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Univalent harmonic mappings

by Albert E. Livingston (Newark, Del.)

Abstract. Let a < 0, Ω = C − (−∞, a] and U = {z : |z| < 1}. We consider the
class SH (U,Ω) of functions f which are univalent, harmonic and sense preserving with
f(U) = Ω and satisfy f(0) = 0, fz(0) > 0 and fz̄(0) = 0. We describe the closure

SH(U,Ω) of SH(U,Ω) and determine the extreme points of SH (U,Ω).

1. Introduction. Let SH be the class of functions f which are univalent
sense preserving harmonic mappings of the unit disk U = {z : |z| < 1}
and satisfy f(0) = 0 and fz(0) > 0. Let F and G be analytic in U with
F (0) = G(0) = 0 and Re f(z) = ReF (z) and Im f(z) = ReG(z) for z in U .
Then h = (F + iG)/2 and g = (F − iG)/2 are analytic in U and f = h+ g.
f is locally one-to-one and sense preserving if and only if |g′(z)| < |h′(z)|
for z in U [3]. If h(z) = a1z+a2z

2 + . . ., a1 > 0, and g(z) = b1z+ b2z
2 + . . .

for z in U , it follows that |b1| < a1 and hence a1f − b1f also belongs to SH .
Thus, consideration is often restricted to the subclass S0

H of SH consisting
of those functions in SH with fz̄(0) = 0.

Since harmonic mappings are not essentially determined by their im-
age domains, various authors have studied subclasses of SH , consisting of
functions mapping U onto a specific simply connected domain D. In par-
ticular, Hengartner and Schober [5] considered the case of D being a strip,
Abu-Muhanna and Schober [1] considered the case of D being a wedge or a
half plane. Cima and the author [2] also considered the case of D being a
strip.

In this paper we will study the case of D being the plane C slit along a
ray pointing at the origin. This type of domain is often extremal for certain
problems over classes of functions mapping U onto domains that are starlike
or convex in one direction. Also, Hengartner and Schober [6] considered the
case of D being the plane C slit along the interval (−∞, 0]. They studied
these mappings as they related to minimal surfaces. Our purpose is to study
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extreme points and to use the knowledge of extreme points to solve some
extremal problems.

Let a < 0 and Ω = C − (−∞, a]. SH(U,Ω) is the class of functions f
which are univalent sense preserving harmonic maps with f(U) = Ω and
satisfy f(0) = 0, fz(0) > 0 and fz̄(0) = 0.

In the sequel F and G will be functions analytic in U with F (0) =
G(0) = 0 and Re f(z) = ReF (z) and ReG(z) = Im f(z) for z in U . If
h = (F + iG)/2 and g = (F − iG)/2 then f = h+ g and |g′(z)| < |h′(z)| for
z in U .

2. The class SH(U,Ω). Let P be the class of functions P (z) which are
analytic in U with P (0) = 1 and ReP (z) > 0 for z in U .

Lemma 1. If P (z) is in P, then

−
1

2
≤ Re

−1∫

0

1 + ζ

(1 − ζ)3
P (ζ) dζ ≤ −

1

6
.

P r o o f.

Re
−1∫

0

1 + ζ

(1 − ζ)3
P (ζ) dζ =

1∫

0

−(1 − t)

(1 + t)3
ReP (−t) dt.

However, it is well known that

1 − t

1 + t
≤ ReP (−t) ≤

1 + t

1 − t
.

Thus

1∫

0

−1

(1 + t)2
dt ≤

1∫

0

−(1 − t)

(1 + t)3
ReP (−t) dt ≤

1∫

0

−(1 − t)2

(1 + t)4
dt,

and the lemma follows.

We now let F be the class of functions f which have the form

(1.1) f(z) =
a

Re
∫ −1

0
1+ζ

(1−ζ)3P (ζ) dζ

[

Re
z∫

0

1 + ζ

(1 − ζ)3
P (ζ) dζ

+i Im
z

(1 − z)2

]

where P is in P.
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Theorem 1. If f ∈ F , then f is harmonic, sense preserving and univa-

lent in U and f(U) is convex in the direction of the real axis with f(U) ⊂ Ω.

