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Positive solutions of a renewal equation

by Janusz Traple (Kraków)

Abstract. An existence theorem is proved for the scalar convolution type integral
equation x(t) =

∫∞
−∞ h(t− s)f(s, x(s)) ds.

Introduction. In the paper [1] K. L. Cooke and J. L. Kaplan initiated
theoretical analysis of the equation

(1) x(t) =
∞∫
−∞

h(t− s)f(s, x(s)) ds , t ∈ R ,

where h(s) = 1[0,τ ](s), as a model for some infectious diseases, or as the
growth equation for a single species population. They proved under the
assumptions of periodicity and continuity of f that if τ is large enough,
then there exists a positive periodic solution of (1) with period equal to the
period of f .

In this paper we study the problem of existence of a nonnegative non-
trivial solution to (1) in a general situation when h ∈ L1

+ and f is a
continuous function. This problem is much more mathematically delicate
than the periodic one, because the operator given by the right hand side
of (1) is not completely continuous in the Banach space of all continu-
ous and bounded functions on R with the supremum norm. So our meth-
ods are quite different from those of Cooke and Kaplan. In the last part
of the paper we prove the existence of a nonnegative, nontrivial, peri-
odic solution to (1) whenever f is a periodic, continuous function and
h ∈ L1

+.
The periodic case has been considered independently in an unpublished

paper of P. Kasprowski [2], but our proofs are quite different. Similar biolog-
ical models have also been studied by Swick [4] and London and Yorke [3].
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The existence theorem. We consider a convolution type, scalar inte-
gral equation of the form (1), where h is a nonnegative, integrable function
on the real line R and f is a scalar-valued, continuous function defined on
R× [0,∞). We study the problem of the existence of nonnegative, continu-
ous, bounded, not identically zero solutions of (1).

In the paper C denotes the locally convex topological vector space of
all real-valued, continuous functions on R, equipped with the topology of
uniform convergence on compact sets. We define C+ = {z ∈ C : z(t) ≥ 0
for all t ∈ R}.

The following theorems are the main results of the paper:

Theorem 1. Assume that there exist positive constants M,k, ε such that

0 ≤ f(t, x) ≤M , for t ∈ R , x ∈ [0,∞) ,(2)
f(t, x) ≥ kx , for t ∈ R , x ∈ [0, ε) ,(3)

k
∞∫
−∞

h(s) ds > 1 .(4)

Then there exists a nontrivial bounded solution x ∈ C+ of (1). Moreover ,
there exists a constant λ = λ(h, k, ε) > 0 such that on any interval [α, β]
with β − α ≥ λ,

(5) sup{x(t) : α ≤ t ≤ β} > ε .

Theorem 2. Assume that the hypotheses of Theorem 1 are satisfied.
Then for any nontrivial solution x ∈ C+ of (1) the following statements are
true:

(i) inf{t : x(t) ≥ ε} =: t1(x) < t2(x) := sup{t : x(t) ≥ ε} ,
(ii) if k

∫∞
0
h(s) ds > 1 (resp. k

∫ 0

−∞ h(s) ds > 1), then t2(x) = ∞
(resp. t1(x) = −∞),

(iii) if t2(x) < ∞ (resp. t1(x) > −∞), then x(t) → 0 as t → ∞ (resp.
t→ −∞).

Moreover , there exists a constant λ = λ(h, k, ε) > 0 such that for every
nontrivial solution x ∈ C+ of (1) inequality (5) holds, provided t1(x) ≤ α <
β ≤ t2(x), β − α ≥ λ.

Before giving the proofs of the theorems we establish some results con-
cerning convolution type inequalities. The next two lemmas play a crucial
role in the proofs of both theorems.

Let L1, L1
+, ‖ ‖1 denote, respectively, the Banach space of all integrable

functions on R, the set of all nonnegative elements of L1 and the L1 norm.
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Lemma 1. Assume that g ∈ L1
+ and ‖g‖1 > 1. Then x = 0 is the unique

bounded , continuous, nonnegative solution of the inequality

(6) x(t) ≥
∞∫
−∞

g(t− s)x(s) ds, t ∈ R .

