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Generalized Schwarzian derivatives
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Abstract. Generalizations of the classical Schwarzian derivative of complex analysis
have been proposed by Osgood and Stowe [12, 13], Carne [5], and Ahlfors [3]. We present
another generalization of the Schwarzian derivative over vector spaces.

Introduction. Our approach is to define an analogue of the Schwarzian
derivatives in R ∪ {∞} using the Clifford algebra generated from Rn. More
precisely, we use Vahlen’s group of Clifford matrices to construct a “deriva-
tive” which in appearance bears an extremely close resemblance to the clas-
sical Schwarzian derivative. As conformal transformations in dimensions
greater than two correspond to Möbius transformations we are forced to
introduce a family of Schwarzians in higher dimensions. We show that a
C3 diffeomorphism annihilated by this family of Schwarzian derivatives is,
up to a linear isomorphism, a Möbius transformation. We also show that
these generalized Schwarzian derivatives possess a conformal invariance un-
der Möbius transformations, and contain the generalized Schwarzian deriva-
tives described by Ahlfors [3]. Unfortunately, this work also tells us that
the method used for obtaining the chain rule for the classical Schwarzian
derivative (see [10]) breaks down in higher dimensions.

Motivated by the fact that the analogue of Vahlen’s group of Clifford
matrices over Minkowski space is U(2, 2) we show that the fractional linear
transformations associated with U(2, 2), Sp(n,R), the real symplectic group,
and H(n, n), the quaternionic unitary group, all have Schwarzian derivatives
associated with them. These transformations have previously been described
in [7, 9], and elsewhere. We also show that the conformal group over Rp,q

has a generalized Schwarzian derivative.

Preliminaries. From Rn we may construct a Clifford algebra An. This
can be done [4, 14] by taking an orthonormal basis {ej}nj=1 of Rn and
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introducing the basis

(1) 1, e1, . . . , en, . . . , ej1 . . . ejr
, . . . , e1 . . . en

of An, where 1 is the identity and j1 < . . . < jr with 1 ≤ r ≤ n. Moreover,
the elements e1, . . . , en satisfy the identity

(2) eiej + ejei = −2δij1

within An, where δij is the Kronecker delta. We now have Rn ⊆ An and each
non-zero vector x ∈ Rn \ {0} has a multiplicative inverse x−1 = −x/|x|2 ∈
Rn, which corresponds to the Kelvin inverse of a vector.

Writing x as x1e1 + . . .+ xnen we may obtain

e1(x1e1 + . . .+ xnen)e1 = −x1e1 + x2e2 + . . .+ xnen,

which describes a reflection along the line spanned by e1. In greater general-
ity, for each y ∈ Sn−1 the element yxy is a vector, and this action describes
a reflection along the line spanned by y. By induction, for y1, . . . , yk ∈ Sn−1

the element y1 . . . ykxyk . . . y1 is a vector and this action describes an orthog-
onal transformation of Rn. The element y1 . . . yk is an element lying in An.
This group is called Pin(n) (see [4]). More formally, we have

Pin(n) = {a ∈ An : a = y1 . . . yk where k ∈ N and yj ∈ Sn−1 for 1 ≤ j ≤ k}.

In [4] it is shown that Pin(n) is a double covering of O(n), the orthogonal
group (i.e. there is a surjective group homomorphism Θ : Pin(n) → O(n)
such that kerΘ ∼= Z2).

We also need the antiautomorphism∼: An → An, ej1 . . . ejr
7→ ejr

. . . ej1 .
It is usual to write X̃ for ∼(X), where X ∈ An (see [14]). If a = y1 . . . yk ∈
Pin(n) then yk . . . y1 = ã.

Besides ∼ we need the antiautomorphism − : An → An, ej1 . . . ejr 7→
(−1)rejr

. . . ej1 . Again, it is usual [14] to write X for −(X). If we write X
as x0 + . . .+ x1...ne1 . . . en then we can easily deduce that the identity part
of XX is x2

0 + . . .+ x2
1...n. So An is a trace algebra.

Following Vahlen [15] and Mass [11], Ahlfors [1, 2] has used Clifford
algebras to describe properties of Möbius transformations in Rn ∪ {∞}.

We shall now briefly redescribe these transformations.
The transformations

(a) T : Rn ∪ {∞} → Rn ∪ {∞}, T : Rn → Rn is an orthogonal trans-
formation and T (∞) =∞,

(b) R : Rn ∪ {∞} → Rn ∪ {∞}, x 7→x+ v
∞ 7→∞,

for x ∈ Rn and v ∈ Rn,



Generalized Schwarzian derivatives 31

(c) D : Rn ∪ {∞} → Rn ∪ {∞}, x 7→λx
∞ 7→∞,

for x ∈ Rn and λ ∈ R,

(d) In : Rn ∪ {∞} → Rn ∪ {∞}, x 7→x−1

∞ 7→ 0,
0 7→∞,

for x ∈ Rn \ {0},

are all special examples of Möbius transformations.

