A simple formula showing L^{1} is a maximal overspace for two-dimensional real spaces

by B. L. Chalmers and F. T. Metcalf (Riverside, Calif.)

Abstract

It follows easily from a result of Lindenstrauss that, for any real twodimensional subspace v of L^{1}, the relative projection constant $\lambda\left(v ; L^{1}\right)$ of v equals its (absolute) projection constant $\lambda(v)=\sup _{X} \lambda(v ; X)$. The purpose of this paper is to recapture this result by exhibiting a simple formula for a subspace V contained in $L^{\infty}(\nu)$ and isometric to v and a projection P_{∞} from $C \oplus V$ onto V such that $\left\|P_{\infty}\right\|=\left\|P_{1}\right\|$, where P_{1} is a minimal projection from $L^{1}(\nu)$ onto v. Specifically, if $P_{1}=\sum_{i=1}^{2} U_{i} \otimes v_{i}$, then $P_{\infty}=\sum_{i=1}^{2} u_{i} \otimes V_{i}$, where $d V_{i}=2 v_{i} d \nu$ and $d U_{i}=-2 u_{i} d \nu$.

1. Introduction and preliminaries

Notation. For any two Banach spaces E and X, with $E \subset X$, set $\lambda(E ; X)=\inf _{P}\|P\|$, where P runs through all projections of X onto E. The number $\lambda(E ; X)$ is called the relative projection constant of E with respect to X. The number $\lambda(E)=\sup _{X} \lambda(E ; X)$ is called the (absolute) projection constant of E. Any X for which $\lambda(E ; X)=\lambda(E)$ is called a maximal overspace for E.

It follows easily from a result of Lindenstrauss ([5], Theorem 3) that, for any two-dimensional real subspace v of L^{1}, the relative projection constant $\lambda\left(v ; L^{1}\right)$ of v equals its (absolute) projection constant $\lambda(v)$; that is, L^{1} is a maximal overspace for v. The purpose of this paper is to recapture this result by exhibiting a simple formula for a subspace V contained in $L^{\infty}(\nu)$ and isometric to v and a projection P_{∞} from $C \oplus V$ onto V such that $\left\|P_{\infty}\right\|=\left\|P_{1}\right\|$, where P_{1} is a minimal projection from $L^{1}(\nu)$ onto v, via the following procedure. First we note the simple fact that v is also (isometric to) a subspace of $L^{1}(\overline{\mathbb{R}}, \nu)$, where ν is some finite measure and $\lambda\left(v, L^{1}\right) \geq \lambda\left(v, L^{1}(\overline{\mathbb{R}}, \nu)\right)$. Secondly it is shown that $\lambda(v)=\lambda\left(v, L^{1}(\overline{\mathbb{R}}, \nu)\right)$. Specifically, by use of recent work [2] on minimal L^{1} projections, we show that there exists a minimal

[^0]projection $P_{1}=\sum_{i=1}^{2} U_{i} \otimes v_{i}$ from $L^{1}(\overline{\mathbb{R}}, \nu)$ onto $v=\left[v_{1}, v_{2}\right]$ and a projection $P_{\infty}=\sum_{i=1}^{2} u_{i} \otimes V_{i}$ from $C \oplus V \subset L^{\infty}(\overline{\mathbb{R}}, \nu)$ onto $V=\left[V_{1}, V_{2}\right]$, such that V is isometric to v and $\left\|P_{\infty}\right\|=\left\|P_{1}\right\|$, where $d V_{i}=2 v_{i} d \nu$ and $d U_{i}=-2 u_{i} d \nu$. This procedure was first demonstrated in [1], where $v=[1, t]$ is the two-dimensional subspace of lines in $L^{1}[-1,1]$. In this case P_{1} was already known [4] and $P_{\infty}: C[-1,1] \rightarrow V=\left[t, 1-t^{2}\right]$ was determined in [1].

It is known that any two-dimensional real Banach space is isometric to a subspace of the Lebesgue space $L^{1}[-1,1]$ (see, e.g., [5] and [6]). More generally, let $v=\left[v_{1}, v_{2}\right]$ denote any two-dimensional real subspace of $L^{1}(S, \Sigma, \mu)$, where it will be assumed that (S, Σ, μ) is an arbitrary complete measure space. In the following we will construct $V=\left[V_{1}, V_{2}\right] \subset L^{\infty}$ such that v is isometric to V and such that $\lambda(V ; C \oplus V)=\lambda\left(v ; L^{1}\right)$. From the well-known facts that $\lambda(V ; X)=\lambda(V)$ for $C \subset X \subset L^{\infty}$ and $\lambda(v)=\lambda(V)$, we can then conclude that L^{1} is a maximal overspace for v; i.e., $\lambda\left(v ; L^{1}\right)=\lambda(v)$.