P r o o f. Let f = h+ g = ReF + iReG. Then with

A = a
/

Re
−1∫

0

[

(1 + ζ)/(1 − ζ)3
]

P (ζ) dζ

we have

F (z) = A
z∫

0

1 + ζ

(1 − ζ)3
P (ζ) dζ and G(z) = −

iAz

(1 − z)2
.

Since
g′(z)

h′(z)
=
F ′(z) − iG′(z)

F ′(z) + iG′(z)
=
P (z) − 1

P (z) + 1
,

it follows that |g′(z)| < |h′(z)| for z in U . Thus f is locally one-to-one and
sense preserving in U . Also

h(z) − g(z) = iG(z) =
Az

(1 − z)2

is convex in the direction of the real axis. By a theorem of Clunie and
Sheil-Small [3, Theorem 5.3], f is univalent and f(U) is convex in the di-
rection of the real axis.

Moreover, f(z) is real if and only if z is real. Since A > 0 and ReP (z) > 0
it follows that f(r) = ReF (r) is increasing on (−1, 1) and bounded on
(−1, 0). Thus limr→−1+ f(r) exists and equals a. Moreover, limr→1− f(r) =
+∞. Thus f(U) omits the interval (−∞, a]. Therefore f(U) ⊂ Ω.

The next theorem up to translation is contained in [6]. However, for the
sake of completeness and since our point of view is somewhat different, we
include a proof here.

Theorem 2. SH(U,Ω) ⊂ F .

P r o o f. Let f be in SH(U,Ω). Since Ω is convex in the direction of the
real axis, by a result of Clunie and Sheil-Small, h− g = iG is univalent and
convex in the direction of the real axis.

Let h(z) = a1z + a2z
2 + . . . , a1 > 0, and g(z) = b2z

2 + . . . Then
G(z) = −i(h(z) − g(z)) = −a1iz + . . . Since f(U) = Ω, ReG(z) = Im f(z)
is 0 on the boundary of U . SinceG is convex in the direction of the imaginary
axis, it follows that G(U) is C slit along one or two infinite rays along the
imaginary axis. Thus G(z)/(−a1i) maps U onto C slit along one or two
infinite rays along the real axis. However, G(z)/(−a1i) is a member of
the class S of functions f analytic and univalent in U and normalized by
f(0) = f ′(0) − 1 = 0. Making use of subordination arguments, it follows
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that G(z)/(−a1i) has the form

G(z)

−a1i
=

z

1 + cz + z2
, −2 ≤ c ≤ 2,

and hence Im f(r) = ReG(r) = 0 for −1 < r < 1. Since fz(0) > 0,
the function f is increasing on (−1, 1), so that limr→−1+ f(r) = a and
limr→1− f(r) = +∞.

Now if f = h+ g, then h′ − g′ = iG′ and

h′ + g′

h′ − g′
=

1 + g′/h′

1 − g′/h′
.

Since |g′(z)/h′(z)| < 1 for z in U , it follows that

h′ + g′

h′ − g′
= P,

where P is in P. Thus h′ + g′ = (h′ − g′)P = iG′P , and

F (z) = h(z) + g(z) =
z∫

0

iG′(ζ)P (ζ) dζ.

Now suppose G(z) = −a1iz/(1 + cz + z2), −2 < c ≤ 2. Then

F (z) = a1

z∫

0

1 − ζ2

(1 + cζ + ζ2)2
P (ζ) dζ.

If 0 < r < 1, then

f(r) = Re f(r) = ReF (r) = a1

r∫

0

1 − t2

(1 + ct+ t2)2
ReP (t) dt

≤ a1

r∫

0

(1 − t2)(1 + t)

(1 + ct+ t2)2(1 − t)
dt

= a1

r∫

0

(1 + t)2

(1 + ct+ t2)2
dt ≤M

for some M , since −2 < c ≤ 2. However, this is impossible since
limr→1− f(r) = +∞.

Thus the only possibility is that G(z) = −a1iz/(1 − z)2, and

F (z) = a1

z∫

0

1 + ζ

(1 − ζ)3
P (ζ) dζ.
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Thus,

a = lim
r→−1+

f(r) = a1 Re
−1∫

0

1 + ζ

(1 − ζ)3
P (ζ) dζ,

and the theorem follows.