P r o o f. For c > 0, set ηc(s) = exp(−c|s|), s ∈ R. Since ‖g‖1 > 1, there
exists a > 0 such that also ‖gηa‖1 > 1. From (6) and ηa(t) ≥ ηa(t− s)ηa(s)
for s, t ∈ R, we obtain

‖xηa‖1 ≥
∞∫
−∞

∞∫
−∞

g(t− s)ηa(t− s)x(s)ηa(s) ds dt = ‖gηa‖1‖xηa‖1 .

Therefore ‖xηa‖1 = 0 and in consequence x = 0.

For x ∈ C, ωx denotes the modulus of continuity of x, i.e. ωx(δ) =
sup{|x(t′)− x(t)| : t, t′ ∈ R, |t− t′| ≤ δ}, δ ≥ 0. If m is a function, ωx ≤ m
means ωx(δ) ≤ m(δ) for every δ ≥ 0.

Lemma 2. Let g ∈ L1
+ with ‖g‖1 > 1, let ε > 0, and let m : [0,∞) →

[0,∞) be a nondecreasing function, continuous at 0, with m(0) = 0. Then
for any uniformly continuous nontrivial solution x ∈ C+ of the inequality

(7) x(t) ≥
∞∫
−∞

g(t− s)1[0,ε](x(s))x(s) ds , t ∈ R,

the following statements are true:

(8) inf{t : x(t) ≥ ε} =: t1(x) < t2(x) := sup{t : x(t) ≥ ε},

(9) if
∫∞

0
g(s) ds > 1 (resp.

∫ 0

−∞ g(s) ds > 1), then t2(x) = ∞ (resp.
t1(x) = −∞),

(10) if t2(x) < ∞ (resp. t1(x) > −∞), then x(t) → 0 as t → ∞ (resp.
t→ −∞).

Moreover , there exists a constant λ = λ(m, g, ε) > 0 such that if addi-
tionally ωx ≤ m, then

(11) sup{x(t) : α ≤ t ≤ β} > ε for each α, β, where β − α ≥ λ.

P r o o f. Since ‖g‖1 > 1, there exists l0 > 0 such that

(12) b :=
l0∫
−l0

g(s) ds > 1 .

First of all we establish the following three properties:

Property A. For every c > 0, there exists l > 0 such that if z ∈ C+

satisfies (7) and ε ≥ z(t) ≥ c for t ∈ [α, β], then β − α < l.
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Easy computation shows that l := 2nl0, where n is a natural number
such that bn̄c > ε, satisfies the assertion of Property A.

Property B. For every d > 0 and γ > 0, there exist l > 0 and c > 0
with l ≥ d such that

(i) if
∫ l0

0
g(s) ds > 0 and if z ∈ C+ satisfies (7), z(t) ≤ ε for t ∈ [α′, β′]

where β′ − α′ ≥ l + l0 and z(t) ≥ γ for t ∈ [α′, α′ + d], then z(t) > 0 for
t ∈ [α′ + l, β′] and z(t) ≥ c for t ∈ [α′ + l, α′ + l + l0],

(ii) if
∫ 0

−l0 g(s) ds > 0 and if z ∈ C+ satisfies (7), z(t) ≤ ε for t ∈ [α′, β′]
where β′ − α′ ≥ l + l0 and z(t) ≥ γ for t ∈ [β′ − d, β′], then z(t) > 0 for
t ∈ [α′, β′ − l] and z(t) ≥ c for t ∈ [β′ − l − l0, β′ − l].

In case (i) there exist t > 0, r > 0, p > 0 such that r ≤ t ≤ l0, 4r ≤ d,
p ≤ 1 and

t̄−r∫
t̄−2r

g(s) ds ≥ p ,
t̄+2r∫
t̄+r

g(s) ds ≥ p .