Lemma 1. Any two-dimensional subspace v of $L^{1}(S, \Sigma, \mu)$ is isometric to a subspace \widehat{v} of lines in $L^{1}(\overline{\mathbb{R}}, \nu)$ for some finite measure ν on $\overline{\mathbb{R}}$, and $\lambda\left(v ; L^{1}(S, \Sigma, \mu)\right) \geq \lambda\left(\widehat{v} ; L^{1}(\overline{\mathbb{R}}, \nu)\right)$.

Proof. Let $Z=\left\{s \in S: v_{1}(s)=0\right\}$. Define $(\widehat{1}, \widehat{t})=(1, t), t \in \mathbb{R}$, and $(\widehat{1}, \widehat{t})(\pm \infty)=(0, \pm 1)$. Then, for arbitrary $\left(a_{1}, a_{2}\right)$,

$$
\begin{aligned}
\|\left(a_{1}, a_{2}\right) \cdot & \left(v_{1}, v_{2}\right) \|_{L^{1}(S, \Sigma, \mu)} \\
& =\int_{S}\left|a_{1} v_{1}(s)+a_{2} v_{2}(s)\right| d \mu(s) \\
& =\int_{S-Z}\left|a_{1}+a_{2} \frac{v_{2}(s)}{v_{1}(s)}\right|\left|v_{1}(s)\right| d \mu(s)+\left|a_{2}\right| \int_{Z}\left|v_{2}(s)\right| d \mu(s) \\
& =\int_{\mathbb{R}}\left|a_{1}+a_{2} t\right| d \nu(t)+\left|a_{2}\right| \nu\{-\infty\}=\left\|\left(a_{1}, a_{2}\right) \cdot(\widehat{1}, \widehat{t})\right\|_{L^{1}(\overline{\mathbb{R}}, \nu)}
\end{aligned}
$$

where

$$
\nu\{t\}= \begin{cases}\int_{\left\{s \in S-Z: v_{2}(s) / v_{1}(s)=t\right\}}\left|v_{1}(s)\right| d \mu(s) & \text { for }|t|<\infty \\ \int_{Z}\left|v_{2}(s)\right| d \mu(s) & \text { for } t=-\infty \\ 0 & \text { for } t=\infty\end{cases}
$$

This demonstrates the desired isometry.
Finally, any projection from $L^{1}(\overline{\mathbb{R}}, \nu)$ onto \widehat{v} clearly induces a projection onto v, of the same norm, from the subspace of $L^{1}(S, \Sigma, \mu)$ consisting of functions constant on the level sets of $\left(v_{2} / v_{1}\right)(s)$. Hence

$$
\lambda\left(v ; L^{1}(S, \Sigma, \mu)\right) \geq \lambda\left(\widehat{v} ; L^{1}(\overline{\mathbb{R}}, \nu)\right)
$$

Thus, assume without loss in the sequel that $v=[\vec{v}]=[\widehat{1}, \widehat{t}] \subset L^{1}(\overline{\mathbb{R}}, \nu)$, and denote the norm of an element x in $L^{1}(\overline{\mathbb{R}}, \nu)$ by $\|x\|_{1}$. Also, denote the sphere in \mathbb{R}^{2} given by $\|\vec{a}\|=\|\vec{a} \cdot \vec{v}\|_{1}=\varrho$, for $\vec{a} \in \mathbb{R}^{2}$, by $\mathcal{S}(\varrho)$. The following result is from the theory of finite-rank minimal projections in L^{1}, as applied to the present two-dimensional situation ([2], Theorems 2 and 3 and Lemma 4; see especially the geometric interpretation in §3).

Theorem A ([2]). There exists a minimal projection $P_{1}=\sum_{i=1}^{2} U_{i} \otimes v_{i}$ from $L^{1}(\overline{\mathbb{R}}, \nu)$ onto v such that, for some non-singular matrix M and all $r \in \overline{\mathbb{R}}, \vec{U}(r)$ is a point on $\mathcal{S}\left(\left\|P_{1}\right\|\right)$ such that a tangent line at $\vec{U}(r)$ is perpendicular (in the Euclidean sense) to the direction given by $M \vec{v}(r)$.

