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Asymptotic stability of densities
for piecewise convex maps

by Tomoki Inoue (Hiroshima)

Abstract. We study the asymptotic stability of densities for piecewise convex maps
with flat bottoms or a neutral fixed point. Our main result is an improvement of Lasota
and Yorke’s result ([5], Theorem 4).

1. Introduction. Lasota and Yorke [5] studied the following piecewise
convex maps T : [0, 1]→ [0, 1].

(i) There exists a partition 0 = a0 < a1 < . . . < ar = 1 such that
the restriction of T to (ai−1, ai) is C1 and convex; let Ti be a continuous
extension to [ai−1, ai) of this restriction for i = 1, . . . , r.

(ii) Ti(ai−1) = 0 for i = 1, . . . , r.
(iii) T ′i (ai−1) > 0 for i = 1, . . . , r.
(iv) T ′1(0) > 1.
They showed that the Frobenius–Perron operator associated with the

map above is asymptotically stable in the sense of Lasota and Mackey [4],
which means that the dynamics of densities is asymptotically stable and
that there exists a unique invariant exact probability measure. In this pa-
per we improve the conditions (iii) and (iv), that is, we allow T ′i (ai−1) = 0
and T ′1(0) = 1 under some extra conditions.

In §2 we give some preliminary definitions. In §3 we state our main
result. In §5 we prove it, using the first return map which is studied in §4.

2. Preliminaries. In this section we first give the definition of the
Frobenius–Perron operator and of its asymptotic stability. Let (X,F ,m) be
a σ-finite measure space and let T : X → X be a nonsingular transformation,
that is, a measurable transformation satisfying m(T−1(A)) = 0 for all A ∈ F
with m(A) = 0.
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Definition 2.1. The operator P : L1 → L1 defined by∫
A

Pf(x)m(dx) =
∫

T−1(A)

f(x)m (dx) for A ∈ F , f ∈ L1(m)

is called the Frobenius–Perron operator associated with (T,m).

By D(m) = D(X,F ,m) we shall denote the set of all densities associated
with m on X, that is,

D(m) := {f ∈ L1(m) ; f ≥ 0 and ‖f‖L1(m) = 1} .
For f ∈ D(m) we define a probability measure mf on (X,F) by

mf (A) =
∫
A

f dm, A ∈ F .

An f ∈ D(m) is called a stationary density of P if Pf = f m-a.e.

Definition 2.2. {Pn} is called asymptotically stable if there exists a
unique density g such that

lim
n→∞

‖Pnf − g‖L1(m) = 0 for all f ∈ D(m) .

Lemma 2.1. If there exists a density g ∈ D(m) such that

(2.1) lim
n→∞

‖Pnf − g‖L1(m) = 0 for f ∈ D(m) with supp(f) ⊂ supp(g) ,

and m(X\
⋃∞
n=0 T

−nsupp(g)) = 0, then P is asymptotically stable.

For the proof of this, see the proof of Proposition 5.3 in [3].
Now we define exactness of a nonsingular transformation and we state a

condition for exactness using Frobenius–Perron operators.

Definition 2.3. Let (X,F , µ) be a probability space and T : X → X a
measure preserving transformation, that is, µ is T -invariant. If

⋂∞
n=0 T

−nF
is trivial, then (T, µ) is called exact.

Proposition 2.2 ([3], Proposition 2.3). If there exists g ∈ D(m) such
that (2.1) holds, then T preserves the measure mg and (T,mg) is exact.
Conversely , if there exists a stationary density g such that (T,mg) is exact ,
then (2.1) holds.

3. Main result. Now we state the main result in this paper.

Theorem 3.1. Assume that a map T : [0, 1]→ [0, 1] satisfies the follow-
ing conditions:

(1) There exists a partition 0 = a0 < a1 < . . . < ar = 1 such that the re-
striction of T to (ai−1, ai) is a C1 function; let Ti be a continuous extension
to [ai−1, ai) of this restriction for i = 1, . . . , r.
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(2) Ti(ai−1) = 0 for i = 1, . . . , r.
(3) T ′(x) > 1 for x ∈ (0, a1) and T ′(x) > 0 for x ∈ (ai−1, ai), i =

2, . . . , r.
(4) T ′i (x) is an increasing function for i = 1, . . . , r.
(5) There exists n0 such that

∞∑
n=n0

(T−1
j T−n1 (a1)− aj−1) <∞

for all j satisfying aj−1 ∈
⋃∞
n=1 T

n(0, a1).