Definition 1. The group of diffeomorphisms of Rn ∪ {∞} generated
by the transformations (a)–(d) is called the Möbius group, and is denoted
by Möb(n). An element of Möb(n) is called a Möbius transformation.

When n = 1 the Clifford algebra is the complex field, and in this case it is
extremely well known that a sense preserving Möbius transformation in two
real dimensions can be written as (az+ b)(cz+ d)−1 where

(
a b
c d

)
∈ SL(2,C)

and z ∈ C ∪ {∞}.
In higher dimensions we have:

Definition 2. A matrix
(

a b
c d

)
with a, b, c, d ∈ An and

(i) a = a1 . . . an1 , b = b1 . . . bn2 , c = c1 . . . cn3 , d = d1 . . . dn4 , with
n1, n2, n3, n4 ∈ N and ai, bj , ck, dl ∈ Rn for 1 ≤ i ≤ n1, 1 ≤ j ≤ n2,
1 ≤ k ≤ n3, 1 ≤ l ≤ n4,

(ii) ac̃, c̃d, d b̃, b̃a ∈ Rn,
(iii) ad̃− bc̃ ∈ R \ {0},

is called a Vahlen matrix.

From (2) and (i) we see that if ac̃ is in Rn then so is c̃(ac̃ )c = c̃a(c̃c).
But c̃c ∈ R, and so c̃a ∈ Rn, Consequently, (ii) is equivalent to saying
c̃a, d c̃, b̃d, ab̃ ∈ Rn.

As c̃d ∈ Rn we have c̃cx + c̃d ∈ Rn for each x ∈ Rn, so if c 6= 0 then
cx + d is invertible in An for all but one value of x ∈ Rn ∪ {0}. If c = 0
then it follows from Definition 2 that d is invertible in An. Consequently,
(ax + b)(cx + d)−1 is a well defined element of An for all but one value of
x ∈ Rn ∪ {0}.

When c 6= 0 we have

(3) (ax+ b)(cx+ d)−1 = ac−1 + λ(cxc̃+ dc̃)−1

where λ ∈ R \ {0}, and when c = 0,

(4) (ax+ b)(cx+ d)−1 = axd−1 + bd−1.

Both (3) and (4) are Möbius transformations.
From (3) and (4) we have
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Lemma 1 [1]. Each Vahlen matrix can be expressed as a finite product of
the special Vahlen matrices(

a 0
0 ã−1

)
,

(
λ1/2 0

0 λ−1/2

)
,

(
1 v
0 1

)
,

(
0 1
1 0

)
where a ∈ Pin(n), λ ∈ R+, and v ∈ Rn.

These special Vahlen matrices transform into special Möbius transfor-
mations (a)–(d). Using this fact, the identities (3) and (4), and Lemma 1 it
is straightforward to deduce

Proposition 1 [1]. The set V (n) of Vahlen matrices over Rn forms a
group under matrix multiplication, and the projection

p : V (n)→ Möb(n),
(
a b
c d

)
7→ (ax+ b)(cx+ d)−1,

is a surjective group homomorphism.

By trying to determine the Vahlen matrices for which the equation

x = (ax+ b)(cx+ d)−1

holds for all x ∈ Rn we may use (3) and (4) to obtain

Proposition 2.

Ker(p) =
{(

λ 0
0 λ

)
,

(
λe1 . . . en 0

0 −λ(e1 . . . en)−1

)
: λ ∈ R \ {0}

}
.

Consequently, the group V (n) \ R+ is a four-fold covering group of
Möb(n). Now,

V (n) \ R+ ∼=
{(

a b
c d

)
∈ V (n) : ad̃− bc̃ = ±1

}
.

The subgroup

V+(n) =
{(

a b
c d

)
∈ V (n) : ad̃− bc̃ = 1

}
of V (n) \ R+ is a natural generalization of SL(2,R).

The Vahlen matrices introduced here are not quite the same as those
described in [1]. We now introduce those matrices:

Definition 3. A matrix
(

a b
c d

)
with a, b, c, d ∈ An and

(i) a = a1 . . . an1 , b = b1 . . . bn2 , c = c1 . . . cn3 , d = d1 . . . dn4 , with
ai, bj , ck, dl ∈ R + Rn,

(ii) ac, cd, db, ba ∈ R + Rn,
(iii) ad̃− bc̃ ∈ R \ {0},

where R + Rn is spanned by 1, e1, . . . , en, is called a refined Vahlen matrix.
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We denote the set of refined Vahlen matrices over R + Rn by V0(n). By
similar arguments to those given above we find [1] that V0(n) is a group.
The subgroup

V0,+(n) =
{(

a b
c d

)
∈ V0(n) : ad̃− bc̃ = 1

}
is a generalization of SL(2,C). Indeed, V0,+(1) = SL(2,C).