Since M is non-singular and $M \vec{v}(r), r \in \overline{\mathbb{R}}$, defines a line not passing through the origin, it follows that the directions given by $M \vec{v}(r)$ describe monotonically an arc subtending π radians (as moves from $-\infty$ to ∞). As a consequence of this and the perpendicularity of a tangent line at $\vec{U}(r)$ with the direction of $M \vec{v}(r)$, note, for future reference, that we may assume $\vec{U}(\infty)=-\vec{U}(-\infty)$. Also, note that $\tan ^{-1}\left[U_{2}(r) / U_{1}(r)\right]$ is monotonic in $r \in \overline{\mathbb{R}}$ (assume without loss, increasing).

Let

$$
\begin{equation*}
\vec{V}_{0}(r)=\int_{\overline{\mathbb{R}}} \vec{v}(s) \operatorname{sgn}^{+}[\vec{U}(r) \cdot \vec{v}(s)] d \nu(s), \quad r \in \overline{\mathbb{R}}, \tag{1}
\end{equation*}
$$

where

$$
\operatorname{sgn}^{+}(t)= \begin{cases}-1, & t<0 \\ +1, & 0 \leq t\end{cases}
$$

Hence the "Lebesgue function"

$$
L_{P_{1}}(r)=\vec{U}(r) \cdot \vec{V}_{0}(r)=\int_{\mathbb{R}}|\vec{U}(r) \cdot \vec{v}(s)| d \nu(s)=\|\vec{U}(r) \cdot \vec{v}\|_{1}=\left\|P_{1}\right\|
$$

for all $r \in \overline{\mathbb{R}}$.
We now seek to define a function $r(t)$ so that $\vec{U}(r(t)) \cdot \vec{v}(t)=0$. Because of possible "flat portions" on the sphere $\mathcal{S}\left(\left\|P_{1}\right\|\right)$, this cannot always be accomplished exactly when $\vec{v}(t)$ is perpendicular to a direction on a "flat portion", and hence we need the following more technical definition for $r(t)$. Let

$$
a(r, t)=\frac{|\vec{U}(r) \cdot \vec{v}(t)|}{|\vec{U}(r)||\vec{v}(t)|}
$$

i.e., $a(r, t)$ is the absolute value of the cosine of the angle between $\vec{U}(r)$ and $\vec{v}(t)$. Then let

$$
a_{0}(t)=\inf _{r \in \overline{\mathbb{R}}} a(r, t)
$$

and define

$$
\begin{equation*}
r(t)=\liminf _{a(r, t) \rightarrow a_{0}(t)} r \tag{2}
\end{equation*}
$$

Next define

$$
\begin{equation*}
\vec{V}(t)=\varepsilon(t) \vec{V}_{0}\left(r(t)^{\sigma}\right), \quad t \in \overline{\mathbb{R}} \tag{3}
\end{equation*}
$$

where $\varepsilon(t)=\operatorname{sgn}^{+}[\vec{U}(\infty) \cdot \vec{v}(t)]$, and $\sigma=\sigma(t)= \pm$ is chosen so that $a\left(r(t)^{\sigma}, t\right)=a_{0}(t)$ if $0<a_{0}(t)$, and $\sigma=\sigma(t)$ is suppressed if $a_{0}(t)=0$. Note that $a_{0}(t)>0$ implies that $\vec{U}(r(t))$ lies on a "flat portion" of $\mathcal{S}\left(\left\|P_{1}\right\|\right)$.

Lemma 2. The two-dimensional space $v=[\widehat{1}, \widehat{t}] \subset L^{1}(\overline{\mathbb{R}}, \nu)$ is isometric to $V=\left[V_{1}(t), V_{2}(t)\right] \subset L^{\infty}(\overline{\mathbb{R}}, \nu)$, where $\vec{V}(t)=\left(V_{1}(t), V_{2}(t)\right)$ is given by (3) or, more simply, by (4) below.