Then the Frobenius–Perron operator associated with T is asymptotically
stable.

R e m a r k 3.1. Suppose that the condition (5) of the above theorem
is invalid. Then there exist no m-absolutely continuous T -invariant er-
godic probability measures, but there does exist an m-absolutely continuous
T -invariant ergodic σ-finite measure ([2], Theorem 1.1).

Theorem 3.1 and Remark 3.1 imply that asymptotic stability of the
Frobenius–Perron operator associated with a map T satisfying the condi-
tions (1)–(4) of Theorem 3.1 is characterized by the finiteness of an m-abso-
lutely continuous T -invariant σ-finite measure.

In the case of T ′1(0) = 1, the following corollary gives a useful criterion for
the asymptotic stability of the Frobenius–Perron operator associated with T .

Corollary 3.2. Assume that a map T : [0, 1] → [0, 1] satisfies the fol-
lowing conditions:

(1)–(4): same as in Theorem 3.1.
(5) T1(x) ≥ x+Mxp for some M > 0 and 1 < p < 2 and Tj(x) ≥ L(x−

aj−1)q for q < (p−1)−1 and for all j with aj−1 ∈
⋃∞
n=1 T

n[0, a1) and L > 0.

Then the Frobenius–Perron operator associated with T is asymptotically
stable.

R e m a r k 3.2. Under the conditions (1)–(4) of Theorem 3.1, there are
no m-absolutely continuous T -invariant probability measures if T1(x) ≤
x+Mx2 for some M > 0 ([2], Corollary 1.1.2).

In the case of T ′1(0) > 1, the following corollary is useful.

Corollary 3.3. Assume that a map T : [0, 1] → [0, 1] satisfies the fol-
lowing conditions:

(1)–(4): same as in Theorem 3.1.
(5) T ′1(0) > 1 and

∫ aj

aj−1
log T (x) dm > −∞ for all j with aj−1 ∈⋃∞

n=1 T
n[0, a1).
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Then the Frobenius–Perron operator associated with T is asymptotically
stable.

R e m a r k 3.3. Suppose that the integral condition of the above corollary
is invalid. Then there exist no m-absolutely continuous T -invariant ergodic
probability measures ([2], Corollary 1.1.3).

This integral condition corresponds to the condition (A) for S-unimodal
maps studied by Benedicks and Misiurewicz [1].

4. The first return map. In this section we first show how to
construct an invariant measure of a given transformation from an invariant
measure of the first return map and next study finiteness of the invariant
measure constructed. The first return map of T on A is defined as Tn(x)(x),
where n(x) is inf{n ≥ 1 ;Tn(x) ∈ A}. In the following lemma, let T be a
transformation on a measure space (X,F ,m) and let A ⊂ X be a measurable
set with A ⊂

⋃∞
n=1 T

−n(A). Then the first return map is well defined.

Lemma 4.1 ([6], Lemma 2 and [2], Lemma 3.2). Let RA be the first
return map of T on A and let µA be an RA-invariant ergodic probability
measure. Then the measure µ defined by

(4.1) µ(D) =
∞∑
n=1

µA(An ∩ T−nD) for D ∈ F

is T -invariant ergodic, where A1 = A and An+1 = An∩T−n(AC) for n ≥ 1.

In the rest of this section we assume that a map T : [0, 1]→ [0, 1] satisfies
the assumptions of Theorem 3.1. Put

αn = T−n1 (a1) for n ≥ 0 and
βin = T−1

i (αn) if it exists, for i = 2, . . . , r and n ≥ 0 .

Consider the first return map R of T on [a1, 1]. Then R can be represented
in the following form. For i = 2, . . . , r,

R(x) =
{
T (x) if Ti(x) > a1,
Tn+1(x) if Ti(x) ∈ (αn, αn−1), for n ≥ 1.

It is clear that R(x) is defined except on the set of the endpoints of a count-
able partition of [a1, 1].

