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Uniformly convex functions

by Wancang Ma†‡ and David Minda‡ (Cincinnati, OH)

Abstract. Recently, A. W. Goodman introduced the geometrically defined class UCV
of uniformly convex functions on the unit disk; he established some theorems and raised
a number of interesting open problems for this class. We give a number of new results for
this class. Our main theorem is a new characterization for the class UCV which enables us
to obtain subordination results for the family. These subordination results immediately
yield sharp growth, distortion, rotation and covering theorems plus sharp bounds on the
second and third coefficients. We exhibit a function k in UCV which, up to rotation, is the
sole extremal function for these problems. However, we show that this function cannot
be extremal for the sharp upper bound on the nth coefficient for all n. We establish this
by obtaining the correct order of growth for the sharp upper bound on the nth coefficient
over the class UCV and then demonstrating that the nth coefficient of k has a smaller
order of growth.

1. Introduction. Goodman [G1] introduced the geometrically defined
class UCV of uniformly convex functions on the unit disk D = {z : |z| < 1}.
A function f is said to be uniformly convex in D if f(z) is a normalized
(f(0) = f ′(0)− 1 = 0) convex function and has the property that for every
circular arc γ contained in D, with center also in D, the image arc f(γ) is a
convex arc. He derived a characterization of uniformly convex functions: a
function f(z) = z+ a2z

2 + a3z
3 + . . . which is holomorphic on D belongs to

UCV if and only if for every pair (z, ζ) in the polydisk D× D

1 + Re{(z − ζ)f ′′(z)/f ′(z)} ≥ 0 .

So far this two-variable characterization has not led to any sharp estimates
for the class UCV. The best known bounds on the coefficients for the family
UCV are |an| ≤ 1/n (n = 2, 3, . . .) [G1]. Also, Goodman [G1] proved that
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the condition
∞∑
n=2

n(n− 1)|an| ≤
1
3

is sufficient for a function to belong to UCV and that the constant 1/3 is
best possible. In [G2], Goodman noted that so far there was no reasonable
conjecture for the upper bound on |an| in the class UCV. One reason for
this is that there was no obvious guess for possible extremal functions.

In this paper we introduce a function in the family UCV, which turns out
to be extremal for various problems. In order to prove that this function
is indeed extremal, we obtain one-variable characterizations for functions
in UCV which are closely related to Goodman’s characterization. These
one-variable characterizations enable us to derive some subordination results
for the class UCV which yield sharp distortion, growth, rotation and cover-
ing theorems as well as sharp bounds on the second and third coefficients.
We also obtain the sharp order of growth for the coefficients. However, the
extremal function for the second and third coefficients cannot be extremal
for all n ≥ 4.

After the completion of this paper, we became aware of the related,
independent work of Rønning [Rø]. There is some overlap between the two
papers; we indicate the duplication at the appropriate places.

2. The class PAR. The class CV of normalized convex univalent func-
tions is closely related to the class P of normalized holomorphic functions
with positive real part. Recall that a holomorphic function p defined on D
belongs to P provided that p(0) = 1 and Re{p(z)} > 0, z ∈ D. Precisely, a
normalized locally univalent function f defined on D is in CV if and only if
p(z) = 1 + zf ′′(z)/f ′(z) belongs to P . We now introduce a subfamily PAR
of P that plays an analogous role for the class UCV. Let

Ω = {w = u+ iv : v2 < 2u− 1} = {w : Rew > |w − 1|} .
Note that Ω is the interior of a parabola in the right half-plane which is
symmetric about the real axis and has vertex at (1/2, 0). Let

PAR = {p ∈ P : p(D) ⊆ Ω} .
Example 1. It is known [K, p. 125] that z = − tan2(

√
ωπ/2

√
2) maps

{ω = µ + iυ : υ2 < 1 − 2µ} conformally onto D. Hence, z =
− tan2(

√
1− wπ/2

√
2) maps Ω conformally onto D. Let w = q(z) be the

inverse function. Then q is a Riemann mapping function from D to Ω which
satisfies q(0) = 1; more explicitly,

q(z) = 1+
2
π2

(
log

1 +
√
z

1−
√
z

)2

=
∞∑
n=0

Bnz
n = 1+

8
π2

∞∑
n=1

(
1
n

n−1∑
k=1

1
2k + 1

)
zn .
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Obviously, q belongs to the class PAR. Geometrically, PAR consists of
those normalized (p(0) = 1) holomorphic functions p defined on D which
are subordinate to q, written p ≺ q. From the elementary inequality

n−1∑
k=0

1
2k + 1

< 1 +
1
2

log(2n− 1) ,

we have the bound

Bn <
8
nπ2

(
1 +

1
2

log(2n− 1)
)

for n ≥ 1.

