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Bifurcation theorems of Rabinowitz type
for certain differential operators of the fourth order

by Jolanta Przybycin (Kraków)

Abstract. This paper was inspired by the works of P. H. Rabinowitz. We study
nonlinear eigenvalue problems for some fourth order elliptic partial differential equations
with nonlinear perturbation of Rabinowitz type. We show the existence of an unbounded
continuum of nontrivial positive solutions bifurcating from (µ1, 0), where µ1 is the first
eigenvalue of the linearization about 0 of the considered problem. We also prove the
related theorem for bifurcation from infinity. The results obtained are similar to those
proved by Rabinowitz for second order elliptic partial differential equations ([5]–[7]). The
methods used are based, in principle, on the results of [1], [5], [6].

Introduction. Let (E, ‖ ‖) be a real Banach space and let L : E → E
be a compact linear operator. If there exist µ ∈ R and 0 6= v ∈ E such that
v = µLv, then µ is said to be a real characteristic value of L. The set of
real characteristic values of L is denoted by r(L).

Consider the equation

(0.1) u = λLu+H(λ, µ)

where H : R× E → E is a compact operator satisfying

(0.2) H(λ, u) = o(‖u‖) at u = 0 uniformly on bounded λ intervals.

By a solution of (0.1) is meant a pair (λ, u) ∈ R × E satisfying (0.1). In
particular, (0.1) has the line of trivial solutions R = {(λ, 0) | λ ∈ R}.

If (0.1) has a nontrivial solution in every neighbourhood of (µ, 0), then
(µ, 0) is said to be a bifurcation point for (0.1) with respect to the curveR. It
is well known that the possible bifurcation points for (0.1) with respect to R
lie on {(µ, 0) | µ ∈ r(L)}. Let S denote the closure of the set of nontrivial
solutions of (0.1). A component of S is a maximal closed connected subset.
The following was shown in [5]:
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Theorem 0.3 (Rabinowitz). If µ ∈ r(L) is of odd multiplicity , then S
contains a component Cµ which contains (µ, 0) and is either

(i) unbounded in R× E, or
(ii) contains (µ̂, 0) where µ 6= µ̂ ∈ r(L).

Rabinowitz also proved a stronger result for a simple characteristic
value µ.

Theorem 0.4. If µ ∈ r(L) is simple, then Cµ can be decomposed into
two subcontinua C+µ , C−µ such that for some neighbourhood O of (µ, 0), the
following implication is true:

(µ, 0) 6= (λ, µ) ∈ C+µ (C−µ ) ∩ O ⇒ (λ, µ) = (λ, αv + w)

where α > 0 (α < 0) and |λ− µ| = o(1), ‖w‖ = o(|α|) at α = 0.

Rabinowitz used the above results in his later work to formulate theorems
about bifurcation from infinity. Consider the equation

(0.5) u = λLu+K(λ, u)

where K : R× E → E is a continuous operator satisfying

(0.6) K(λ, u) = o(‖u‖) at u =∞ uniformly on bounded λ intervals.

We say (µ,∞) is a bifurcation point for (0.5) if every neighbourhood of
(µ,∞) contains solutions of (0.5), i.e. if there exists a sequence (λn, un) of
solutions of (0.5) such that λn → µ and ‖un‖ → ∞.

Let T denote the set of solutions of (0.5).

Theorem 0.7 (Rabinowitz). If µ ∈ r(L) is of odd multiplicity and
(λ, u) → ‖u‖2K(λ, u/‖u‖2) is compact , then T has an unbounded com-
ponent Dµ which contains (µ,∞). Moreover , if Λ ⊂ R is an interval such
that Λ ∩ r(L) = {µ} and M is a neighbourhood of (µ,∞) whose projection
on R lies in Λ and whose projection on E is bounded away from 0, then
either

(i)∞ Dµ \M is bounded in R× E, in which case Dµ \M meets R, or
(ii)∞ Dµ\M is unbounded. If additionally Dµ\M has a bounded projection

on R, then Dµ \M contains (µ̂,∞) where µ 6= µ̂ ∈ r(L).

Theorem 0.8 (Rabinowitz). If µ ∈ r(L) is simple, then Dµ can be de-
composed into two subcontinua D+

µ , D−µ and there exists a neighbourhood
O ⊂M such that the following implication is true:

(µ,∞) 6= (λ, u) ∈ D+
µ (D−µ ) ∩ O ⇒ (λ, u) = (λ, αv + w)

where α > 0 (α < 0) and |λ− µ| = o(1), ‖w‖ = o(|α|) at |α| =∞.
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1. Existence of positive solutions for nonlinear elliptic partial
differential equations of the fourth order. Let Ω be a bounded domain
in Rn with smooth boundary ∂Ω and let N be a differential operator of the
form N = N1 ◦ N0, where

Nku = −
n∑

i,j=1

∂

∂xi

(
akij

∂u

∂xj

)
+ qku , k = 0, 1 .