Other properties of these types of matrices can be found in [6].

1. Now suppose that A is a real normed algebra with an identity, and
U(A) is the open set of invertible elements in A. Suppose that V is a domain
in Rn and f : V → U(A) is a C1 function. For y ∈ Sn−1 we shall let f(x)y

denote the partial derivative of f at x in the direction of y.
The following simple result is crucial to all that follows:

Proposition 3. Suppose that f(x)−1 denotes the algebraic inverse of
f(x). Then (f(x)−1)y = −f(x)−1f(x)yf(x)−1.

P r o o f.
1
h

(f(x+ hy)−1 − f(x)−1) =
1
h
f(x+ hy)−1(f(x)− f(x+ hy))f(x)−1

= −f(x+ hy)−1

(
f(x+ hy)− f(x)

h

)
f(x)−1.

So

lim
h→0

1
h

(f(x+ hy)−1 − f(x)−1) = −f(x)−1f(x)yf(x)−1.

This result is an elementary generalization of the basic result that for
f : R \ {0} → R \ {0}, f(x) = 1/x, we have (df/dx)(x) = −1/x2.

2. From Proposition 3 and (3) and (4) we have

Lemma 2. Suppose that
(

a b
c d

)
∈ V (n)\R+ and Φ(z) = (az+b)(cx+d)−1.

Then for each y ∈ Sn−1 we have

Φ(x)y =
{
−λc̃−1(x+ c−1d)−y(x+ c−1d)−1c−1 if c 6= 0,
ayd−1 otherwise.

From Lemma 2 and Proposition 3 it is now easy to deduce the following
formula:

(5) Φ(x)yyyΦ(x)−1
y − 3

2{Φ(x)yyΦ(x)−1
y }2 = 0 .

Here Φ(x)yyy and Φ(x)yy mean respectively the third and second partial
derivatives of Φ at x in the direction of y. Moreover, Φ(x)−1

y denotes the
Kelvin inverse of the vector Φ(x)y. (From the expressions appearing in
Lemma 2 it is straightforward to see that Φ(x)y is a non-zero vector.)
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Expression (5) is very similar in appearance to the classical Schwarzian
derivative of a Möbius transformation in C ∪ {∞} (see for example [10]).

Lemma 3. Suppose that w : V ↪→ Rn is a C1 diffeomorphism. Then
w(x)y is a non-zero vector for each x ∈ V .

Using Lemma 3 we can now make the following definition:

Definition 4. Suppose that w : V ↪→ Rn is a C3 diffeomorphism.
Then we define {S,w}y to be wyyyw

−1
y − 3

2 (wyyw
−1
y )2, and we call {S,w}y

the Schwarzian derivative of w in the direction of y ∈ Sn−1.

{S,w}y takes its values in the Lie subalgebra of An spanned by {1, eiej ,
eiejekel : 1 ≤ i < k < l ≤ n}.

From Proposition 3 we have

Lemma 4. Suppose that w : V ↪→ Rn is a C3 diffeomorphism. Then

(w(x)yyw(x)−1
y )y = w(x)yyyw(x)−1

y − (wyy(x)w(x)−1
y )2,

where (w(x)yyw(x)−1
y )y denotes the partial derivative of w(x)yyw(x)−1

y at x
in the direction of y.

As a consequence of Lemma 4 we have

Proposition 4. Suppose that w : V ↪→ Rn is a C3 diffeomorphism.
Then

(6) {S,w}y = (wyyw
−1
y )y − 1

2 (wyyw
−1
y )2.

Expression (6) is completely analogous to the other well known form of
the classical Schwarzian (see [10]).

We shall now try to determine solutions to the equation

{S,w}y = 0.

First we note

Lemma 5. Suppose that L : Rn → Rn is an isomorphism. Then {S,L}y
= 0 for all y ∈ Sn−1.

The fact that L is a solution to our generalized Schwarzian represents a
departure from the results in complex analysis, and is a consequence of the
fact that the Schwarzian presented here is dependent on our choice of y.