Proof. For arbitrary $\vec{a} \in \mathbb{R}^{2}$,

$$
\begin{aligned}
\|\vec{a} \cdot \vec{v}\|_{1} & =\int_{\overline{\mathbb{R}}}|\vec{a} \cdot \vec{v}(s)| d \nu(s)=\int_{\overline{\mathbb{R}}} \vec{a} \cdot \vec{v}(s) \operatorname{sgn}^{+}[\vec{a} \cdot \vec{v}(s)] d \nu(s) \\
& =\sup _{\vec{b} \in \mathbb{R}^{2}}\left|\int_{\overline{\mathbb{R}}} \vec{a} \cdot \vec{v}(s) \operatorname{sgn}^{+}[\vec{b} \cdot \vec{v}(s)] d \nu(s)\right| \\
& =\sup _{t \in \overline{\mathbb{R}}}\left|\vec{a} \cdot \int_{\overline{\mathbb{R}}} \vec{v}(s) \operatorname{sgn}^{+}[\vec{U}(r(t)) \cdot \vec{v}(s)] d \nu(s)\right| \\
& =\sup _{t \in \overline{\mathbb{R}}}\left|\vec{a} \cdot \varepsilon(t) \int_{\overline{\mathbb{R}}} \vec{v}(s) \operatorname{sgn}^{+}\left[\vec{U}\left(r(t)^{\sigma(t)}\right) \cdot \vec{v}(s)\right] d \nu(s)\right|,
\end{aligned}
$$

since, as is easy to see by the construction of $\vec{U}(r(t))$, the points $\vec{U}(r(t))$, $t \in \overline{\mathbb{R}}$, cover all "non-flat portions" of the sphere $\mathcal{S}\left(\left\|P_{1}\right\|\right)$ lying in a halfspace. Thus, we conclude that

$$
\|\vec{a} \cdot \vec{v}\|_{1}=\sup _{t \in \overline{\mathbb{R}}}|\vec{a} \cdot \vec{V}(t)|=\|\vec{a} \cdot \vec{V}\|_{\infty}
$$

Finally, it is immediate that $V \subset L^{\infty}(\overline{\mathbb{R}}, \nu)$, since $v \subset L^{1}(\overline{\mathbb{R}}, \nu)$.
Lemma 3. $2 \vec{v}$ is the Radon-Nikodym derivative with respect to ν of the signed measure with cumulative distribution function given by $\vec{V}(t)-$ $\vec{V}(-\infty)$.

Proof. From (3) note that

$$
\begin{equation*}
\vec{V}(t)=\left(\int_{[-\infty, t]}-\int_{(t, \infty]}\right) \vec{v} d \nu=\int_{-\infty}^{t} 2 \vec{v} d \nu-\int_{-\infty}^{\infty} \vec{v} d \nu \tag{4}
\end{equation*}
$$

Note 1. It follows from (4) that $\vec{V}(\infty)=-\vec{V}(-\infty)$.

Note 2. If ν is absolutely continuous with respect to Lebesgue measure, then $V \subset C(\overline{\mathbb{R}})$.

2. Main result

Theorem 1. Let $P_{1}=\sum_{i=1}^{2} U_{i} \otimes v_{i}$ be the projection from $L^{1}(\nu)$ onto v given in Theorem A, and let V be the two-dimensional subspace of $L^{\infty}(\nu)$ isometric to v and given in Lemma 2. Let $P_{\infty}=\sum_{i=1}^{2} u_{i} \otimes V_{i}$ be the operator from $C(\overline{\mathbb{R}}) \oplus V$ onto V given by

$$
\begin{equation*}
\vec{u}=-\frac{1}{2} \frac{d \vec{U}}{d \nu} \tag{5}
\end{equation*}
$$

where $d \vec{U} / d \nu$ denotes the Radon-Nikodym derivative of the signed measure on $\overline{\mathbb{R}}$ with cumulative distribution function $\vec{U}(t)-\vec{U}(-\infty)$. Then P_{∞} is a projection from $C(\overline{\mathbb{R}}) \oplus V$ onto V and $\left\|P_{\infty}\right\|=\left\|P_{1}\right\|$.

Proof. For simplicity of notation, suppress $\sigma=\sigma(t)$ throughout the following argument. Also in the following we will use the notation $\langle x(r), y(r)\rangle_{r}$ to stand for $\int_{\overline{\mathbb{R}}} x(r) y(r) d \nu(r)$ and to emphasize that r is the integration variable.