We assume that akij = akji ∈ C3−2k(Ω), 0 ≤ qk ∈ C2−2k(Ω) and the
quadratic forms

∑n
i,j=1 a

k
ijξiξj are positive definite in Ω .

Consider the nonlinear equation

(1.1) Nu = λ(u+ h(·, u)) in Ω

together with the boundary conditions

(B.C.) u = N0u = 0 on ∂Ω .

Assume that

(1.2) h is continuous on Ω ×R and h(x, ξ) = o(|ξ|) at ξ = 0 uniformly in
x ∈ Ω .

Let E = C3(Ω) ∩ (B.C.). E is a Banach space equipped with its usual
norm ‖u‖3 =

∑
|α|≤3 max |Dαu(x)|.

If h = 0 then the linear problem N v = µv in Ω together with the
boundary conditions (B.C.) has a smallest positive eigenvalue µ1, which
is simple, and such that a corresponding eigenfunction v1 is positive in
Ω ([1]). By requiring ‖v1‖3 = 1, v1 is uniquely determined. Using the
strong maximum principle and the positivity of N−1

1 it is easy to show that
v1 ∈ P+ = {u ∈ E | u > 0 in Ω, ∂u/∂ν < 0 on ∂Ω}, where ∂u/∂ν denotes
the outward normal derivative of u. The sets P+, P− = −P+, P = P+∪P−
are open in E.

We will convert (1.1) into an equivalent operator equation in R × E of
the form (0.1).

Let (λ, u) ∈ R× E and consider the linear equation

(1.3) N v = λ(u+ h(·, u)) in Ω

together with the boundary conditions v = N0v = 0 on ∂Ω. We can write
the above problem in the form

N1w = λ(u+ h(·, u))
N0v = w

in Ω, w = 0 on ∂Ω,

in Ω, v = 0 on ∂Ω.

For p > 1, let Wm,p
0 (Ω) denote the closure of the m times continuously
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differentiable functions in Ω which satisfy (B.C.) on ∂Ω in the norm

|u|m,p =
( ∑
|α|≤m

∫
Ω

|Dαu(x)|p dx
)1/p

and let | · |0,p = | · |p. Clearly W 0,p
0 (Ω) = Lp(Ω).

Notice that the right-hand side of the considered equation as a continuous
function on Ω lies in Lp(Ω) for all p > 1. The Lp theory for uniformly elliptic
partial differential equations implies the existence of a unique w ∈W 2,p

0 (Ω)
satisfying

|w|2,p ≤ const |λ(u+ h(·, u))|p .
Arguing as above once again we obtain a unique solution v = G(λ, u) ∈
W 4,p

0 (Ω) of (1.3) satisfying

|v|4,p ≤ const |w|2,p ≤ const |λ(u+ h(·, u))|p .

For p > n, W 4,p
0 is compactly embedded in E ([3]). Thus choosing any p > n

we obtain the compactness of G : R×E → E. Any solution of (1.1) satisfies
u = G(λ, u) and conversely.

Let w = Lu ∈ W 4,p
0 (Ω) denote the unique solution of Nw = u in Ω

together with the boundary conditions w = N0w = 0 on ∂Ω. Then as above
L : E → E is a compact linear operator. Define H(λ, u) = G(λ, u) − λLu.
We have shown that equation (1.1) is equivalent to u = λLu+H(λ, u). We
must verify that H satisfies (0.2).

Fix ε > 0 and let Λ ⊂ R be a bounded interval. By the Lp estimates,

|H(λ, u)|4,p ≤ const |h(·, u)|p .
Moreover,

|h(·, u)|p ≤ const max
x∈Ω
|h(x, u(x))| .

By the assumption (1.2) we have

∃δ > 0 |ξ| < δ ⇒ |h(x, ξ)| < ε|ξ| .

Hence, for (λ, u) ∈ Λ × S̃ = {(λ, u) ∈ Λ × E | ‖u‖3 < δ} we obtain the
estimate

|H(λ, u)|4,p ≤ const max
x∈Ω
|h(x, u(x))| ≤ const ε‖u‖3 .

Therefore H satisfies (0.2).
Let S denote the closure of the set of nontrivial solutions of (1.1) in

R × E. The hypotheses of Theorem 0.3 are satisfied and so there exists
a component C1 of S containing (µ1, 0) and satisfying the alternatives of
Rabinowitz. Actually only the first alternative is possible as will be shown
below. We first prove two important lemmas.
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Lemma 1.4. (a) There exists a neighbourhood U1 of (µ1, 0) such that
(λ, u) ∈ U1 ∩ S and u 6≡ 0 implies u ∈ P .