Bearing this in mind we are led to the following result:

Proposition 5. Suppose that w : V ↪→ Rn is a C3 diffeomorphism and
{S,w}e1 = 0. Suppose also that we1e1 6= 0. Then there exist C3 maps
a(x2, . . . , xn), b(x2, . . . , xn), c(x2, . . . , xn) and d(x2, . . . , xn) such that

(7) w(x) = (a(x2, . . . , xn) + x1)−1b(x2, . . . , xn) + c(x2, . . . , xn).
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P r o o f. First we set w(x)e1e1w(x)−1
e1

= v(x). So the equation {S,w}e1

= 0 becomes

(8)
∂v

∂x1
=

1
2
v2.

As w(x)e1e1 6= 0 we find that v is invertible in the Clifford algebra. So (8)
is equivalent to

v−1 ∂v

∂x1
v−1 =

1
2
,

or

−v−1 ∂v

∂z1
v−1 =

1
2
.

But from Proposition 3 we have

v−1 ∂v

∂x1
v−1 =

∂

∂x1
(v−1).

So (∂/∂x1)(v−1) = −1/2. Consequently,

v(x)−1 = − 1
2 (x1 + a(x2, . . . , xn)).

As v(x) is invertible in An, x1 + a(x2, . . . , xn) must be invertible in An. So

−2(x1 + a(x2, . . . , xn))−1 = v(x).

We now set ∂w/∂x1 = u(x). So we have

(9)
∂u

∂x1
(x) = −2(x1 + a(x2, . . . , xn))−1u(x).

Equation (9) tells us that u(x) is a C∞ function in the variable x1. It
also enables us to deduce that u(x) is a real-analytic function in x1.

Explicitly working out the Taylor expansion of u(x) about one fixed value
x1 = x′1 we have

u(x) = −2(a(x2, . . . , xn) + x1)−2b(x′1, x2, . . . , xn).

So

w(x) = (a(x2, . . . , xn) + x1)−1b(x′1, x2, . . . , xn) + c(x2, . . . , xn),

where a, b and c are An-valued functions.

We may also easily deduce

Proposition 6. Suppose that w : V ↪→ Rn is a C3 diffeomorphism
and (∂2w/∂x2

1)(x) = 0 on some neighbourhood of x0 ∈ V . Then on that
neighbourhood we have

(10) w(x) = x1a
′(x2, . . . , xn) + b′(x2, . . . , xn),

where a′ and b′ are An-valued functions.
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Now using elementary continuity arguments we have, from Propositions 5
and 6,

Proposition 7. Suppose that w : V ↪→ Rn is a C3 diffeomorphism
satisfying {S,w}e1 = 0 for all x ∈ V. If (∂2w/∂x2

1)(x0) 6= 0 for some
x0 ∈ V , then (∂2w/∂x2

1)(x) 6= 0 for any x ∈ V .

We now deduce

Lemma 6. The function c(x2, . . . , xn) appearing in (7) is a vector-valued
function.

O u t l i n e p r o o f. The result follows immediately from allowing the
term x1, on the right hand side of (7), to vary.

We now see that

w(x)− c(x2, . . . , xn) = (a(x2, . . . , xn) + x1)−1b(x2, . . . , xn)

is a vector. As we can take the Kelvin inverse of the left hand side of (11),
we see that b(x2, . . . , xn) is invertible in An. By now allowing x1 to vary we
have, from (11),

Lemma 7. b(x2, . . . , xn)−1a(x2, . . . , xn) is a vector , and so is b(x2, . . .
. . . , xn).

As a consequence of Lemma 7 we have

Lemma 8. The function a(x2, . . . , xn) lies in the subspace of An spanned
by the set {1, eiej : 1 ≤ i < j ≤ n}.

As a consequence of all this we can rewrite (7) as

(12) w(x) = (λ1(x2, . . . , xn) + x1µ1(x2, . . . , xn))−1 + γ1(x2, . . . , xn)

where λ1, µ1, and γ1 are all vectors.
Similar calculations tell us that the functions a′(x2, . . . , xn) and

b′(x2, . . . , xn) appearing in (10) are vectors.
(10) and (12) give us

Theorem 1. Suppose that w : V ↪→ Rn is a C3 diffeomorphism satisfying
{S,w}y = 0 for each y ∈ Sn−1. Then for any line l ⊆ Rn with l∩V 6= ∅, on
each connected line segment of V ∩ l the diffeomorphism w is the restriction
of a Möbius transformation on Rn ∪ {∞}.

In fact, elementary geometry and continuity arguments give us

Theorem 2. Suppose that w : V ↪→ Rn is a C3 diffeomorphism satisfying
{S,w}y = 0 for each y ∈ Sn−1. Then for any line l ⊆ Rn with l ∩ V 6= ∅,
w|V ∩l is the restriction of a Möbius transformation on Rn ∪ {∞}.