Lemma 4.2. Assume that there exists an m-absolutely continuous R-
invariant probability measure whose density g is bounded in the right neigh-
borhood of aj−1 and that there exists an integer n0 such that

(4.2)
∞∑

n=n0

|βj,n − aj−1| <∞
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for all j satisfying aj−1 ∈ Tn(0, a1) for some n. Let µ be the T -invariant
measure defined in Lemma 4.1. Then µ([0, 1]) <∞.

P r o o f. It is easy to see that there exists an integer n1 such that

An =
r⋃
i=2

[ai−1, βi,n−2] for n ≥ n1 .

There exist n2 ≥ n1 and γ < ∞ such that g ≤ γ1(aj−1,βj,n2 ) for all j satis-
fying aj−1 ∈ Tn(0, a1) for some n. Thus

µ([0, 1]) =
∞∑
n=1

µA(An) ≤
n2−1∑
n=1

µA(An) +
r∑
i=2

∞∑
n=n2

µA([ai−1, βi,n−2])

≤
n2−1∑
n=1

µA(An) + γ
∑
j

∞∑
n=n2

|aj−1 − βj,n| ,

where j satisfies aj−1 ∈ Tn(0, a1) for some n. Therefore µ([0, 1]) <∞.

Now we state upper estimates for a stationary density for piecewise
monotonic maps with countable partitions which naturally arise from first
return maps. Let X be a union of disjoint intervals with m(X) < ∞, S a
map from X into itself and {Ik} a countable partition of X.

Definition 4.1. (S,X, {Ik}) is called countable piecewise C1 with finite
images if S satisfies the following three conditions:

(a) S restricted to the interior of each Ik is a C1 function.
(b) 1/S′ is of bounded variation (wherever S′ is not defined we define it

as the right derivative).
(c) There are only a finite number of different intervals in the collection

{S(Ik)}.

Lemma 4.3. Assume that S : [v, w] → [v, w] is countable piecewise C1

with finite images and S′(x) ≥ λ > 1 whenever S′(x) is defined. Let P be
the Frobenius–Perron operator associated with (S,m). Then there exists a
bounded stationary density of P .

This lemma is an easy consequence of the proof of Theorem 1 in [6].

Lemma 4.4. R (the first return map of T on [a1, 1]) has an m-absolutely
continuous invariant ergodic probability measure µ whose density is bounded
in the right neighborhood of ai for i ≥ 1 and which satisfies

(4.3) m
(

[a1, 1] \
∞⋃
n=0

R−nsupp(µA)
)

= 0 .
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P r o o f. Let {Ik} be the partition of [a1, 1] with respect to the first re-
turn map R. Put ξ = inf{R′(x) ;R′(x) is defined}. Then it is easy to see
that ξ > 0. Put

ξn = inf{(Rn)′(x) ; (Rn)′(x) is defined} and ξ∗ = inf{ξn ;n ≥ 1} .
Clearly ξ∗ > 0 and we can consider the first return map R∗ of R on A∗,
where A∗ is the union of Ik with infx∈Ik

R′(x) > ξ−1
∗ . It is easy to check that

R∗ satisfies the assumption of Lemma 4.3. Thus R∗ has an m-absolutely
continuous invariant probability measure µA∗ whose density is bounded. As
a consequence, R has an m-absolutely continuous invariant probability mea-
sure µA whose density is bounded in the right neighborhood of ai for i ≥ 1.
(4.3) and ergodicity follow from Proposition 5.1 in [2].

5. Proof of Theorem. Let T be a map satisfying the assumptions of
Theorem 3.1 and let R be the first return map of T on [a1, 1]. We begin the
proof of Theorem 3.1 with the following lemmas.

Lemma 5.1. There exists an m-absolutely continuous T -invariant ergodic
probability measure µ such that

m
(

[0, 1] \
∞⋃
n=0

T−nsupp(µ)
)

= 0 .

This follows from Lemmas 4.1, 4.2 and 4.4.

Lemma 5.2. Let P be the Frobenius–Perron operator associated with T .
Then Pnf is a decreasing function for f in D0 which is a dense subset of
D(m) and for sufficiently large n.

This is shown in the proof of Theorem 4 in [5], where the assumptions
(iii) and (iv) of the introduction are not used.