By use of the Lebesgue function $L_{P_{\infty}}(t)$ for P_{∞} we have

$$
L_{P_{\infty}}(t)=\langle\operatorname{sgn}[\vec{u}(r) \cdot \vec{V}(t)], \vec{u}(r)\rangle_{r} \cdot \vec{V}(t)
$$

First

$$
\vec{u}(r) \cdot \vec{V}(t)=-\frac{1}{2} \frac{d \vec{U}(r)}{d \nu(r)} \cdot \vec{V}(t)=-\frac{1}{2} \frac{d \vec{U}(r)}{d \nu(r)} \cdot \varepsilon(t) \vec{V}_{0}(r(t))
$$

Next the Lebesgue function $L_{P_{1}}(r)=\vec{U}(r) \cdot \vec{V}_{0}(r)$ is constant for all $r \in \overline{\mathbb{R}}$, which implies that

$$
d \vec{U}(r) \cdot \vec{V}_{0}(r)+\vec{U}(r) \cdot d \vec{V}_{0}(r)=0
$$

From this it follows straightforwardly from the definition (2) of $r(t)$ and Lemma $3\left(\varepsilon(t) d \vec{V}_{0}(r(t))=2 \vec{v}(t) d \nu(t)\right)$ that

$$
\operatorname{sgn}[\vec{u}(r) \cdot \vec{V}(t)]=\varepsilon(t) \operatorname{sgn}[\vec{U}(r) \cdot \vec{v}(t)]
$$

Hence,

$$
\begin{aligned}
\langle\operatorname{sgn}[\vec{u}(r) \cdot \vec{V}(t)], \vec{u}(r)\rangle_{r} & =\left(-\int_{-\infty}^{r(t)}+\int_{r(t)}^{\infty}\right)\left(-\frac{1}{2} d \vec{U}(r)\right) \\
& =\vec{U}(r(t))-\frac{1}{2}[\vec{U}(-\infty)+\vec{U}(\infty)]=\vec{U}(r(t))
\end{aligned}
$$

for each fixed t. We conclude that

$$
L_{P_{\infty}}(t)=\vec{U}(r(t)) \cdot \vec{V}(t)=\vec{U}(r(t)) \cdot \vec{V}_{0}(r(t))=\left\|P_{1}\right\| .
$$

Secondly, we show that $\left\langle V_{i}, u_{j}\right\rangle=\left\langle v_{i}, U_{j}\right\rangle$ as follows:

$$
\begin{aligned}
\left\langle V_{i}(t), u_{j}(t)\right\rangle_{t} & =\left\langle V_{i}(t),-\frac{1}{2} \frac{d U_{j}(t)}{d \nu}\right\rangle_{t} \\
& =-\left.\frac{1}{2}\left(V_{i} U_{j}\right)(t)\right|_{-\infty} ^{\infty}+\frac{1}{2} \int_{-\infty}^{\infty} U_{j}(t) d V_{i}(t)
\end{aligned}
$$

But $\vec{V}(\infty)+\vec{V}(-\infty)=\vec{U}(\infty)+\vec{U}(-\infty)=\overrightarrow{0}$ and $d V_{i}(t)=2 v_{i}(t) d \nu(t)$, and we have the desired conclusion.

Note 3. Theorem A extends to any non-singular action (see [2]) on v (not necessarily the identity action, as in the case of projections). The proof of Theorem 1 above shows that L^{1} is a maximal overspace for operators onto v with any specified non-singular action on v.

Note 4. L^{1} is not, in general, a maximal overspace for three-dimensional subspaces as the following example shows. Consider $v=\ell_{1}^{3}$ (imbedded isometrically) in $L^{1}[0,1]$ as step functions with steps at $\left\{\frac{1}{3}, \frac{2}{3}\right\}$. Then $\lambda\left(v, L^{1}\right)$ $=1$ as is easily seen, while v is isometric to $V=\left[r_{1}, r_{2}, r_{3}\right]$, the span of the first three Rademacher functions in $L^{\infty}[0,1]$. But it is known that $\lambda(V)=\lambda\left(V, L^{\infty}\right)>1$.

We will now obtain the result of [1] as an example of the results of this paper.