Theorem 3. SH(U,Ω) = F .

P r o o f. Let f(z) have the form (1.1), and let rn be a sequence with
0 < rn < 1 and lim rn = 1. Let Pn(z) = P (rnz), and denote by fn(z) the
function obtained from (1.1) by replacing P (z) by Pn(z). We claim that fn

is in SH(U,Ω). To see this, let

A = a
/

Re
−1∫

0

[

(1 + ζ)/(1 − ζ)3
]

Pn(ζ) dζ ,

Fn(z) = A
z∫

0

[(1 + ζ)/(1 − ζ)3]Pn(ζ) dζ .

There exists δ > 0 so that we may write for |z − 1| < δ,

Pn(z) = Pn(1) + P ′
n(1)(z − 1) +

P ′′
n (1)

2
(z − 1)2 + . . .

Then, for |z − 1| < δ,

F ′
n(z) = A

1 + z

(1 − z)3
Pn(z)

= A

[

−2Pn(1)

(z − 1)3
−

2P ′
n(1) + Pn(1)

(z − 1)2
−
P ′′

n (1) + P ′
n(1)

z − 1
+ . . .

]

.

Let D = {z : |z − 1| < δ} − {z : 1 ≤ z ≤ 1 + δ}. If 1 − δ < c < 1, then for z
in D

Fn(z) − Fn(c) =
z∫

c

F ′
n(ζ) dζ,

where the path of integration is in D. This gives, for z in D,

Fn(z) = A

[

2Pn(1)

(z − 1)2
+

2P ′
n(1) + Pn(1)

z − 1

−(P ′′
n (1) + P ′

n(1)) log(z − 1) +

∞
∑

j=0

cj(z − 1)j

]

where
∑∞

j=0 cj(z− 1)j converges for |z− 1| < δ and log(z− 1) = ln |z− 1|+
i arg(z − 1), 0 < arg(z − 1) < 2π. That is, for z in D, Fn has the form

Fn(z) = A

[

c

(z − 1)2
+

d

(z − 1)
+ e log(z − 1) + q(z)

]

,
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where Re c = 2RePn(1) > 0 and q(z) is analytic at z = 1. Thus, for z in D,

Re fn(z) = ReFn(z)

= A

[

Re

(

c

(z − 1)2
+

d

(z − 1)

)

+ Re(e) ln |z − 1|

− Im(e) arg(z − 1) + Re q(z)

]

.

We want to prove that fn cannot have a nonreal finite cluster point at
z = 1. To see this, suppose zj = 1+ tje

iθj is in U with tj > 0 and lim tj = 0
and is such that

lim
j→∞

Im

[

zj

(1 − zj)2

]

= l,

where l is finite and l 6= 0. Then

lim
j→∞

−(sin 2θj + tj sin θj)

t2j
= l 6= 0.

This implies that (sin 2θj +tj sin θj) approaches 0, which in turn implies that
sin 2θj approaches 0. Thus e−2iθj approaches ±1. Therefore, Re(ce−i2θj )
approaches ±Re c 6= 0. It now follows that

|Re fn(zj)| =

∣

∣

∣

∣

Re(ce−i2θj ) + tj Re(de−iθj ) + Re(e)t2j ln(tj)

t2j

−(Im e) arg(zj − 1) + Re q(zj)

∣

∣

∣

∣

approaches +∞ as n approaches +∞. Thus fn has no finite nonreal cluster
points at z = 1. At all other points of |z| = 1, the finite cluster points
of fn are real. Since fn(U) ⊂ Ω and limr→−1 fn(r) = a, it follows that
fn(U) = Ω.

Thus fn is in SH(U,Ω) and hence f is in SH(U,Ω). Since F is closed
under uniform limits on compact subsets of U , it follows that F = SH(U,Ω).

