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On one-dimensional diffusion processes living
in a bounded space interval

by Anna Milian (Kraków)

Abstract. We prove that under some assumptions a one-dimensional Itô equation
has a strong solution concentrated on a finite spatial interval, and the pathwise uniqueness
holds.

Introduction. In the present paper we will consider a diffusion satisfy-
ing the stochastic integral Itô equation

(1) X(t) = X(0) +
t∫

0

a(s,X(s)) ds+
t∫

0

b(s,X(s)) dW (s)

where W (t) is a given one-dimensional Wiener process on a probability space
(Ω,F , P ).

It is known ([1], p. 372) that if b(t, ri) = 0 ≤ (−1)ia(t, ri), i = 0, 1, t ≥ 0,
and if a and b are sufficiently regular, then (1) has a unique solution X(t)
concentrated on the interval [r0, r1].

In this paper we consider strong solutions of (1) ([3], p. 149). An exam-
ple of a stochastic integral equation which has a solution but has no strong
solution is due to H. Tanaka ([3], p. 152). We will give some sufficient con-
ditions in order that (1) has a unique (in the sense of pathwise uniqueness)
strong solution X(t), satisfying X(t) ∈ (α(t), β(t)) for t ≥ 0, where α and β
are given sufficiently regular real-valued functions defined for t ≥ 0.

Existence and pathwise uniqueness of the strong solution of
equation (1) on a finite spatial interval. First we give some sufficient
conditions in order that a strong solution X(t) of the stochastic equation
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14 A. Milian

(1) exists and satisfies the additional condition

|X(t)| < 1 for t ≥ 0 .

We will need the following theorem ([1], Theorem 3.11, p. 300 in the case
d = 1):

Theorem 1. Let a : [0,∞) × R → R and b : [0,∞) × R → R be locally
bounded and Borel measurable. Suppose that for each T > 0 and N ≥ 1
there exist constants KT and KT,N such that

1) |b(t, x)|2 ≤ KT (1 + x2) , xa(t, x) ≤ KT (1 + x2) ,
0 ≤ t ≤ T , x ∈ R ,

2) |b(t, x)− b(t, y)| ∨ |a(t, x)− a(t, y)| ≤ KT,N |x− y| ,
0 ≤ t ≤ T , |x| ∨ |y| ≤ N .

Given a 1-dimensional Brownian motion W and an independent R-valued
random variable ξ on a probability space (Ω,F , P ) such that E[|ξ|2] < ∞,
there exists a process X with X(0) = ξ a.s. such that (Ω,F , P, {Ft},W,X)
is a solution of the stochastic integral equation (1), where Ft = FW

t ∨ σ(ξ)
(σ(ξ) denotes the minimal σ-algebra with respect to which ξ is measurable).

Let Φ(t, x) be a monotone (in x) continuous function, defined for t ∈
[0, T ], x ∈ (−1, 1), for which the derivatives Φt(t, x), Φx(t, x) and Φxx(t, x)
exist and are continuous. For each t ∈ [0, T ] there exists a function Ψ(t, x)
inverse to Φ(t, x), i.e. Φ(t, Ψ(t, x)) = x, Ψ(t, Φ(t, x)) = x. If ξ(t) satisfies (1)
and |ξ(t)| < 1 for t ∈ [0, T ], then applying Itô’s formula ([2], Theorem 4,
p. 24) we conclude that the process X(t) = Φ(t, ξ(t)) satisfies the equation

dX(t) = m(t,X(t)) dt+ σ(t,X(t)) dW (t) ,

where

m(t, x) =
∂Φ

∂t
(t, Ψ(t, x)) +

∂Φ

∂x
(t, Ψ(t, x))a(t, Ψ(t, x))(2)

+
1
2
∂2Φ

∂x2
(t, Ψ(t, x))b2(t, Ψ(t, x)) ,

σ(t, x) =
∂Φ

∂x
(t, Ψ(t, x))b(t, Ψ(t, x)) .(3)

Let

p(x) =
x∫

0

ds√
1 + s2

,(4)

Φ(x) = p−1

(
ln

1 + x

1− x

)
.(5)
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Note that Φ is an increasing one-to-one mapping from (−1, 1) onto R. Define

(6) Ψ(x) = Φ−1(x) =
ep(x) − 1
ep(x) + 1

.

