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Abstract. A stochastic integral equation corresponding to a probability space
(£2, X, P,) is considered. This equation plays the role of a dynamical system in many
problems of stochastic control with the control variable u(-) : R} — R™. One constructs

stochastic processes n(l)(t), 17(2)(t) connected with a Markov chain and with the space

(2,%,,P,). The expected values of n(i)(t) (i = 1,2) are respectively the expected value
of an integral representation of a solution z(t) of the equation and that of its derivative

1. Introduction. Given a probability space (£2, X, P,). Let L?(£2) be
the Hilbert space of all real random variables defined on ({2, X, P,,) which
have finite second moment;:

1) 2@ ={e: 2Bl = [ [ @Puaw)]
2

= [EAE(@)}]"/* < oo} .

We consider the stochastic equation
b
(12)  a() = [ K@t7)a(r) pldr) +glt,u() (¢ € (a,b) (mod )

where (a,b) is a closed or open interval, —oo < a < b < oo, u is Lebesgue
measure on R, u(t) € R™, z(t) = (z1(t),..., 2, ()T, z;(t) € L?>({a,])).

We suppose that the given functions in (1.2) satisfy the following condi-
tions:

(A)  The vector-valued function u(t) = (ui(t),...,un()? : (a,b) —

(u,u) C R™ is deterministic (where (w,@) = {(u1,...,um) : u; <
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2 Nguyen Quy Hy and Nguyen Thi Minh

w; < W;,i = 1,...,m}). The function g(t) = (g,(¢),...,9,(t)T =
g(t,u(-);w) is a Hilbert valued n-variate process with parameter ¢ €
(a,b), integrable on (a,b) (see [8]).

(B)  The matrix-valued function K(t,7;w) := (K;;(t,T;w))nxn is a Hil-
bert valued (n x n)-variate process with parameters (t,7) € (a,b) x
(a,b).

Under some assumptions, there exists a unique solution of (1.2) which
depends on u(-) : z(t) = z(t, u(-);w) and is a Hilbert valued n-variate process
with parameter t € (a,b), i.e. (see [8]) z;(t) = z;(t,u(-)) € L?(£2). In many
general problems of stochastic control, we deal with the state equation of
the form (1.2) (see [15], [5], [11], [12]) with K(¢,7) = 0 for 7 >t > a; (t)
is the state variable, u(t) is the control variable.

Using gradient methods to solve the corresponding stochastic control
problems, we must determine the random gradient @, (x,u,t;w) of some

average cost E{ f; & dt}. This problem reduces to determining the expected
value:

(1.3) z(t) == Eu{z(t,u(-);w)},
(1.4) T, (t) i= Bof{a, (8 u(-);w)},
where the components of the matrix
Ox;(t,u(-);w)  Oxi(t, u;w)
8uj N 8Uj

ug=u;(-)

are the mean quadratic derivatives (m.q.d.) of the stochastic process
x;i(t,u1,. .., Uy;w) with respect to the parameter u; (see [8] or (3.1b)). Fur-
ther, we have to determine the following vector and matrix:

b
(15) (0 W,2) = Bu{ [ oW (Gw)n(t,u()iw) u(dn)}

b
(1.6) (@) = B [ 92 ()l (6 u()iw) pu(dt) }

Here () (i = 1,2) satisfy the following condition:

(Ci) o9 (t;w) is a Hilbert valued (n; xn)-variate process with components
having second moment integrable on (a, b).

When n; = n and ¢V (t;w) is the unit matrix of order n, problem (1.5)
reduces to determining the expected value of the integral of the solution of
(1.2) on (a,b). We can also investigate the similar problem for the integral
of the derivatives of the solution.
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In particular, when n = m = 1, u(t) = ¢, and K(¢,7) and g(¢,u(-)) =
g(u(t)) = g(t) are deterministic, (1.2) takes the form of a Fredholm equation
of the second type in L?(a,b). Then an unbiased estimator (u.e.) and an
asymptotic u.e. of (1.3), (1.5) are obtained in [14], [10], [9].

When g¢(t) = E,{n(t;w)} and K(t,7) = E, {x(t,7;w)}, analogous esti-
mators are constructed basing on a realization of the processes n(*), x(t,7)
(see [7], [6], [4], [1]). An asymptotic u.e. and an u.e. of (1.4), (1.5) are also
constructed for x(¢,7) > 0 (see [3]).

In this paper, we provide an u.e. of (1.3)—(1.6) for the stochastic integral
equation (1.2).

By the above method we can apply the Monte Carlo method to the
numerical calculation of the quantities (1.3)—(1.6).