There is an analytic characterization of the class PAR that is useful.

Theorem 1. Suppose p is a normalized (p(0) = 1) holomorphic function
in D. Then p ∈ PAR if and only if Re{p(z)} ≥ |p(z)− 1|/|z|.

P r o o f. If p satisfies Re{p(z)} ≥ |p(z)− 1|/|z|, then clearly Re{p(z)} ≥
|p(z)− 1|, so p ∈ PAR.

Next we want to prove that each p ∈ PAR satisfies the inequality. It
suffices to verify the inequality at any fixed point a in D. Consider any r
with |a| < r < 1. Then for |z| = r we have

Re{p(z)} ≥ |p(z)− 1| = r|p(z)− 1|/|z| .
Because Re{p(z)} is harmonic and r|p(z) − 1|/|z| is subharmonic, we may
conclude that the preceding inequality actually holds for |z| < r. In partic-
ular, we have

Re{p(a)} ≥ r|p(a)− 1|/|a| .
By letting r tend to 1 we obtain the desired result.

R e m a r k. The sharp coefficient bounds for functions in the class PAR
are immediate consequences of a result of Rogosinski [R] for subordinate
functions. Clearly, q(z) is a convex univalent function in D and q(D) is not
a half-plane. His result implies that for p(z) = 1 + b1z + b2z

2 + . . . ∈ PAR,

|bn| ≤ 8/π2 = B1 (n = 1, 2, . . .)

with equality if and only if p(z) = q(eiθzn) for some θ ∈ R.

3. Characterizations of UCV. We present one-variable characteriza-
tions of functions in UCV.

Theorem 2. Assume that f(z) is holomorphic and locally univalent in
D with f(0) = f ′(0)− 1 = 0. Then the following are equivalent :

(i) f ∈ UCV;
(ii) 1 + zf ′′(z)/f ′(z) ∈ PAR;
(iii) 1 + Re{zf ′′(z)/f ′(z)} ≥ |f ′′(z)/f ′(z)| (z ∈ D).
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P r o o f. Set p(z) = 1 + zf ′′(z)/f ′(z). We show that Goodman’s charac-
terization of UCV yields (ii). Fix z ∈ D. For any r ∈ (0, 1) let

ζ = r exp
{
− iArg

f ′′(z)
f ′(z)

}
.

Then from Goodman’s characterization of UCV we obtain

1 + Re{zf ′′(z)/f ′(z)} ≥ r|f ′′(z)/f ′(z)| ,
or Re{p(z)} ≥ r|p(z) − 1|. By letting r tend to 1, we get the inequality
which shows that p ∈ PAR.

The equivalence of (ii) and (iii) follows from Theorem 1.
Now we verify that (iii) implies (i). From (iii) we have

1 + Re{zf ′′(z)/f ′(z)} ≥ |f ′′(z)/f ′(z)| ≥ Re{ζf ′′(z)/f ′(z)}
for any ζ ∈ D. Clearly, this is equivalent to Goodman’s characterization of
UCV.

Note that condition (iii) above appears to be stronger than condition (ii).
Also, condition (ii) is sometimes easier to use rather than (iii) in checking
whether a function is in UCV. Condition (ii) is analogous to the charac-
terization of convex functions in terms of the class P . The equivalence of
conditions (i) and (ii) was also established by Rønning [Rø, Thm. 1].

Example 2. We now specify a holomorphic function k in D by k(0) =
k′(0)− 1 = 0 and

1 + zk′′(z)/k′(z) = q(z) ,
where q is the conformal mapping onto Ω given in Example 1. Then it is
clear from Theorem 2 that k is in UCV. We will see in Sections 4 and 5
that this function is extremal for some problems in the family UCV. Let

k(z) = z +A2z
2 +A3z

3 + . . .