Theorem 2. Assume that a 1-dimensional Wiener process W (t) and an
independent R-valued random variable X0 on a probability space (Ω,F , P )
are given, |X0| < 1 with probability 1. Let the coefficients a(t, x) and b(t, x)
of (1) be defined , Borel measurable and locally bounded for t ≥ 0, |x| ≤ 1.
Suppose further that

1) for each T > 0 there exists a constant KT such that

|a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| ≤ KT |x− y|

t ∈ [0, T ], |x| ≤ 1, |y| ≤ 1,
2) b(t,∓1) = 0 for 0 ≤ t ≤ T ,
3) a(t, 1) ≤ 0, a(t,−1) ≥ 0 for 0 ≤ t ≤ T ,
4) E(Φ(X0))2 <∞.

Then there exists a process X(t) with X(0) = X0 a.s. such that (Ω, F , P ,
{Ft}, W , X(t)) is a solution of the stochastic integral equation (1), where
Ft = FW

t ∨ σ(X0), and |X(t)| < 1 for 0 ≤ t ≤ T a.s. If X1(t) and X2(t)
are two solutions of (1) with P (Xi(0) = X0) = 1 and |Xi(t)| < 1 a.s. for
i = 1, 2 and for t ∈ [0, T ], then

P{ sup
0≤t≤T

|X1(t)−X2(t)| = 0} = 1 .

P r o o f. By 1) and 2) we have |b(t, x)| = |b(t, x) − b(t, 1)| ≤ KT |x − 1|.
Thus

(7)
∣∣∣∣b(t, x)
x− 1

∣∣∣∣ ≤ KT for 0 ≤ t ≤ T , |x| < 1 .

Analogously

(8)
∣∣∣∣b(t, x)
x+ 1

∣∣∣∣ ≤ KT for 0 ≤ t ≤ T , |x| < 1 .

From 1) and 3) we have

a(t, x)
x+ 1

=
a(t, x)− a(t,−1)

x+ 1
+
a(t,−1)
x+ 1

≥ a(t, x)− a(t,−1)
x+ 1

≥ −|a(t, x)− a(t,−1)|
x+ 1

.

Hence

(9)
a(t, x)
x+ 1

≥ −KT for 0 ≤ t ≤ T , |x| < 1 .
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Analogously

(10)
a(t, x)
1− x

≤ a(t, x)− a(t, 1)
1− x

≤ KT for 0 ≤ t ≤ T , |x| < 1 .

Consider the equation (1) with the drift coefficient m(t, x) and the dif-
fusion coefficient σ(t, x) given by the formulas (2) and (3); Φ and Ψ are
given by (5) and (6). We will prove that they satisfy all assumptions of
Theorem 1. By (6)

Ψ ′(x) =
2ep(x)

√
1 + x2(ep(x) + 1)2

,

Ψ ′′(x) =
2ep(x)[(1− ep(x))

√
1 + x2 − x(ep(x) + 1)]

(1 + x2)3/2[ep(x) + 1]3
.

Since Φ ◦ Ψ = id, we have

Φ′(Ψ(x)) =
√

1 + x2(ep(x) + 1)2

2ep(x)
.

Differentiating the identity Φ′(Ψ(x))Ψ ′(x) = 1, we obtain Φ′′(Ψ(x)) =
−Ψ ′′(x){Ψ ′(x)}−3. Thus

m(t, x) = a(t, Ψ(x))
√

1 + x2(ep(x) + 1)2

2ep(x)
(11)

− 1
2
b2(t, Ψ(x))

(
b(t, Ψ(x))
Ψ ′(x)

)2
Ψ ′′(x)
Ψ ′(x)

,

σ(t, x) = b(t, Ψ(x))
√

1 + x2(ep(x) + 1)2

2ep(x)
.(12)

If x ≥ 0, then p(x) ≥ 0 and by (7) and (12) we obtain

|σ(t, x)| =
∣∣∣∣b(t, Ψ(x))

1− Ψ(x)

∣∣∣∣ |1− Ψ(x)|
√

1 + x2(ep(x) + 1)2

2ep(x)

≤ KT
ep(x) + 1
ep(x)

√
1 + x2 ≤ 2KT

√
1 + x2 .