2. A random model connected with an integral transformation
of a solution. Let L%, = L% (2 x (a,b)) be the class of Hilbert valued
processes with second moment integrable on (a, b}'

@1) L ={f: (@) — L@ 1712 = f EoAf2(0)} p(dt) < o0}

Then L3, is a Hilbert space (see [2]).
Let L2, = L2, (2 x(a,b)) be the class of Hilbert valued (n x s)-variate

nxs nxs
processes with components having second moment integrable on (a,b):

(2.2) szs—{F:mﬂm Fyj : {a,b) — L*(12),

f 1755 (£) 172 2) 1(dt) f sz (t;w)P, ),u(dt)<oo}.

We can represent L?

in the form LnXS L34 ®...® L1, (nx s sum-

nxs
mands). Hence L2,  is also a Hilbert space (see [2]) with the norm
n s 1/2
@2)  Fle, = (XS IF2 )T (Fell).
i=1 j=1

Let K and K4 be the following integral operators:

(2.3) f K(t,7)f(r)p(dr) (felL?,),
(2.4) K4 A1t f Ko (t,7)f(r)uldr)  (fell),
where for each matrix H = (Hij)nxm we write Hy = (|Hij)axm. We

suppose that:
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Then we have (see (8])

(2.13) P(J6ér)=1.
k=0
It follows from (2.10), (2.12) that |Jiw, Ok C © and from (2.13) we obtain
(2.14) Py (@\ U @k) = 0.
k=0

Moreover, from (2.12), it is easy to see that
(2.15) OrNOy =0 (Vk#E).
Notice that the space
(2%°, 55, Pa) (HQ ®2“,,HP)
1=0
is a probability space. Its elementary events take the form @ := (wp,...,

Wk,...), wi € 2 (2 =0,1,2,...). Consider the product probability space
(@ x 02,5 5, Py, ) where

3o,o=2¢®Y5, Pyz=PFPsxPg,

(2.16) 5o é&” Po— ﬁPw
1=0 =0

and a mapping (1) : © x 2 — R™ defined by
(217) D (6;@) = FO(6,m;01, §)

— il SO( ) 00 wo 0;_ l)o’tawz 1)

1, 1,91) (9k7wk)

z=0
((0,w) € @ x 02),

with the convention that
K(0_1,00;w_1)

p(o—l ’ 00)

The measurability of o(}), K, g (see assumptions (C;), (B), (B1), (A)) and
(2.5), (2.7), (2.17) yield the Ty z-measurability of n(1)(6;@) on © x 2%, i.e.
71)(9;@) is a random n;-variate vector defined on (@ x 2%, % 5,Py ).

We suppose that the random processes ¢(t;w), d(t;w) fulfil the following
condition:

(D')  For given (by,...,0), the random variables ©(fo;w), K(0;-1,0;;w)
(4 =1,...,k), d(fk;w) are mutually independent (Vk = 1,2,...).

=1,
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Now we put

© (805 wo) 71 K(0i—1,00;wi—1)
224) ’ 0 7. (6x:
(2.24) ; [Po f0)a (k) H p(01-1,6) ijg]( ki k)

(t=1,...,n)

where for each matrix A = (a;;) we write [A];; = a;;. Then from Fubini’s
theorem it follows that

(225) Yi(k):= [ |n:(k;60,0)| P, 5 (df x dw)
O x 2

sj}; fw

[W(I)WOWO)
Po(60)q(bx)

k

9 ,9, = W
H ! 01 ! :l 1)] 9, (0k; wi) Po(dl) P5(dw) .
- -1, l) ©]

From (D), (2.25), (2.8)-

1), (2.19) we have (with (k+ 1)-fold integration)

n

(2.1
(2.26)  Yi(k) < E., {fb fb '[ M) (g; w)

a j=1
k
x [T & (6=, 605 ] gj(ek;w)lu(deo)...u(dek)}
b = b
B[ oo
k
x T] &+ (6. 1,0,,w)g+(9k,w)] (d8o) .. u(d6) }
=0
Therefore (see (2.4))
b
@27) k) < Bu{ [ 168 (B050)K5 G (005 )i i(d80) }

a

Using Holder’s inequality, by (2.25), (2.27), (2.2') and (C1), (B1), (A) we
obtain

(2.28) [ Ini(k; 6,@)| Py, 5 (d6 x dw)
ekx.(2°°

1
< ”‘P( )||L2 ||’C 9+||L2 < 00.

nyXn nxl
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THEOREM 1. Suppose that assumptions (A), (B), (B1), (C1) are satisfied
and p(t) = o) (t;w) and d(t) = G(t;w) fulfil condition (D). Then the equa-
tion (1.2) has a solution z(t) = z(t,u(-);w) in L2, ;. Moreover, the expected
value Eg, 5{n™")(8;@)} ezists and is finite and

