ vi be the projection from L1(ν) onto v

given in Theorem A, and let V be the two-dimensional subspace of L∞(ν)
isometric to v and given in Lemma 2. Let P∞ =

∑2
i=1 ui⊗Vi be the operator

from C(R)⊕ V onto V given by

(5) ~u = −1
2
d~U

dν
,

where d~U/dν denotes the Radon–Nikodym derivative of the signed measure
on R with cumulative distribution function ~U(t) − ~U(−∞). Then P∞ is a
projection from C(R)⊕ V onto V and ‖P∞‖ = ‖P1‖.

P r o o f. For simplicity of notation, suppress σ = σ(t) throughout the fol-
lowing argument. Also in the following we will use the notation 〈x(r), y(r)〉r
to stand for

∫
R x(r)y(r) dν(r) and to emphasize that r is the integration

variable.
By use of the Lebesgue function LP∞(t) for P∞ we have

LP∞(t) = 〈sgn[~u(r) · ~V (t)], ~u(r)〉r · ~V (t) .

First

~u(r) · ~V (t) = −1
2
d~U(r)
dν(r)

· ~V (t) = −1
2
d~U(r)
dν(r)

· ε(t)~V0(r(t)) .

Next the Lebesgue function LP1(r) = ~U(r) · ~V0(r) is constant for all r ∈ R,
which implies that

d~U(r) · ~V0(r) + ~U(r) · d~V0(r) = 0 .

From this it follows straightforwardly from the definition (2) of r(t) and
Lemma 3 (ε(t)d~V0(r(t)) = 2~v(t) dν(t)) that

sgn[~u(r) · ~V (t)] = ε(t)sgn[~U(r) · ~v(t)] .

Hence,

〈sgn[~u(r) · ~V (t)], ~u(r)〉r =
(
−

r(t)∫
−∞

+
∞∫

r(t)

)
(− 1

2d
~U(r))

= ~U(r(t))− 1
2 [~U(−∞) + ~U(∞)] = ~U(r(t))

for each fixed t. We conclude that

LP∞(t) = ~U(r(t)) · ~V (t) = ~U(r(t)) · ~V0(r(t)) = ‖P1‖ .
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Secondly, we show that 〈Vi, uj〉 = 〈vi, Uj〉 as follows:

〈Vi(t), uj(t)〉t =
〈
Vi(t),−

1
2
dUj(t)
dν

〉
t

= −1
2

(ViUj)(t)
∣∣∣∞
−∞

+
1
2

∞∫
−∞

Uj(t) dVi(t) .

But ~V (∞) + ~V (−∞) = ~U(∞) + ~U(−∞) = ~0 and dVi(t) = 2vi(t) dν(t), and
we have the desired conclusion.

N o t e 3. Theorem A extends to any non-singular action (see [2]) on
v (not necessarily the identity action, as in the case of projections). The
proof of Theorem 1 above shows that L1 is a maximal overspace for operators
onto v with any specified non-singular action on v.

N o t e 4. L1 is not, in general, a maximal overspace for three-dimensional
subspaces as the following example shows. Consider v = `31 (imbedded iso-
metrically) in L1[0, 1] as step functions with steps at { 1

3 ,
2
3}. Then λ(v, L1)

= 1 as is easily seen, while v is isometric to V = [r1, r2, r3], the span
of the first three Rademacher functions in L∞[0, 1]. But it is known that
λ(V ) = λ(V,L∞) > 1.

We will now obtain the result of [1] as an example of the results of this
paper.

Example. Consider L1[−1, 1] and v = [~v(t)], ~v(t) = (1, t). Then ν is
Lebesgue measure with support [−1, 1]. From [2] and [4]

(6) ~U(r) =
‖P1‖

2

[
(1,mr)√
1 +m2r2

+ (0, sgn(r))
]
, r ∈ [−1, 1] ,

M = diag(1,m), where ‖P1‖ = −2m/ log(t0), m = (1 − t20)/2t0 = (t20 −
t0 − 1) log(t0). So, following the procedure of this paper, we extend ~U(r)
to all r ∈ R such that ~U(r) is on S(‖P1‖) and the tangent line at ~U(r)
is perpendicular (in the Euclidean sense) to the direction given by M~v(r),
r ∈ R. Hence we have ~U(r) extended to have the form (6) for all r ∈ R.

Then by (4)

~V (t) =


t∫
−1

(1, s) ds−
1∫
t

(1, s) ds = (2t, t2 − 1) , t ∈ [−1, 1] ,

(2sgn(t), 0), |t| > 1 .

By Lemma 2, v is isometric to V = [~V ] ⊂ C(R).
By the theorem if we set

~u(r) = −1
2
d~U(r)
dr

=
‖P1‖

2

[
m

2
(mr,−1)

(1 +m2r2)3/2
+ (0,−δ0)

]
, r ∈ R ,
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then P∞ =
∑2
i=1 ui(r) ⊗ Vi(t) is a projection from C(R) onto V such that

‖P∞‖ = ‖P1‖.
Note that in this example, if we restrict P∞ to C[−1,1](R) = {f ∈ C(R) :

f(t) = f(sgn(t)), |t| ≥ 1}, then C[−1,1](R) is isometric to C[−1, 1]. Further-
more, ‖P∞|C[−1,1](R)‖ = ‖P∞‖, and P∞|C[−1,1](R) is easily identified with the
projection in [1].

R e m a r k. Using the fact that L1 is a maximal overspace for two-
dimensional real spaces is a basic preliminary step in [3].
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