If x ≤ 0, then p(x) ≤ 0 and by (8) and (12) we have

|σ(t, x)| =
∣∣∣∣b(t, Ψ(x))

1 + Ψ(x)

∣∣∣∣ |1 + Ψ(x)|
√

1 + x2(ep(x) + 1)2

2ep(x)

≤ KT

√
1 + x2(ep(x) + 1) ≤ 2KT

√
1 + x2 .

Thus σ(t, x) satisfies Condition 1) of Theorem 1.
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If x ≥ 0, then by (10)

xa(t, Ψ(x))
√

1 + x2(ep(x) + 1)2

2ep(x)
=
a(t, Ψ(x))
1− Ψ(x)

x
√

1 + x2(1 + e−p(x))(13)

≤ 2KT (1 + x2) .

If x ≤ 0, then by (9)

(14) xa(t, Ψ(x))
√

1 + x2(ep(x) + 1)2

2ep(x)
=
a(t, Ψ(x))
1 + Ψ(x)

x
√

1 + x2(ep(x) + 1)

≤ −KTx
√

1 + x2(ep(x) + 1) = KT (−x)
√

1 + x2(ep(x) + 1) ≤ 2KT (1 + x2) .

Next

(15) −1
2
Ψ ′′(x)
Ψ ′(x)

=
1
2

Ψ(x)√
1 + x2

+
x

2(1 + x2)
.

Since b(t, Ψ(x))/Ψ ′(x) = σ(t, x) satisfies Condition 1) of Theorem 1, by
(13)–(15) we conclude that m(t, x) satisfies Condition 1) of Theorem 1.
Condition 2) of Theorem 1 also holds.

Thus, there exists a process Y (t) satisfying (1) with the coefficients
m(t, x) and σ(t, x) with the initial condition Y (0) = Φ(0, X0). Using Itô’s
formula, we prove that the process X(t) = Ψ(t, Y (t)) satisfies the equation

dX(t) = a1(t,X(t))dt+ b1(t,X(t))dW (t) , where

a1(t, x) = Ψ ′(Φ(x))m(t, Φ(x)) + 1
2Ψ
′′(Φ(x))σ2(t, Φ(x)) ,

b1(t, x) = Ψ ′(Φ(x))σ(t, Φ(x)) .

Applying formulas (2), (3) and the identity Ψ ◦ Φ = id, we obtain

a1(t, x) = a(t, x)(Ψ ◦ Φ)′(x) + 1
2b

2(t, x)(Ψ ◦ Φ)′′(x) = a(t, x) .

Analogously,
b1(t, x) = b(t, x)(Ψ ◦ Φ)′(x) = b(t, x) .

Thus X(t) is a strong solution of (1) with the initial condition X(0) =
Ψ(0, Y (0)) = Ψ(0, Φ(0, X0)) = X0. Moreover, |X(t)| < 1 for t ≥ 0 a.s.
Let X1(t) and X2(t) be two solutions of (1) with P (Xi(0) = X0) = 1 and
|Xi(t)| < 1 for t ∈ [0, T ], i = 1, 2. Extend b to be zero outside [−1, 1]
and set a(t, x) = a(t,−1), x < −1, and a(t, x) = a(t, 1), x > 1. Then
from Theorem 3.7 of [1], p. 297, we conclude that P{X1(t) = X2(t) for
0 ≤ t ≤ T} = 1, that is to say, the pathwise uniqueness holds. The proof is
finished.