(2.18) Mo, 5{n™M (8;®)} = (o, z).
Proof. For each vector h = (hy,...,h,)T € R, we set [h]; := h;.
Therefore, from (Bj), it follows that

b
(219) | [ IK(trsw)f(rw)ls wldr) |

b
< [ Kt m5w) fi(r50)) p(dr) < oo,

a

i=1,...,n), (Vf € L2, ,, t € (a,b) (mod u), w € 2 (mod P,)); further,
from (2.2 ) (2.4) we have :
(2.20) KAz, < K+ Fellez , S UK+ F+llzz

=14l fllce,,  (Vf€Liy),
i.e. the operator K : L2, ; — L2, is bounded. Put
k
Sk .— Z/ng =g+ kKSE-D, 50 =3,
(2.21) =0
s¢ ZIC+g+ =g, +KSE, 8P =7,

Then for some natural number p, it follows from (2.2)—(2.4) and (2.19) that
(k+p) _ g(k) (k+p) _ (k) _
(222) SO+ —sW < SEP s (vk=1,2,...).

. i~ . k .
As the Neumann series Z;’;O Kig, = l.1.m.k_,°°S_((_ ) converges in L2, ;

(by {A), (B1)), {Sik)}k is a Cauchy sequence. Hence, by (2.22) we deduce
the convergence of Z;’io K'g = Lim.gx—oS®) in the Hilbert space L2,
Therefore from the continuity of K, we have

(2.23) =Y K'g
j=0

(z is a solution in L2, of (1.2)).
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From (2.17), (2.24), (2.27) and (B;), (C1) we have

229) Y. [ 1M (0;@)):|Ps, 5(d6 x dw)

k=0@kxﬂ°°
=Z [ Ini(k;0,5)| P, 5(d6 x dw) = Yi(k)
k=0 @) x 2> k=0

INA

f f[“’ (605 w) Y_(K47,) (003 )| p(d60) Por(dw) < .
k=0

Hence, by (2.14), (2.17), (2.24), (2.28) it is easy to deduce the existence and
finiteness of the expected value

(2.30)  Ep o{[n™(8;));} = i [ 7:(k; 6,8) Py 5(d8 x dw) < oo
k=0 @, x N2>

Then, using Fubini’s theorem, from the convergence of the series (2.29) and
from (2.23), (1.5), we get

Bl = B [ [ o000i0) fj 9(60;w) u(ddo)| |

{[ f ) (6o; w)z(Bo; w) ;L(d(;’o)] }

This completes the proof.

COROLLARY 1. Suppose assumptions (A), (B), (B1) are satisfied and
(t) = K(to,t;w) (Vto € (a,b)) and d(t) = g(t;w) fulfil condition (D). Then
the ezpected value Eg 5{€™M) (t0;0,w)} ezists and is finite and

(2.31) Eg 5{6W(t0;0,@)} = Z(to) (Vto € (a,b) (mod p)),
where z(t) = z(t,u(:);w) s a solution of (1.2) and
(2:32) M (to;0,0) = FM(6,3; K (to, ), ) + g(to; wo)

Proof. From (2.20), (2.2’), it is easy to deduce

b b
I T (] Boltori)firiw) u(an)” Pu(dw) a(de) < oo
a 2

a

(Vto € (a,b) (mod p); Vf(-) € LZ,,).
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Then (see p. 380 of [2]) for a fixed ¢y € (a,b), we easily see that oM (tw) =
K (to, t;w) satisfies condition (C1). By Theorem 1, we have
(233) (K(th ‘)) Il?) = Eﬂ, G{F(l)(a’ w; K(tO) ')a g)}

(Vto € (a,b) (mod p) (see (2.17), (2.18)))

Further, since z(t) is a solution of (1.2), therefore we have
(2.34)  E,{z(to)} = (K(to,"), z) + Eu{g(to;w)} (Vto € (a,b) (mod p)).

But E,{g(to;w)} = E¢,5{g(to;wo)}. Hence, from (2.34), (2.33), (1.3) we
deduce (2.31).
This completes the proof.

3. A random model connected with an integral transformation
of the derivative of the solution. We consider a Hilbert valued n-variate

process with parameters (¢,u) = (t,u1,...,nm)T having the m.q.d. with
respect to the parameters u = (uy,...,um)? € (u,u):

(3.1) futu) = (fo, (@t u),..., fo, (t,u)), where

(3.1a) fu,(tu) = (Bfi(t,u)/Ouj,...,0fa(t,u)/0u;)T.