Lemma 5.3. Let f ∈ D(m). Assume that there exists a nonnegative
function h such that ‖h‖L1(m) > 0 and that

lim
n→∞

‖(Pnf − h)−‖L1(m) = 0 .

Then there exists a stationary density h∗ such that

lim
n→∞

‖Pnf − h∗‖L1(m) = 0 .

For the proof of this, see the proof of Theorem 2 in [5].

P r o o f o f T h e o r e m 3.1. Throughout the proof ‖ · ‖ stands for
‖ · ‖L1(m). Let g be the density corresponding to the m-absolutely con-
tinuous T -invariant ergodic probability measure of Lemma 5.1 and let c be
an arbitrary positive constant. First, we prove that

(5.1) lim
n→∞

‖Pnf − g‖ = 0 for f ∈ D(m) with f ≤ cg .
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Let z be a positive constant satisfying
z∫

0

cg dm < 1/2 .

Then

(5.2) Pnf ≥ 1
2 · 1(0,z) for f ∈ D0 with f ≤ cg .

In fact, if not, it follows from Lemma 5.2 that there exists y ∈ [0, z) such that

1 =
y∫

0

Pnf dm+
1∫
y

Pnf dm ≤
z∫

0

cg dm+
1
2

(1− y) < 1 ,

which is impossible and (5.2) is proved. (5.2) and Lemma 5.3 imply that

lim
n→∞

‖Pnf − h∗‖ = 0 for f ∈ D0 with f ≤ cg .

Since (T,mg) is ergodic, we have h∗ = g. Thus we obtain (5.1).
Next, we prove that

(5.3) lim
n→∞

‖Pnf − g‖ = 0 for f ∈ D(m) with supp(f) ⊂ supp(g) .

Put fc = min(f, cg). Then f = ‖fc‖−1fc + rc, where rc = (1− ‖fc‖−1)fc +
f − fc. Since supp(f) ⊂ supp(g), we have limc→∞ fc(x) = f(x) for each
x. Hence ‖fc − f‖ → 0 and ‖fc‖ → ‖f‖ = 1 (c → ∞). Thus, for any
ε > 0 we can find a constant c such that ‖rc‖ < 2−1ε. Since ‖fc‖−1fc is a
density bounded by c‖fc‖−1g, it follows from the first part of the proof that
‖Pn(‖fc‖−1fc)−g‖ ≤ 2−1ε for sufficiently large n. Therefore, ‖Pnf−g‖ < ε
for sufficiently large n.

By (5.3) and Lemma 5.1, Lemma 2.1 finishes the proof.

The following lemma is used to prove Corollary 3.2 and is easily verified.

Lemma 5.4. Let T : [0, a] → [0, 1] be a continuous strictly increasing
function with T (0) = 0, where a is a positive constant. If T (x) ≥ x+Mxp

for some p > 1 and M > 0 on (0, a], then there exists a k such that

T−n(a) ≤ (k + 2−1(p− 1)Mn)1/(p−1) for all n .

P r o o f. Put τ(x) = x + Mxp. Since x < τ(x) ≤ T (x), we have
T−n(a) ≤ τ−n(a). By an elementary calculation, we have

τ

(
1

n1/(p−1)

)
≥ 1

(n− 2−1(p− 1)M)1/(p−1)
for large n .

Therefore, for a k with k1/(1−p) ≥ a, we get

T−n(a) ≤ τ−n(a) ≤ τ−n
(

1
k1/(p−1)

)
≤ 1

(k + 2−1(p− 1)nM)1/(p−1)
.
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P r o o f o f C o r o l l a r y 3.2. By Lemma 5.4 the conditions (1)–(3) and
(5) of Corollary 3.2 imply the condition (5) of Theorem 3.1.

The following lemma is used to prove Corollary 3.3.

Lemma 5.5. Let T : [a, b]→ [0, T (b)] be a strictly increasing C1 function
with T (a) = 0. If

b∫
a

log T (x) dm > −∞ ,

then for 0 < α < 1
∞∑
n=1

T−1(αn) <∞ .

For the proof of this lemma, see Lemmas 1 and 2 in [1].

P r o o f o f C o r o l l a r y 3.3. By Lemma 5.5 the conditions (1)–(3) and
(5) of Corollary 3.3 imply the condition (5) of Theorem 3.1.
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