It might initially be suspected that if w : V ↪→ Rn is C3 diffeomorphism
and {S,w}ej = 0 for j = 1, . . . , n then w(x) = (a(Lx) + b)(c(Lx) + d)−1
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where
(

a b
c d

)
is a Vahlen matrix and L : Rn → Rn is an isomorphism. Un-

fortunately, this is not true.
Consider w(x1e1 + x2e2) = (1/x1)e1 + (1/x2)e2. Then {S,w}e1 =

{S,w}e2 = 0, but w(x1e1 + x2e2) is not a Möbius transformation. Bear-
ing the example in mind we shall continue to look at C3 diffeomorphisms
whose generalized Schwarzian vanishes at all points in V and in all direc-
tions. First we prove:

Proposition 8. Suppose that w : V ↪→ Rn is a C3 diffeomorphism and
{S,w}y = 0 for y ∈ Sn−1. Suppose also that on each line l with V ∩ l 6= ∅
we have

(13) w(x) = (λl(x⊥2 ) + xlµl(x⊥l ))−1 + γl(x⊥l ),

where x⊥l is a variable independent of xl, and xl is a parametrization of l.
Then γl(x⊥l ) is a constant.

P r o o f. Choose a point x0 ∈ V , and a ball B(x0, r). For each ray rx0

passing through x0 we have

w(x) = (λ(x0)(θ1, . . . , θn−1) + |rx0 |µ(x0)(θ1, . . . , θn−1))−1(14)
+ γx0(θ1, . . . , θn−1),

where θ1, . . . , θn−1 is a parametrization of Sn−1. So on each ray w(x) has a
unique continuation.

From (14) we have lim|rx0 |→∞ w(x) = γx0(θ′1, . . . , θ
′
n−1), where

(θ′1, . . . , θ
′
n−1) ∈ γx0 ∩ Sn−1. Similarly, for x1 ∈ B(x0, r) \ {x0} we have

w(x)− (λx1(θ1, . . . , θn−1) + |rx1 |µx1(θ1, . . . , θn−1))−1 + γx1(θ1, . . . , θn−1)

and therefore lim|rx1 |→∞ w(x) = γx1(θ′1, . . . , θ
′
n−1).

Now choose a continuous function z : (0,∞) → Rn so that z(0) = x0

and z(t) is asymptotic to the ray rx1 . As λl, µl and γl are continuous we
obtain limt→∞ w(z(t)) = γx0(θ′1, . . . , θ

′
n−1). Consequently, γx1(θ′1, . . . , θ

′
1) =

γx0(θ′1, . . . , θ
′
n−1). As this is true for each x1 ∈ B(x0, r), γl(x⊥l ) is a con-

stant.

We shall denote this constant vector by γ. Trivially we have:

Lemma 9. Suppose that w(x) is as in Proposition 8. Then the C3 diffeo-
morphism w(x)−γ also has the generalized Schwarzian zero for all y ∈ Sn−1.
Moreover , on each line l we have

w(x)− γ = (λl(x⊥l ) + xlµl(x⊥l ))−1.

Via direct computation we may deduce

Proposition 9. Suppose that w : V ↪→ Rn is a C3 diffeomorphism and
{S,w(x)}y = 0 for all x ∈ V and all y ∈ Sn−1. Then {S,w(x)−1}y = 0 for
all x ∈ V and all y ∈ S.
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On taking the Kelvin inverse of w(x) − γ it follows from Proposition 6
that on any two-dimensional hyperspace of Rn spanned by ei and ej and
intersecting V we have

(w(x)− γ)−1 = v1(x1, . . . , x̂i, . . . , x̂j , . . . , xn)
+ xivi(x1, . . . , x̂i, . . . , x̂j , . . . , xn)
+ xjvj(x1, . . . , x̂i, . . . , x̂j , . . . , xn)
+ xixjvij(x1, . . . , x̂i, . . . , x̂j , . . . , xn),

where v1, vi, vj and vij are vectors. On setting xi = ui−uj and xj = ui +uj

it now follows from Propositions 6 and 9 that vij = 0. Consequently, we
have

Theorem 3. Suppose that w : V ↪→ Rn is a C3 diffeomorphism satisfying
{S,w}y = 0 for each y ∈ Sn−1. Then there is an isomorphism L : Rn → Rn

and a Vahlen matrix
(

a b
c d

)
such that w(x) = (a(Lx) + b)(c(Lx) + d)−1.

We now turn to look at other properties of this generalized Schwarzian.
We begin with

Theorem 4. Suppose that w : V ↪→ Rn is a C3 diffeomorphism, and(
a b
c d

)
∈ V (n) \ Rn

+. Then

(15) {S, (aw + b)(cw + d)−1}y = (wc̃+ d̃ )−1{S,w}y(wc̃+ d̃ ).