(b) If µ1 6= µ̂ ∈ r(L) there exists a neighbourhood Û of (µ̂, 0) such that
(λ, u) ∈ Û ∩ S and u 6≡ 0 implies u 6∈ P .

P r o o f. (a) If not, there exists a sequence (λn, un) ∈ S such that 0 6≡
un 6∈ P , (λn, un)→ (µ1, 0) in R× E and

un
‖un‖3

= λnL
un
‖un‖3

+
H(λn, un)
‖un‖3

.

Since L is compact, a subsequence of Lun/‖un‖3 converges. Hence the
left-hand side of the above equation has a convergent subsequence
unp

/‖unp
‖3 → w with ‖w‖3 = 1 and w = µ1Lw. Consequently, w =

±v1 ∈ P . Since P is open, unp
∈ P for p sufficiently large, contrary to the

assumption.
(b) We proceed analogously. Assume that there exists a sequence

(λn, un) ∈ R × P such that (λn, un) → (µ̂, 0) in R × E. Then P 3 w =
limn→∞ un/‖un‖3 satisfies w = µLw. If w ∈ ∂P+, then either w has a zero
in Ω or ∂w/∂ν = 0 on ∂Ω. Using the positivity of N−1

1 and a maximum
principle argument we see that w = ±v1, which contradicts the choice of
µ̂ 6= µ1.

Lemma 1.5. If (λn, un) ∈ (R+ × P ) ∩ S is a sequence converging to
(λ, u) ∈ C1 \ {(µ1, 0)}, then (λ, u) ∈ R+ × P .

P r o o f. We first prove that λ > 0. Indeed, otherwise there would exist a
pair (0, u) ∈ C1 satisfying the assumptions of the lemma. This would mean
that u is a unique solution of (1.1) with the right-hand side equal to 0. Hence
(0, u) = (0, 0) would be a bifurcation point of (1.1), which is impossible. It
remains to show that u ∈ P . Assume, to the contrary, u ∈ ∂P+. The
definition of P+ implies that either

(i) there exists ξ ∈ Ω such that u(ξ) = 0, or
(ii) there exists η ∈ ∂Ω such that (∂u/∂ν)(η) = 0.

Suppose that (i) occurs. The condition (1.2) guarantees the existence of
a neighbourhood U of ξ such that |h(x, u(x))| ≤ u(x)/2 for x ∈ U . Hence

Nu(x) ≥ λu(x)/2
u(x) ≥ 0

for x ∈ U,
for x ∈ ∂U.

Then applying the positivity of N−1
1 we obtain

(1.6)
N0u(x) ≥ 0
u(x) ≥ 0

for x ∈ U ,
for x ∈ ∂U .
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Since u has a local minimum at ξ, the elliptic maximum principle implies
u ≡ 0 in U . By Lemma 1.4 we obtain (λ, u) = (µ1, 0), which is impossible.

If (ii) occurs the argument is analogous. There exists a neighbourhood
U of η ∈ ∂Ω in which (1.6) holds. Using the strong version of the elliptic
maximum principle we obtain u ≡ 0 in U . Then (λ, u) = (µ1, 0). The proof
is complete.

Actually we can prove a global bifurcation theorem for (1.1).

Theorem 1.7. There exists an unbounded component of S, C1, bifurcat-
ing from (µ1, 0) and contained in (R+ × P ) ∪ {(µ1, 0)}.

P r o o f. It suffices to show that C1 ⊂ (R+ × P ) ∪ {(µ1, 0)}. Indeed,
otherwise the connectedness of C1 and Lemma 1.4 imply that there exists
a pair (λ, u) ∈ R+ × ∂P satisfying the assumptions of Lemma 1.5. Then
(λ, u) ∈ R+ × P , a contradiction.

R e m a r k. By using Theorem 0.4 we can decompose C1 into two un-
bounded subcontinua C+1 , C−1 such that C±1 ⊂ (R+ × P ) ∪ {(µ1, 0)}.

2. Bifurcation from infinity for a nonlinear elliptic eigenvalue
problem of the fourth order. Consider the nonlinear equation

(2.1) Nu ≡ N1 ◦ N0u = λu+ k(·, u, λ) in Ω

together with the boundary conditions (B.C.). All the assumptions and
notations from Section 1 are still valid. Assume additionally that the right-
hand side of (2.1) is continuous on Ω × R2 and

(2.2) k(x, ξ, λ) = o(|ξ|) at ξ =∞ uniformly in x ∈ Ω and λ ∈ Λ, for any
bounded interval Λ ⊂ R.

Similarly to Section 1 we can convert (2.1) into an equivalent operator equa-
tion in R× E = R× (C3(Ω) ∩ (B.C.)),

(2.3) u = λLu+K(λ, u) .