Here, Of;(t,u)/0u; is the m.q.d. of the Hilbert valued (scalar) process
fi(t,u1, ..., um) with parameter u; € (u;,d;) (see [8]). Now, we set

and consider the equation

(32) a(tu)= f K (t, 7)a(r,u) p(dr) + g(t,w)

(Vt € (a,b) (mod ), Vu € (u,u)).
Suppose that:

(A1)  g(t,u) is a Hilbert valued n-variate process with parameters (¢,u)
€ (a,b) x (u,@) and g(-,u) € L2,,; (Vu € (u,7).

(A2) For a fixed t € (a,b), the stochastic process g(t,u) = (g1 (¢, u),. ..
..»gn(t,u))T has a m.q.d. with respect to the parameters u =
(u1,y...,um) € (u, %) so that

b
J Eo{8g:(t,u(-);w)/0u;} p(dt) < oo.

Moreover, for a fixed t € (a,b), 0g;(t,u)/0u; (i = 1,...,n, j =
1,...,m) are Hilbert valued processes, mean quadratic continuous
in u € (u, ).
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(B2)  The inverse operator (I — K)~! : L2 ; — L% | exists and is
bounded, where I : L2 ; — L%, is the identity operator.

From assumptions (A2), (Bz2), (C2), we can construct a random (n2 X
m)-variate 7(?) (8; @) defined on (@ x 2%, 5, 5, P, 5) like n(1)(6;T):
(33) 1@ (6;2) = FO(9,m; )

a <>0,w b 1,91,%
=Y 16,055 °H L0510, u()sw0).

k=0 1, 1 )

THEOREM 2. Suppose that assumptions (A1), (Az2), (B), (B1), (B2), (C2)
are satisfied and p(t) = ¢ (t;w), d(t) = g’ (t,u(-);w) fulfil condition (D).
Then:

(i) For all u € (u,w) the equation (3.2) has a unique solution and

( ) € Lnxl
(ii) For all (t,u) € (a,b) X (u,u), the m.q.d. =) (t,u) exists such that
(%) € Ly sm-
(iii) The expected value of the random (ng x n)-variate vector 72 (8;w)
exists and is finite and we have

(3.4) Eo,o{n®(6;w)} = (¢?,z),).

Proof. From (B;), (A1) it follows that the solution z(¢, u) of (3.2) exists
and is represented by a formula like (2.23). Hence, by (B2) we can write it
uniquely as

(3.5) z(t,u) = [T - K)"'g(,uw)l(t)  (Vu € (w,7)).

The conclusion (i) is proved.
Since (I — K)~! is'linear and bounded, from (As), (3.5) we deduce (see
(13]) that the m.q.d. =, (¢,u) exists and

(36) g, (6w) = (7 - K)7'gl, (5)l6) = [ S0 K™, ()] (1)
n=0
(j=1,...,m).
Hence, from (Az), (B2) we get (ii). By (3.6), it is easy to see that z/ (¢, u(-))
is the solution of the equation
b

37 a,tu) = [ Kt ), (1) pdr) + g, (8 u() -

a

From (Az), (B), (B1), (C2), (D) it follows that the assumptions of Theorem 1
are satisfied for (3.7).
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Then the random vector
(P05 - -, WP (6;@)]ns)" = FO (8,50, g1,.)
G=1,...,m),
has finite expected value, and (see (2.18), (3.1), (1.6), (3.3))

Ea{n®(6:@));5} = (P, 2, )i = (@, 2)];  (G=1,...,m9),
i.e. we get (iii).
This completes the proof.

By Theorem 2, we can deduce the following result like in the proof of
Corollary 1:

are satisfied, and ¢(t) = K(to,t;w) (Vto € (a, b)) d( ) = g.,(t,u(-);w) fulfil
condition (D). Then the expected value Eg 5{¢® (to;0,@)} ezists and is fi-
nite and Ep, 5{¢® (t0;0,w)} = E, {z!,(t)} = 7, (to) (Vt € (a,b) (mod p)),
where £ (t9;0,0) = FP(0,; K(to,-)) + g, (t,u(-);wo)-

Remark. From (2.19), from Schwarz’s and Holder’s inequalities and

from Banach’s theorem (see p. 159 of [13]) it is easy to see that (B), (By),
(B2) can be replaced by the following assumption:

COROLLARY 2. Suppose that assumptions (A1), (Az2), (B), (B1), (B2)

(B*)  There exists a natural number [ so that

b b !
KO = vraisup{ [ .. [ TTIK(ti1,t)lBnen pldto) . (dtl)}<1

i=1

(with | + 1 integrals),

b b
KW .= vraisup{ f f 1K (¢, 7;w)||2nxn p(dT) ,u(dt)} < 00,

where

1K (8, 73 0) [ 3nxn = (ZZ[K trsw)l%) v

i=1 j=1
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