O u t l i n e p r o o f. When c = 0, the result follows from (4). When c 6= 0
we have (aw + b)(cw + d)−1 = ac−1 + λ(cwc̃ + dc̃)−1 where λ 6= 1. The
result now follows from Proposition 3.

As cwc̃+ dc̃ is a vector in Rn, cw + d can be expressed as a product of
vectors in Rn. Consequently, (15) can be rewritten as

(16) {S, (aw + b)(cw + d)−1}y = sgn(cw + d)
(cw + d){S,w}y(cw̃ + d)

|cw + d|2

where sgn(cw + d) is the sign of (cw + d)(cw̃ + d).
If we dictate that the basis (1) is an orthonormal basis for An then (16)

yields

Proposition 10. If w : V ↪→ Rn is a C3 diffeomorphism and
(

a b
c d

)
∈

V (n) \ R+ then for each y1, y2 ∈ Sn−1 we have

〈{S,w}y1 , {S,w}y2〉
= 〈{S, (aw + b)(cw + d)−1}y1 , {S, (aw + b)(cw + d)−1}y2〉.

If w : V ↪→ Rn is a C3 diffeomorphism we shall let {S,w}y,0 denote the
identity component of {S,w}y, while {S,w}y,ij denotes the bivector com-
ponent of {S,w}y, that is, the component spanned by {eiej : 1 ≤ i < j ≤ n}.
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Moreover, {S,w}y,ijkl denotes the four-vector component of {S,w}y,
spanned by {eiejekel : 1 ≤ i < j < k < l ≤ n}. As

(cw + d)eiej(cw̃ + d) =
(cw + d)ei(cw̃ + d)(cw + d)ej(cw̃ + d)

(cw + d)(cw̃ + d)
,

we have from (16)

Proposition 11. Suppose w : V ↪→ Rn is a C3 diffeomorphism and(
a b
c d

)
∈ V (n) \ R+. Then

{S, (aw + b)(cw + d)−1}y,ij = sgn(cw + d)
(cw + d){S,w}y,ij(cw̃ + d)

|cw + d|2
,

{S, (aw + b)(cw + d)−1}y,ijkl

= sgn(cw + d)
(cw + d){S,w}y,ijkl(cw̃ + d)

|cw + d|2
.

We also have

Proposition 12. Suppose w : V ↪→ Rn is a C3 diffeomorphism and(
a b
c d

)
∈ V (n) \ R+. Then

{S, (aw + b)(cw + d)−1}y,0 = {S,w}y,0.

Propositions 11 and 12 give us

〈{S, (aw + b)(cw + d)−1}y1,ij , {S, (aw + b)(cw + d)−1}y2,ij〉
= 〈{S,w}y1,ij , {S,w}y2,ij〉,

and

〈{S, (aw + b)(cw + d)−1}y1,ijkl, {S, (aw + b)(cw + d)−1}y2,ijkl〉
= 〈{S,w}y1,ijkl, {S,w}y2,ijkl〉.

Explicitly computing {S,w}y,0 we get

〈wyyy, wy〉|wy|−2 − 3
2 〈wyy, wy〉2|wy|−4 + 3

2 |wyy|2|wy|−2.

This expression corresponds to one of the generalizations of the Schwarzian
derivative given in [3].

Using differential forms we find that {S,w}y,ij is equivalent to

wy ∧ wyyy − 3〈wy, wyy〉(wy ∧ wyy)|wy|−4,

where wy, wyyy are all regarded as 1-forms. This expression is identical to
the second generalized Schwarzian derivative appearing in [3].

We now show that the usual method of obtaining a chain rule for the
Schwarzian in one complex variable breaks down.

Suppose now g(w) : V ↪→ Rn is a C3 diffeomorphism. Ideally we would
like to obtain an expression for {S, g(w)}y in terms of {S, g}wy

and {S,w}y.
First we note that g(w)yyy contains the term Dgw(x)wyyy, while g(w)yy
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contains the term Dgw(x)wyy, and g(w)y is equal to Dgw(x)wy. We could
re-express Dgw(x)wyyy, Dgw(x)wyy and Dgw(x)wy as a1(x, y)wyyyã1(x, y),
a2(x, y)wyyã2(x, y) and a3(x, y)wyã3(x, y), respectively, where aj(x, y) =
bj,1(x, y) . . . bj,nj

(x, y) with bi,j(x, y) ∈ Rn\{0} for j = 1, 2, 3 and 1 ≤ i ≤ nj .
In general aj(x, y) = ak(x, y) only for j = k so we are unable to use

this approach to extend the chain rule given in Theorem 4 to obtain a
generalization of the Schwarzian chain rule described in [10].