Let n be a natural number such that d+ 2nr ≥ l0, and let β′ − α′ ≥ l + l0,
where l := nt− nr. Since z satisfies (7), easy computation shows that

z(t) ≥ γ
α′+d∫
α′

g(t− s) ds ≥ γp

for t ∈ [α′ + t − r, α′ + d + t − r]. Using this argument n times we obtain
z(t) ≥ γpn̄ =: c for t ∈ [α′ + l, α′ + l + l0]. Continuing we conclude that
z(t) > 0 on the whole interval [α′ + l, β′], because t ≤ l0. The proof of (ii)
is similar.

Property C. Assume that z ∈ C+ satisfies (7) and 0 < z(t) ≤ ε for
t ∈ [α′′, β′′], where β′′ − α′′ ≥ 2l0. Assume moreover that either

(i) z(t) ≥ γ > 0 for t ∈ [α′′, α′′+ l0]∪ [β′′− l0, β′′] and
∫ 0

−l0 g(s) ds < 1,∫ l0
0
g(s) ds < 1,

∫ l0
−l0 g(s) ds > 1, or

(ii) z(t) ≥ γ for t ∈ [α′′, α′′ + l0] and
∫ l0

0
g(s) ds > 1, or

(iii) z(t) ≥ γ for t ∈ [β′′ − l0, β′′] and
∫ 0

−l0 g(s) ds > 1.

Then z(t) ≥ γ for all t ∈ [α′′, β′′].

To prove this assume (i) holds. Suppose that z(t0) is the minimal value
of z on [α′′, β′′]. Then t0 ∈ [α′′ + l0, β

′′ − l0] would imply by (7) that
z(t0) ≥ z(t0)

∫ β′′

α′′ g(t0 − s) ds > z(t0), which is impossible. Thus we must
have t0 ∈ [α′′, α′′ + l0] ∪ [β′′ − l0, β′′] and in consequence z(t) ≥ γ for all
t ∈ [α′′, β′′]. The proofs in the remaining cases are similar.
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After these preparations, assume now that x ∈ C+ is a nontrivial solution
of (7). By Lemma 1 it is impossible to have x(t) ≤ ε for all t ∈ R. Hence
the quantities t1(x) and t2(x) in (8) are well defined and t1(x) < t2(x).

In order to prove (9) assume that
∫∞

0
g(s) ds > 1 and suppose contrary

to (9) that α = t2(x) < ∞. Then x(t) < ε for all t > α. Since x is
continuous and x(α) = ε, there exists d1 > 0 such that x(t) ≥ ε/2 for
t ∈ [α, α+ d1]. By Property B there exist l1 = l(ε/2, d1) and c1 = c(ε/2, d1)
such that x(t) ≥ c1 for t ∈ [α + l1, α + l1 + l0] and x(t) > 0 for all
t ≥ α + l1. Hence by Property C we obtain x(t) ≥ c1 for all t ≥ α + l1.
But this is impossible by Property A. The proof in the second case is sim-
ilar.

We will now prove (11). Let d be a constant such that m( d ) ≤ ε/2
and let l and c be the quantities given by Property B with γ = ε/2 and
d = d. Suppose that x(t) ≤ ε for t ∈ [α, β], where β − α ≥ 2l + 2l0
and x(α) = x(β) = ε. The assumption ωx ≤ m implies x(t) ≥ ε/2 for
t ∈ [α, α + d ] ∪ [β − d, β]. Consider now the following three cases: (i)
a1 :=

∫ l0
0
g(s) ds < 1 and a2 :=

∫ 0

−l0 g(s) ds < 1, (ii) a1 > 1, and (iii)
a2 > 1.