Example. Consider $L^{1}[-1,1]$ and $v=[\vec{v}(t)], \vec{v}(t)=(1, t)$. Then ν is Lebesgue measure with support $[-1,1]$. From [2] and [4]

$$
\begin{equation*}
\vec{U}(r)=\frac{\left\|P_{1}\right\|}{2}\left[\frac{(1, m r)}{\sqrt{1+m^{2} r^{2}}}+(0, \operatorname{sgn}(r))\right], \quad r \in[-1,1] \tag{6}
\end{equation*}
$$

$M=\operatorname{diag}(1, m)$, where $\left\|P_{1}\right\|=-2 m / \log \left(t_{0}\right), m=\left(1-t_{0}^{2}\right) / 2 t_{0}=\left(t_{0}^{2}-\right.$ $\left.t_{0}-1\right) \log \left(t_{0}\right)$. So, following the procedure of this paper, we extend $\vec{U}(r)$ to all $r \in \overline{\mathbb{R}}$ such that $\vec{U}(r)$ is on $\mathcal{S}\left(\left\|P_{1}\right\|\right)$ and the tangent line at $\vec{U}(r)$ is perpendicular (in the Euclidean sense) to the direction given by $M \vec{v}(r)$, $r \in \overline{\mathbb{R}}$. Hence we have $\vec{U}(r)$ extended to have the form (6) for all $r \in \overline{\mathbb{R}}$.

Then by (4)

$$
\vec{V}(t)= \begin{cases}\int_{-1}^{t}(1, s) d s-\int_{t}^{1}(1, s) d s=\left(2 t, t^{2}-1\right), & t \in[-1,1] \\ (2 \operatorname{sgn}(t), 0), & |t|>1\end{cases}
$$

By Lemma $2, v$ is isometric to $V=[\vec{V}] \subset C(\overline{\mathbb{R}})$.
By the theorem if we set

$$
\vec{u}(r)=-\frac{1}{2} \frac{d \vec{U}(r)}{d r}=\frac{\left\|P_{1}\right\|}{2}\left[\frac{m}{2} \frac{(m r,-1)}{\left(1+m^{2} r^{2}\right)^{3 / 2}}+\left(0,-\delta_{0}\right)\right], \quad r \in \overline{\mathbb{R}}
$$

then $P_{\infty}=\sum_{i=1}^{2} u_{i}(r) \otimes V_{i}(t)$ is a projection from $C(\overline{\mathbb{R}})$ onto V such that $\left\|P_{\infty}\right\|=\left\|P_{1}\right\|$.

Note that in this example, if we restrict P_{∞} to $C_{[-1,1]}(\overline{\mathbb{R}})=\{f \in C(\overline{\mathbb{R}})$: $f(t)=f(\operatorname{sgn}(t)),|t| \geq 1\}$, then $C_{[-1,1]}(\overline{\mathbb{R}})$ is isometric to $C[-1,1]$. Furthermore, $\left\|\left.P_{\infty}\right|_{C_{[-1,1]}(\overline{\mathbb{R}})}\right\|=\left\|P_{\infty}\right\|$, and $\left.P_{\infty}\right|_{C_{[-1,1]}(\overline{\mathbb{R}})}$ is easily identified with the projection in [1].

Remark. Using the fact that L^{1} is a maximal overspace for twodimensional real spaces is a basic preliminary step in [3].

Acknowledgement. The authors are indebted to Boris Shekhtman for lending his valuable help.

References

[1] B. L. Chalmers, Absolute projection constant of the linear functions in a Lebesgue space, Constr. Approx. 4 (1988), 107-110.
[2] B. L. Chalmers and F. T. Metcalf, The determination of minimal projections and extensions in L^{1}, Trans. Amer. Math. Soc. 329 (1992), 289-305.
[3] B. L. Chalmers, F. T. Metcalf, B. Shekhtman and Y. Shekhtman, The projection constant of a two-dimensional real Banach space is no greater than 4/3, submitted.
[4] C. Franchetti and E. W. Cheney, Minimal projections in \mathcal{L}_{1}-spaces, Duke Math. J. 43 (1976), 501-510.
[5] J. Lindenstrauss, On the extension of operators with a finite-dimensional range, Illinois J. Math. 8 (1964), 488-499.
[6] D. Yost, L_{1} contains every two-dimensional normed space, Ann. Polon. Math. 49 (1988), 17-19.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA, RIVERSIDE
RIVERSIDE, CALIFORNIA 92521
U.S.A.

[^0]: 1991 Mathematics Subject Classification: Primary 46B04; Secondary 46B20.
 Key words and phrases: maximal overspace, two-dimensional spaces.