3. Besides An we can also construct [14] the Clifford algebra Ap,q from
the vector space Rp,q. The space Rp,q is spanned by the elements f1, . . . , fp,
ep+1, . . . , ep+q, and it is endowed with the quadratic form 〈 , 〉, where

〈x, x〉 = x2
1 + . . .+ x2

p − x2
p+1 − . . .− x2

p+q

for x = x1f1 + . . . + xpfp + xp+1ep+1 + . . . + xp+qep+q. To construct Ap,q

we define the relations

eifj = −fjei, eiej + ejei = −2δij , fifj + fjfi = 2δij .

It may now be deduced that Ap,q has dimension 2p+q. When p = 0 and q = n
we have A0,n = An. It is straightforward to extend the antiautomorphisms
∼ and − to Ap,q (see [14]). Also, we have the following extension of the Pin
group:

Pin(p, q) = {a ∈ Ap,q : a = a1 . . . ak, k ∈ N and aj ∈ Rp,q

where a2
j = ±1 for 1 ≤ j ≤ k}.

Moreover [14], 〈axã, axã〉 = 〈x, x〉 for each a ∈ Pin(p, q). It may easily be
verified that Pin(p, q) is a covering group of

O(p, q) = {T : Rp,q → Rp,q :
T is linear and 〈Tx, Tx〉 = 〈x, x〉 for all x ∈ Rp,q}.

If we take the closure, within the algebra Ap,q(2) (of 2× 2 matrices with
coefficients in Ap,q), of the group generated by{(

a 0
0 ã−1

)
,

(
1 v
0 1

)
,

(
0 ±1
1 0

)
,

(
λ 0
0 λ−1

)
:

a ∈ Pin(p, q), v ∈ Rp,q, λ ∈ R+

}
we obtain a new group which we denote by V (p, q). Again, when p = 0 and
q = n we obtain V (n) \ R+.

We could also take the closure, within Ap,q(2), of the group generated
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by{(
a 0
0 ã−1

)
,

(
1 v
0 1

)
,

(
0 ±1
1 0

)
,

(
λ 0
0 λ−1

)
: a = a1 . . . ar, r ∈ N,

aj ∈ R + Rp,q with a2
j = ±1 for 1 ≤ j ≤ r, v ∈ R + Rp,q, λ ∈ R+

}
where R + Rp,q is spanned by 1, f1, . . . , fp, ep+1, . . . , ep+q. We denote this
group by V0(p, q). When p = 0 and q = n we have V0(p, q) = V0(n)/R+.

For x = x0 +x1f1 + . . .+xpfp ∈ R+Rp,0 we have xx = x2
0−x2

1− . . .−x2
p,

so R + R3,0 inherits the same structure as the four-dimensional Minkowski
space. On making the identifications

(17)
1 7→

(
1 0
0 1

)
, f1 7→

(
1 0
0 −1

)
,

f2 7→
(

0 1
1 0

)
, f3 7→

(
0 i
−i 0

)
we see [8] that R + R3,0 is identified with H2, the space of 2× 2 Hermitean
matrices. Also, for

A =
(
x0 + x1 x2 + ix3

x2 − ix3 x0 − x1

)
∈ H2

we have detA = x2
0−x2

1−x2
2−x2

3. Using the identifications (17) it is straight-
forward calculation to see that A3,0 is isomorphic to C(2), the algebra of
2× 2 complex matrices.

Via this isomorphism it may now be deduced from the description of
V0(p, q) that

V0(3, 0) ∼= U(2, 2) =
{(

A B
C D

)
: A,B,C,D ∈ C(2) and(

A B
C D

)(
0 I2
−I2 0

)(
A T C T

B T D T

)
= ±

(
0 I2
−I2 0

)}
,

where I2 =
(

1 0
0 1

)
.

In greater generality, we have the group

U(n, n) =
{(

A B
C D

)
: A,B,C,D ∈ C(n) and(

A B
C D

)(
0 In
−In 0

)(
A T C T

B T D T

)
= ±

(
0 In
−In 0

)}
,

where In is the n× n identity matrix.
We shall let Hn denote the space of n× n Hermitean matrices.
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As U(n, n) is the closure of the subgroup of C(2n) generated by the set

(18)
{(

A 0
0 (A T )−1

)
,

(
In B
0 In

)
,

(
0 ±In
In 0

)
: A ∈ C(n), B ∈ H(n)

}
we can deduce that for each

(
A B
C D

)
∈ U(n, n) the function

detC,D : Hn → C, X 7→ det(CX +D)

is non-zero on an open, dense subset of Hn. Hence (AX + B)(CX +D)−1

is well defined on this open, dense set. Moreover, using (18) we see that
(AX +B)(CX +D)−1 ∈ Hn whenever (CX +D)−1 is defined.