Let T denote the set of solutions of (2.1) in R× E.

Theorem 2.4. There exists a component D1 of T which contains
(µ1,∞) and satisfies the conclusions of Theorems 0.7 and 0.8. Moreover ,
there exists a neighbourhood O of (µ1,∞) such that D1 ∩ O ⊂ (R+ × P ) ∪
{(µ1,∞)}.

P r o o f. We will show that the equation (2.3) is of the form (0.5) and
that the operator K̂ : (λ, u) → ‖u‖23K(λ, u/‖u‖23) is compact. Clearly K
is continuous on R × E, and L is compact and linear. To show that K
satisfies (0.6) let Λ ⊂ R be a bounded interval and fix ε > 0. By the Lp
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estimates,

(2.5) |K(λ, u)|4,p ≤ const |k(·, u, λ)|p ≤ const max
x∈Ω
|k(x, u(x), λ)| .

The assumption (2.2) implies

∃δ > 0 |ξ| > δ ⇒ |k(x, ξ, λ)| < ε|ξ| .
Moreover, the continuity of k yields |k(x, ξ, λ)| ≤M for |ξ| ≤ δ.

Choose δ1 so large that M/δ1 < ε and define S = {u ∈ E | ‖u‖3 ≥ δ1}.
Hence for (λ, u) ∈ Λ× S we obtain

max
x∈Ω
|k(x, u(x), λ)| ≤ max

λ∈Λ,|u(x)|≤δ
|k(x, u(x), λ)|+ max

λ∈Λ,|u(x)|>δ
|k(x, u(x), λ)|

≤M + ε‖u‖3 < 2ε‖u‖3 .
Now, (2.5) shows that

(2.6) |K(λ, u)|4,p < 2 const ε‖u‖3 ,
and by the Sobolev inequality we finally have ‖K(λ, u)‖3 < εc̃‖u‖3 for
(λ, u) ∈ Λ× S. Hence K satisfies (0.6).

To verify that K̂ is compact, notice that K̂({(λ, u) ∈ Λ × E | %1 ≤
‖u‖3 ≤ %2}) is relatively compact for any 0 < %1 ≤ %2 < ∞. Thus we need
only prove that K̂(Λ × B1/δ1) is relatively compact in E, where B1/δ1 =
{u ∈ E | ‖u‖3 ≤ 1/δ1}.

From (2.6) we obtain the boundedness of K̂(Λ×B1/δ1). In fact,

|K̂(λ, u)|4,p = ‖u‖23|K(λ, u/‖u‖23)|4,p < const ε/δ1 for (λ, u) ∈ Λ×B1/δ1 .

Since E is compactly embedded in W 4,p
0 (Ω) it follows that K̂(Λ×B1/δ1) is

relatively compact. So we can apply Theorems 0.7 and 0.8. It remains to
show that for O sufficiently small,

(µ1,∞) 6= (λ, u) ∈ D+
1 (D−1 ) ∩ O ⇒ u ∈ P+ (P−) .

By Theorem 0.7 we know that

(µ1,∞) 6= (λ, u) ∈ O ∩ D+
1 (D−1 ) ⇒ (λ, u) = (λ, αv1 + w)

where α > 0 (α < 0) and ‖w‖3 = o(|α|) at |α| =∞. Since P+ (P−) is open,
v1 + w/α ∈ P+ (P−) for α near ∞ and therefore u = αv1 + w ∈ P+ (P−).
Thus the proof is complete.

Corollary. If we assume additionally that k(x, ξ, λ) = λh(x, ξ), where
h satisfies (1.2), then D±1 \ O contains a subcontinuum lying in R+ × P±
which is either unbounded or intersects the line R of trivial solutions at
(µ1, 0).

P r o o f. We know that D±1 ∩O ⊂ (R+ × P )∪ {(µ1,∞)}. Let E+
1 denote

the maximal subcontinuum of D+
1 contained in R+×P+. Suppose E+

1 \O is
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bounded. Then there exists a pair (λ, u) ∈ ∂E+
1 ∩(R+×P+). By Lemma 1.5,

u ≡ 0. Hence (E+
1 \ O) ∩ R 6= ∅. Applying Lemma 1.4 we know that

only (µ1, 0) can be the limit of solutions (λ, u) ∈ R+ × P+. Hence finally
(E+

1 \ O) ∩R = {(µ1, 0)}, which was to be shown.

R e m a r k. The methods used in this paper cannot be applied to the
operator N of the form N = Nm ◦ Nm−1 ◦ . . . ◦ N1 ◦ N0 where m > 1
because the operator N−1

1 ◦N−1
2 ◦ . . . ◦N−1

m is not necessarily positive, and
the positivity is essential for our methods.
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