If the coefficients of (1) satisfy the assumptions of Theorem 2 and ad-
ditionally a(t, x) and b(t, x) are continuous in both arguments, then ([2],
Theorem 2, p. 68 and [2], p. 66) the solution of (1) is a diffusion with diffu-
sion coefficient b2(t, x) and drift coefficient a(t, x).
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Let f(t, x) be a real function defined in G = {(t, x) : 0 ≤ t ≤ T , α(t) ≤
x ≤ β(t)}, where α, β ∈ C1[0, T ]. Assume that f(t, x) is C3 in some open
neighbourhood of G and (∂f/∂x)(t, x) > 0 in G. Moreover, suppose f(t, ·)
is a one-to-one mapping from (α(t), β(t)) onto (−1, 1) for t ∈ [0, T ]. Let
g(t, ·) denote the inverse of f(t, ·), i.e.,

g(t, f(t, x)) ≡ x ≡ f(t, g(t, x)) for t ∈ [0, T ] .

From Theorem 2 follows:

Corollary 1. Assume that a 1-dimensional Wiener process W (t) and
an independent R-valued random variable X0 on a probability space (Ω,
F , P ) are given, and X0 ∈ (α(0), β(0)) a.s. Let a(t, x) and b(t, x) be
measurable in G. Suppose the following assumptions are satisfied :

1) |a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| ≤ K|x− y| for (t, x), (t, y) ∈ G,
2) b(t, α(t)) = b(t, β(t)) = 0 for t ∈ [0, T ],
3) a(t, α(t)) ≥ α′(t), a(t, β(t)) ≤ β′(t) for t ∈ [0, T ],
4) E(Φ[f(0, X0)])2 <∞.

Then there exists a process X(t) satisfying the conditions:

(A) X(t) = X0 for t = 0,
(B) X(t) ∈ (α(t), β(t)) a.s. for t ∈ [0, T ].
(C) (Ω,F , P, {Ft},W,X(t)) is a solution of (1), where Ft = FW

t ∨σ(X0).

If X(t) and X(t) are two solutions of (1) satisfying (A)–(C), then

P{ sup
0≤t≤T

|X(t)−X(t)| = 0} = 1 .

P r o o f. Define

a1(t, x) =
∂f

∂t
(t, g(t, x)) +

∂f

∂x
(t, g(t, x))a(t, g(t, x))(16)

+
1
2
∂2f

∂x2
(t, g(t, x))b2(t, g(t, x)) ,

b1(t, x) =
∂f

∂x
(t, g(t, x))b(t, g(t, x)) .(17)

We will show that a1(t, x) and b1(t, x) satisfy all the assumptions of Theo-
rem 2.

Since f and g are C3, by 1) the coefficients a1(t, x) and b1(t, x) satisfy
Condition 1) of Theorem 2. Since g(t,−1) ≡ α(t), g(t, 1) ≡ β(t), f(t, β(t)) ≡
1 and fx(t, x) > 0, 2)–4) imply Conditions 2)–4) of Theorem 2, respectively.

Thus, by Theorem 2, there exists a solution X1(t) of (1) with the co-
efficients a1(t, x) and b1(t, x) satisfying X1(0) = f(0, X0), |X1(t)| < 1 a.s.
for t ∈ [0, T ]. In the same way as in Theorem 2 we prove that the process
X(t) = g(t,X1(t)) is a solution of (1) with the coefficients a(t, x) and b(t, x).
Moreover, X(t) satisfies Conditions (A)–(C).
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If X(t) and X(t) are two solutions of (1) satisfying (A)–(C), then by
Theorem 2

P{ sup
0≤t≤T

|X(t)−X(t)| = 0} = P{ sup
0≤t≤T

|f(t,X(t))− f(t,X(t))| = 0} = 1 .

The corollary is proved.

If the conditions of Corollary 1 are fulfilled and additionally a(t, x) and
b(t, x) are continuous in both arguments, then ([2], Theorem 2, p. 68 and
[2], p. 66) X(t) is a diffusion with diffusion coefficient b2(t, x) and drift
coefficient a(t, x).
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