3. Extreme points of F. If P ∈ P, then it is known [4] that

(3.1) P (z) =
∫

|η|=1

1 + ηz

1 − ηz
dµ(η)

where µ is a probability measure on X = {η : |η| = 1}. Thus if f is in F ,
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there is a probability measure µ on X so that

(3.2) f(z) =
a

Re
∫

|η|=1
k(−1, η)dµ(η)

×

[

Re
∫

|η|=1

k(z, η) dµ(η) + i Im
z

(1 − z)2

]

where

k(z, η) =
z∫

0

(1 + ζ)(1 + ηζ)

(1 − ζ)3(1 − ηζ)
dζ(3.3)

=































2η(1 + η)

(1 − η)3
log

(

1 − ηz

1 − z

)

−
(1 + 4η − η2)z

(1 − η)2(1 − z)

+
(1 + η)(2z − z2)

(1 − η)(1 − z)2
, η 6= 1,

z + 1
3z

3

(1 − z)3
, η = 1.

The extreme points of F are easily obtained by making use of a property
of a nonlinear homeomorphism observed by Szapiel [7].

Lemma 2 [7]. Suppose X is a convex linear Hausdorff space, φ : X → C

is homogeneous, c ∈ C\{0} and A is a compact convex subset of φ−1(c). Let

ψ : A→ R be affine continuous with 0 6∈ ψ(A) and let B = {a/ψ(a) : a ∈ A}.
Then

1) B is compact convex ,

2) the map a→ a/ψ(a) is a homeomorphism of A onto B,

3) EB = {a/ψ(a) : a ∈ EA}, where ED means the set of all extreme

points of D.

P r o o f. For the sake of completeness we include the proof as com-
municated to me by the referee. We observe that if a1 and a2 are in A
and a1/ψ(a1) = a2/ψ(a2), then c/ψ(a1) = φ(a1/ψ(a1)) = φ(a2/ψ(a2)) =
c/ψ(a2). Thus ψ(a1) = ψ(a2) and hence a1 = a2. Next we note that
(λ1a1 + λ2a2)/ψ(λ1a1 + λ2a2) = µ1a1/ψ(a1) + µ2a2/ψ(a2), where

(3.4) µj = λjψ(aj)/ψ(λ1a1 + λ2a2), j = 1, 2 .

Thus if λj > 0 with j = 1, 2, and λ1 +λ2 = 1 then µj > 0 with µ1 +µ2 = 1.
If µj > 0, j = 1, 2, with µ1 + µ2 = 1, we seek λj > 0, j = 1, 2, with
λ1 + λ2 = 1 such that equation (3.4) is satisfied. It is easily verified that
λ1 = µ1ψ(a2)/[µ1ψ(a2) + µ2ψ(a1)] and λ2 = µ2ψ(a1)/[µ1ψ(a2) + µ2ψ(a1)]
satisfy the requirements. Thus B is convex.
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Next suppose a 6∈ EA. Then a = λ1a1 + λ2a2 with λj > 0, j = 1, 2,
λ1 + λ2 = 1 and a1 6= a2. Thus

a

ψ(a)
=

λ1a1 + λ2a2

ψ(λ1a1 + λ2a2)
= µ1

a1

ψ(a1)
+ µ2

a2

ψ(a2)
.

So a/ψ(a) 6∈ EB.
Conversely, suppose a/ψ(a) 6∈ EB. Then there exist a1 6= a2 in A and

µj > 0, j = 1, 2, with µ1 + µ2 = 1 so that

a

ψ(a)
= µ1

a1

ψ(a1)
+ µ2

a2

ψ(a2)
=

λ1a1 + λ2a2

ψ(λ1a1 + λ2a2)
.

Since the map a→ a/ψ(a) is a homeomorphism, it follows that a = λ1a1 +
λ2a2 and hence a 6∈ EA. Therefore EB = {a/ψ(a) : a ∈ EA}.

We apply Lemma 2 with

QP (z) = Re
[

z∫

0

(1 + ζ)(1 − ζ)−3P (ζ) dζ
]

+ i Im[z(1 − z)−2] ,

A = {QP : P ∈ P), φ(f) = fz(0), c = 1, ψ(QP ) = QP (−1)/a.

Then F = B is convex and EB = {f(z)/f(−1) : f ∈ EA}. However,
the map QP → P is a linear homeomorphism between A and P. Since
EP = {(1 + µz)/(1 − µz) : |µ| = 1} [4], we obtain the following theorem.