In the first case from (12) it follows that a1 > 0 and a2 > 0 and by the
definition of l and c we get x(t) ≥ c for t ∈ [α+ l, α+ l+ l0]∪ [β− l− l0, β− l]
and x(t) > 0 for all t ∈ [α + l, β − l]. Therefore Property C yields the es-
timate x(t) ≥ c for all t ∈ [α + l, β − l]. Similar reasoning shows that
the same estimate is true in the remaining cases. Hence if β − α ≥ λ :=
max{2l + 2l0, l(c) + 2l}, where l(c) is given by Property A with c = c, then
(11) is satisfied.

Now we prove (10) in the case t2(x) < ∞. We have x(t) < ε for all
t > t2(x). Suppose contrary to (10) that lim supt→∞ x(t) = δ > 0. Fix δ′

with 0 < δ′ < δ. Since x is uniformly continuous, there exist d′ > 0 and
a sequence of intervals [αn, βn] with βn − αn ≥ d′, n = 1, 2, . . . , αn → ∞,
such that x(t) ≥ δ′ for t ∈ [αn, βn], n = 1, 2, . . . Now the same reasoning
as in the proof of (11) shows the existence of some l1 = l(δ′, d′) > 0 and
c1 = c(δ′, d′) > 0 such that x(t) ≥ c1 for all t ≥ α1 + l1. But by Property A
this is impossible and thus δ = 0. The proof of (10) in the case t1(x) > −∞
is similar.

P r o o f o f T h e o r e m 1. Besides equation (1) we consider the family
of equations

(13) x(t) =
∞∫
−∞

h(t− s)f(s, x(s)) ds+ σ =: Tσ(x)(t) , t ∈ R ,

where σ ∈ (0, 1) is a constant. It is easily seen that each Tσ is a continuous
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transformation from C+ into C+. For every x ∈ C+ and σ we have

(14) |Tσ(x)(t+ s)− Tσ(x)(t)| ≤M
∞∫
−∞

|h(r + s)− h(r)| dr =: m0(s) ,

(15) σ ≤ Tσ(x)(t) ≤M
∞∫
−∞

h(s) ds+ 1 =: M0

for each t, s ∈ R. Relations (14) and (15) guaranteed by the Arzelà–Ascoli
theorem, Tσ has values in a compact, convex subset D of C+, for each σ.
Hence by the Tikhonov fixed point theorem, for each σ there exists a so-
lution xσ ∈ D of equation (13). Assumption (3) implies that the xσ are
solutions of the inequality

(16) x(t) ≥
∞∫
−∞

kh(t− s)1[0,ε](x(s))x(s) ds , t ∈ R .

Therefore Lemma 2 with g(s) = kh(s), m(s) = sup{m0(s) : 0 ≤ s ≤ s}
implies that there exists λ > 0 such that

(17) sup{xσ(t) : α ≤ t ≤ β} > ε

for all α, β ∈ R with β − α ≥ λ and all σ ∈ (0, 1). Since all xσ be-
long to a compact set D, we can find a subsequence of {xσ} which con-
verges to a function x ∈ C+ as σ → 0. Of course x is a solution of
(1) and by (17), x is nontrivial. Since x is also a solution of (16), by
Lemma 2 inequality (5) also holds. This completes the proof of Theo-
rem 1.

P r o o f o f T h e o r e m 2. The assertion of Theorem 2 follows immedi-
ately from that of Lemma 2 and the fact that under our assumptions each
solution of (1) is also a solution of (16).

The periodic theorem. In this section we consider equation (1) under
the additional assumption that f is periodic. We suppose that f(t+ω, x) =
f(t, x) for all t ∈ R , x ∈ [0,∞). The following theorem is a generalization
of Theorem 1 of [1].

Theorem 3. Assume the hypotheses of Theorem 1. If f is an ω-periodic
function, then equation (1) has an ω-periodic, nontrivial solution.

P r o o f. From the proof of Theorem 1 it follows immediately that if G
is a closed, convex subset of C and Tσ(G) ⊂ G for each σ > 0, then the
solution given by Theorem 1 belongs to G. Therefore, since under our as-
sumptions the set of all ω-periodic functions satisfies the above condition,
the solution given by Theorem 1 is an ω-periodic function.
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