When necessary, we set A1 = 1. From the relationship between the functions
p and k, we obtain

n(n− 1)An =
n−1∑
k=1

kAkBn−k .

Since all of the coefficients Bn are positive, it follows that all of the coeffi-
cients An are also positive. In particular,

2A2 = B1 =
8
π2
, 6A3 = B2 +B2

1 =
16
3π2

+
64
π4

.

Note that

log k′(z) =
z∫

0

q(ζ)− 1
ζ

dζ =
∞∑
n=1

Bn
n
zn .



Uniformly convex functions 169

Since
Bn
n

<
8

n2π2

(
1 +

1
2

log(2n− 1)
)
,

we see that log k′ is continuous in D. Therefore, k itself is continuous in D.
It is interesting to note that the function (π2/8)(k′(z) − 1) belongs to

the class CV. As q(z) is univalent in D, (q(z)− 1)/z 6= 0 in D. Direct
computation gives that

1 +
zk′′′(z)
k′′(z)

=
zq′(z)
q(z)− 1

+ q(z)− 1 .

Note that (π2/8)(q(z)− 1) is in CV, which implies (see [D, p. 73])

Re
{

zq′(z)
q(z)− 1

}
>

1
2

(z ∈ D) .

Also note that Re{q(z)− 1} > −1/2 in D. Hence, we have

Re
{

1 +
zk′′′(z)
k′′(z)

}
> 0 (z ∈ D) .

This implies that (π2/8)(k′(z)− 1) is in the class CV.

4. Subordination theorem and consequences. In this section,
we first derive some subordination results from Theorem 2; as corollaries
we obtain sharp distortion, growth, covering and rotation theorems for the
family UCV.

Theorem 3. Assume that f ∈ UCV. Then 1 + zf ′′(z)/f ′(z) ≺ 1 +
zk′′(z)/k′(z) and f ′(z) ≺ k′(z).

P r o o f. Let p(z) = 1 + zf ′′(z)/f ′(z). Then 1 + zf ′′(z)/f ′(z) ≺ 1 +
zk′′(z)/k′(z) is the same as p(z) ≺ q(z), which follows from Theorem 2(ii).
Note that q(z)− 1 is a convex univalent function in D. By using a result of
Goluzin [G] (see also [P, p. 50]) we may conclude that

log f ′(z) =
z∫

0

p(ζ)− 1
ζ

dζ ≺
z∫

0

q(ζ)− 1
ζ

dζ = log k′(z) .

Equivalently, f ′(z) ≺ k′(z). This completes the proof of Theorem 3.

Corollary 1 (Distortion Theorem). Assume f ∈ UCV and |z| = r < 1.
Then

k′(−r) ≤ |f ′(z)| ≤ k′(r) .
Equality holds for some z 6= 0 if and only if f is a rotation of k.

P r o o f. Since q(z)−1 is convex univalent in D, it follows that log k′(z) is
also convex univalent in D. In fact, the power series for log k′(z) has positive
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coefficients, so the image of D under this convex function is symmetric about
the real axis. As log f ′(z) ≺ log k′(z), the subordination principle shows that

k′(−r) = exp{log k′(−r)} = exp{min
|z|=r

Re log k′(z)}

≤ exp{Re log f ′(z)} = |f ′(z)|
≤ exp{max

|z|=r
Re log k′(z)} = exp{log k′(r)} = k′(r) .

Note that for |z0| = r, either

Re{log f ′(z0)} = min
|z|=r

Re{log k′(z)}

or
Re{log f ′(z0)} = max

|z|=r
Re{log k′(z)}

for some z0 6= 0 if and only if log f ′(z) is log k′(eiθz) for some θ ∈ R; this
follows from the principle of subordination. Therefore, the equality assertion
holds. This completes our proof.

Rønning [Rø, Thm. 6] obtains the uniform upper bound |f ′(z)| ≤ N ,
where

N = exp
(

14
π2
ζ(3)

)
= 5.502 . . . ,

and ζ(t) denotes the Riemann Zeta function.
By making use of standard techniques and Corollary 1, we obtain the

following growth and covering theorems.