Theorem 4. The extreme points of F are

fη(z) =
a

Re k(−1, η)

[

Re k(z, η) + i Im
z

(1 − z)2

]

, |η| = 1.

4. The mapping properties of extreme points. If η = eiβ , then

Re k(z, η) =
cot(β/2)

2 sin2(β/2)
arg

(

1 − eiβz

1 − z

)

− cot(β/2) Im
z

(1 − z)2
+

1

sin2(β/2)
Re

z

1 − z

and

fη(z) =
a

(β/2) cot(β/2)
2 sin2(β/2)

− 1
2 sin2(β/2)

[

Re k(z, η) + i Im
z

(1 − z)2

]

.

Suppose η = eiβ , 0 < β < π. If ζ is on the open arc of the unit
circle going from 1 to η to −1 to η in the counterclockwise direction, then
arg(1 − ηζ)/(1 − ζ) = β/2. For these ζ,

lim
z→ζ

fη(z) = a.
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If ζ is on the open arc from η to 1, then arg(1− ηζ)/(1 − ζ) = β/2 − π and
we obtain

lim
z→ζ

fη(z) = a−
πa cot(β/2)

(β/2) cot(β/2) − 1
= b < a.

The cluster set of arg(1 − ηz)/(1 − z) at η is the interval [β/2 − π, β/2].
Thus, the cluster set of fη(z) at η is the interval [b, a].

We now use a technique similar to that used in Example 5.4 of [3]. Let
(1 + z)/(1 − z) = u+ iv and note

z/(1 − z) = 1
2 [(1 + z)/(1 − z) − 1] ,

((1 + z)/(1 − z))2 = 4z/(1 − z)2 + 1 ,

(1 − ηz)/(1 − z) = [(1 − η)/2](1 + z)/(1 − z) + (1 + η)/2 ,

Im[z/(1 − z)2] = 1
4

Im(u+ iv)2 .

Using these observations, we obtain

fη(z) =
a

Re k(−1, η)

×

[

cot(β/2)

2 sin2(β/2)
arg[(1 + eiβ)(1 + v tan(β/2) − iu tan(β/2))]

−
uv

2
cot(β/2) +

u− 1

2 sin2(β/2)
+ i

uv

2

]

= x+ iy.

If uv = 2c, u > 0, then y = ac/Re k(−1, η) and

x =
a

Re k(−1, η)

×

[

cot(β/2)

2 sin2(β/2)
arg

[

(1 + eiβ)

(

1 +
2c tan(β/2)

u
− iu tan(β/2)

)]

−c cot(β/2) +
u− 1

2 sin2(β/2)

]

.

Now suppose that c > 0. Then limu→+∞ x = +∞, and

lim
u→0

x =
a

Re k(−1, η)

×

[

cot(β/2)

2 sin2(β/2)
arg(1 + eiβ) − c cot(β/2) −

1

2 sin2(β/2)

]

= a−
ca cot(β/2)

Re k(−1, η)
.

A calculation gives dx/du > 0 for any c. Thus x is increasing. Thus if
c > 0, x takes on all values in the interval (a−ca cot(β/2)/Re k(−1, η),+∞).
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It follows that fη(z) covers the horizontal line segment y = ac/Re k(−1, η),
with left end point on the line y = −[tan(β/2)](x − a).

By the same reasoning, if c < 0, fη(z) covers the horizontal line segment
y = ac/Re k(−1, η) with left end point on the line y = −[tan(β/2)](x − b).

If c = 0, uv = 0. Since u > 0, it follows that v = 0 and

x =
a

Re k(−1, η)

×

[

cot(β/2)

2 sin2(β/2)
arg[(1 + eiβ)(1 − iu tan(β/2))] +

u− 1

2 sin2(β/2)

]

.

Thus,

lim
u→0

x = a and lim
u→+∞

x = +∞.