The fractional linear transformation (AX+B)(CX+D)−1 has previously
been described in [7, 9], and elsewhere.

4. From the previous section we may deduce:

Proposition 13. Suppose that
(

A B
C D

)
∈ U(n, n), and z ∈ Hn \ {0}. Let

Φ(X) = (AX +B)(CX +D)−1. Then

Φ(X)zzzΦ(X)−1
z − 3

2{Φ(X)zzΦ(X)−1
z }2 = 0,

where Φ(X)z denotes the partial derivative of Φ(X) in the direction of z.

In particular, Proposition 13 tells us that the group U(2, 2), used to
describe Möbius transformations in Minkowski space, has a generalized
Schwarzian derivative associated with it.

Proposition 13 leads us to the following definition.

Definition 5. Suppose that V is a domain in Hn and h : V ↪→ Hn is a
C3 diffeomorphism, and for some direction z ∈ H \ {0} the element h(X)z

is invertible. Then

h(X)zzzh(X)−1
z − 3

2{h(X)zzh(X)−1
z }2

is called the U(n, n) Schwarzian derivative of h(X) in the direction of z. We
denote it by

{SU(n,n), h(X)}z.

By similar arguments to those used to deduce Theorem 4 we have

Theorem 5. Suppose that
(

A B
C D

)
∈ U(n, n), V is a domain in Hn and

h : V ↪→ Hn is a C3 diffeomorphism. Suppose that for some direction
z ∈ Hn \ {0} the element h(X)z is invertible. Then

{SU(n,n), (Ah(X) +B)(h(X) +D)−1}
= (h(X)C T +DT )−1{SU(n,n), h(X)}z(h(X)C T +D T ).
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5. Besides the groups V (n) and U(n, n) we can also associate a Schwar-
zian with the real symplectic group

Sp(n,R) =
{(

A B
C D

)
: A,B,C,D ∈ R(n) and(

A B
C D

)(
0 In
−In 0

)(
AT CT

BT DT

)
=
(

0 In
−In 0

)}
,

described in [7, 9], and elsewhere. Sp(n,R) can be seen as the closure of the
subgroup of R(2n) with generators the set{(

A 0
0 (AT )−1

)
,

(
1 B
0 1

)
,

(
0 −1
1 0

)
: A,B ∈ R(n)

}
.

By similar arguments to those used in Section 3 we find that for
(

A B
C D

)
∈

Sp(n,R) the matrix CX +D is invertible on an open, dense subset of Sn =
{X ∈ R(n) : XT = X}. Moreover, (AX +B)(CX +D)−1 ∈ Sn on this set.

Definition 6. Suppose that V is a domain in Sn and h : V ↪→ Sn

is a C3 diffeomorphism. Suppose also for some direction z ∈ Sn \ {0} the
element h(X)z is invertible. Then

h(X)zzzh(X)z − 3
2{h(X)zzh(X)−1

z }2

is called the Sp(n,R) Schwarzian derivative of h(X) in the direction of z.
We denote it by {SSp(n,R), h(X)}z.

Theorem 6. Suppose that
(

A B
C D

)
∈ Sp(n,R). Then

{SSp(n,R), (Ah(X) +B)(Ch(X) +D)−1}z
= (h(X)CT +DT )−1{SSp(n,R), h(X)}z(h(X)CT +DT ).

If h(X) = X for all X ∈ Sn then

{SSp(n,R), (AX +B)(CX +D)−1}z = 0.

By similar arguments we may introduce a Schwarzian derivative and an
analogue of Theorems 5 and 6 for the quaternionic group

H(n, n) =
{(

A B
C D

)
∈ H(2n) :(

A B
C D

)(
0 In
−In 0

)(
A T C T

B T D T

)
=
(

0 In
−In 0

)}
,

where − here denotes quaternionic conjugation.

6. In this final section we briefly describe how the results of the previous
two sections carry through to the group V (p, q).

First suppose that
(

a b
c d

)
∈ V (p, q). Then it follows from the description

of V (p, q) given in Section 3 that (cx + d)(x̃ + d) is real-valued, non-zero
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on an open dense subset of Rp,q. Consequently, (ax + b)(cx + d)−1 is well
defined on this set. Moreover, it follows from our characterization of V (p, q)
that (ax + b)(cx + d)−1 is a Möbius transformation on Rp,q. It is now
straightforward to construct a Schwarzian derivative on Rp,q and to obtain
an analogue of Theorems 5 and 6 in this setting.
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Algebras and their Applications in Mathematical Phisics, J. S. R. Chrisholm and
A. K. Common (eds.), NATO Adv. Study Inst. Ser., Ser. C: Math. Phys. Sci., Vol.
183, Reidel, 1986, 167–175.
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