Since x is increasing, fη covers the interval (a,+∞) on the real axis and no
other part of the real axis. It follows that fη(z) maps U onto the domain
given by the shaded region in Figure 4.1.

y = −[tan(β/2)](x − a)

b a

y = −[tan(β/2)](x − b)

Fig. 4.1

y = −[tan(β/2)](x − d)

d a

y = −[tan(β/2)](x − a)

Fig. 4.2

Similarly if −π < β < 0, fη(z) maps U onto the domain pictured in
Figure 4.2, where

d = a+
aπ cot(β/2)

(β/2) cot(β/2) − 1
< a.
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5. Applications. In this section we will use our knowledge of extreme
points to solve some extremal problems on SH(U,Ω).

Lemma 3. If |η| = 1, then

|Re k(−1, η)| ≥ |Re k(−1, 1)| = 1/6 .

P r o o f.

k(−1, η) =







2η(1 + η)

(1 − η)3
log

(

1 + η

2

)

+
1 + 4η − η2

2(1 − η)2
−

3

4
·
1 + η

1 − η
, η 6= 1,

−1/6, η = 1.

If η = eiθ, then

k(−1, eiθ) =
2eiθ

(1 − eiθ)2
·
1 + eiθ

1 − eiθ
log

(

1 + eiθ

2

)

+
1 + 4eiθ − ei2θ

2(1 − eiθ)2
−

3

4
·
1 + eiθ

1 − eiθ

=
2

(e−iθ/2 − eiθ/2)2
·
e−iθ/2 + eiθ/2

e−iθ/2 − eiθ/2
log

(

1 + eiθ

2

)

+
e−iθ + 4 − eiθ

2(e−iθ/2 − eiθ/2)2
−

3

4
·
e−iθ/2 + eiθ/2

e−iθ/2 − eiθ/2

=
−i cos(θ/2)

2 sin3(θ/2)
log

(

1 + eiθ

2

)

−
2 − i sin θ

4 sin2(θ/2)
−

3i cos(θ/2)

4 sin(θ/2)
.

Thus

Re k(−1, eiθ) =
cos(θ/2)

2 sin3(θ/2)
arg

(

1 + eiθ

2

)

−
1

2 sin2(θ/2)

=
(θ/2) cos(θ/2)

2 sin3(θ/2)
−

1

2 sin2(θ/2)

=
(θ/2) cos(θ/2) − sin(θ/2)

2 sin3(θ/2)
.

Let q(θ) = [(θ/2) cos(θ/2) − sin(θ/2)]/[2 sin3(θ/2)] if θ 6= 0 and q(0) =
−1/6. We want to find the maximum of q(θ) in [−π, π], or equivalently the
maximum of h(φ) in [−π/2, π/2], where h(φ) = (φ cos φ − sinφ)/(2 sin3 φ)
for φ 6= 0 and h(0) = −1/6. Since h(−φ) = h(φ), we need to consider h(φ)
in [0, π/2]. Let g(φ) = 6φ cosφ− 6 sinφ+ 2 sin3 φ for 0 ≤ φ ≤ π/2. Then

g′(φ) = −6φ sinφ+ 6 sin2 φ cosφ

= 3 sinφ(sin 2φ− 2φ) ≤ 0.

Thus g(φ) ≤ g(0) = 0. It follows that h(φ) ≤ −1/6 in [0, π/2] and thus



68 A. E. Livingston

q(θ) ≤ −1/6 on [−π, π]. Therefore

|Re k(−1, η)| = |q(θ)| ≥ 1/6 = |Re k(−1, 1)| .

Theorem 5. Let f(z) = h(z)+g(z) be in SH(U,Ω). If h(z) =
∑∞

n=1anz
n

and g(z) =
∑∞

n=2 bnz
n, then

|an| ≤ (n+ 1)(2n + 1)|a|,(5.1)

|bn| ≤ (n− 1)(2n − 1)|a|,(5.2)

||an| − |bn|| ≤ |an − bn| ≤ 6|a|n.(5.3)

Equality is attained in (5.1), (5.2) and (5.3) for all n by

f(z) = −6a

[

Re
z + 1

3
z3

(1 − z)3
+ i Im

z

(1 − z)2

]

.

P r o o f. We need only prove (5.1)–(5.3) for the extreme points of
SH(U,Ω). Let fη(z) = A[Re k(z, η) + i Im z/(1 − z)2], A = a/Re k(−1, η).
In our notation F (z) = Ak(z, η) and G(z) = −Aiz/(1 − z)2. Thus

h(z) =
F (z) + iG(z)

2
=
A

2

[

k(z, η) +
z

(1 − z)2

]

=

∞
∑

n=1

anz
n ,

g(z) =
F (z) − iG(z)

2
=
A

2

[

k(z, η) −
z

(1 − z)2

]

=

∞
∑

n=2

bnz
n .

Thus if η 6= 1, then

h(z) =
A

2

[ ∞
∑

n=1

2η(1 + η)(1 − ηn)

(1 − η)3n
zn −

∞
∑

n=1

1 + 4η − η2

(1 − η)2
zn

+

∞
∑

n=1

(n + 1)(1 + η)

1 − η
zn +

∞
∑

n=1

nzn

]

.

Therefore

an =
A

2

[

2η(1 + η)(1 − ηn)

n(1 − η)3
−

1 + 4η − η2

(1 − η)2
+

(n+ 1)(1 + η)

1 − η
+ n

]

(5.4)

=
A

2

[

2η(1 + η)(1 + η + η2 + . . .+ ηn−1)

n(1 − η)2
−

1 + 4η − η2

(1 − η)2

+
(n+ 1)(1 + η)

1 − η
+ n

]

=
A

2

[

n2+ (2 − 4n)η + (4 − n2)η2+ 4η3+ . . .+ 4ηn+ 2ηn+1

n(1 − η)2
+ n

]
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=
A

2

[

(1 − η)2(n2 +
∑n−1

k=1 2(n − k)2ηk)

n(1 − η)2
+ n

]

= A

[

n2 +
∑n−1

k=1(n− k)2ηk

n

]

.

Similarly, for n ≥ 2

(5.5) bn =
A

2

[

n2 +
∑n−1

k=1 2(n− k)2ηk

n
− n

]

= A

[∑n−1
k=1(n− k)2ηk

n

]

.

We note that (5.4) and (5.5) also hold for η = 1.

Now by Lemma 3

|A| =
|a|

|Re k(−1, η)|
≤

|a|

|Re k(−1, 1)|
= 6|a|.

Thus from (5.4) and (5.5) we obtain

|an| ≤ 6|a|
n2 +

∑n−1
k=1(n− k)2

n
=

6|a|

n
·
n(n+ 1)(2n + 1)

6

= (n+ 1)(2n + 1)|a|

with equality when η = 1, and

|bn| ≤
6|a|

n

n−1
∑

k=1

(n− k)2 =
6|a|

n
·
(n− 1)n(2n − 1)

6

= (n− 1)(2n − 1)|a|

with equality for η = 1.

To obtain (5.3) we note that for an extreme point fη(z) we have an−bn =
An.

Theorem 6. If f = h+ ḡ is in SH(U,Ω), then

|fz(z)| = |h′(z)| ≤
6|a|

1 − |z|

∣

∣

∣

∣

1 + z

(1 − z)3

∣

∣

∣

∣

≤
6(1 + |z|)|a|

(1 − |z|)4
.

Equality occurs for z real and positive and

f(z) = −6a

[

Re
z + 1

3z
3

(1 − z)3
+ i Im

z

(1 − z)2

]

.

P r o o f. We need only consider extreme points fη(z). In this case

h(z) =
A

2

[

k(z, η) +
z

(1 − z)2

]

=
A

2

[

2η(1 + η)

(1 − η)3
log

(

1 − ηz

1 − z

)

−
4η

(1 − η)2
·

z

1 − z
+

2

1 − η
·

z

(1 − z)2

]

.
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After straightforward computations we get

h′(z) =
a

Re k(−1, η)
·

(1 + z)

(1 − z)3(1 − ηz)
,

|h′(z)| =
|a|

|Re k(−1, η)||1 − ηz|

∣

∣

∣

∣

1 + z

(1 − z)3

∣

∣

∣

∣

≤
6|a|

1 − |z|

∣

∣

∣

∣

1 + z

(1 − z)3

∣

∣

∣

∣

≤
6|a|(1 + |z|)

(1 − |z|)4
.
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