Corollary 2 (Growth Theorem). Let f ∈ UCV and |z| = r < 1. Then

−k(−r) ≤ |f(z)| ≤ k(r) .

Equality holds for some z 6= 0 if and only if f is a rotation of k.

Corollary 3 (Covering Theorem). Suppose f ∈ UCV. Then either f
is a rotation of k or f(D) ⊇ {w : |w| ≤ −k(−1)}.

Recall that k is continuous on D so k(−1) makes sense. Also, −k(−1) <
k(1) since the power series for k has positive coefficients. From Corollary 2
it follows that the functions in UCV are uniformly bounded above by the
sharp constant k(1). The following rotation theorem follows from the sub-
ordination f ′ ≺ k′ given in Theorem 3.

Corollary 4 (Rotation Theorem). Let f ∈ UCV and |z0| = r < 1.
Then

|Arg {f ′(z0)}| ≤ max
|z|=r

Arg{k′(z)} .

Equality holds for some z0 6= 0 if and only if f is a rotation of k.



Uniformly convex functions 171

5. Coefficient bounds. We first give sharp bounds on the second and
third coefficients for functions in UCV. Then we obtain the sharp order of
growth for the coefficients of functions in UCV.

For f(z) = z + a2z
2 + a3z

3 + . . . ∈ UCV, define

p(z) = 1 + zf ′′(z)/f ′(z) = 1 + b1z + b2z
2 + . . .

Then

n(n− 1)an =
n−1∑
k=1

kakbn−k .

In particular, 2a2 = b1 and 6a3 = b2 + b21. Recall the analogous expressions
related to k and q that were given in Examples 1 and 2.

Theorem 4. Let f(z) = z + a2z
2 + a3z

3 + . . . ∈ UCV. Then we have
the sharp bounds

|a2| ≤ A2 = 4/π2 , |a3| ≤ A3 = 8/(9π2) + 32/(3π4) .

Equality holds in either inequality if and only if f is a rotation of k.

P r o o f. Since p ≺ q, we have |b1| ≤ B1 with equality if and only if p(z)
is q(eiθz) for some θ ∈ R. This implies that |a2| ≤ A2 with equality if and
only if f is a rotation of k. Rønning [Rø, Thm. 5] also obtained this bound.

Moreover, a result of Rogosinski for subordinate functions ([R], see also
[D, p. 192]) gives

|b1|2 + |b2|2 ≤ B2
1 +B2

2 .

So
6|a3| ≤ |b1|2 + |b2| ≤ |b1|2 + 1

2B2(1 + |b2|2/B2
2)

= 1
2B2 + (1− 1/(2B2))|b1|2 + (|b1|2 + |b2|2)/(2B2)

≤ 1
2B2 + (1− 1/(2B2))B2

1 + (B2
1 +B2

2)/(2B2) = B2 +B2
1 = 6A3 .

Note that we have employed the inequality |b1| ≤ B1 here, so equality holds
if and only if f is a rotation of k. This completes the proof of Theorem 4.

In order to give the sharp order of growth for the coefficients of a function
in UCV, we shall need the following example.

Example 3. We define holomorphic functions kn(z) (n = 2, 3, . . .) in
the unit disk D by kn(0) = k′n(0)− 1 = 0 and

1 +
zk′′n(z)
k′n(z)

= q(zn−1) ,

where q(z) is given in Example 1. It is clear that k2(z) = k(z) and

kn(z) = z +
8

n(n− 1)π2
zn + . . .
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This implies the lower bound

max
f∈UCV

|an| ≥
8

n(n− 1)π2
.

Rønning [Rø, Cor. 1 of Thm. 2] showed that the function f(z) = z + αzn ∈
UCV if and only if |α| ≤ 1/(n(2n− 1)); this result is due to Goodman [G1]
in the case n = 2. Note that 8/(n(n − 1)π2) > 1/(n(2n − 1)) for every
n = 2, 3, . . .

Theorem 5. Let f(z) = z + a2z
2 + a3z

3 + . . . ∈ UCV. Then we have
the sharp order of growth |an| = O(1/n2).

P r o o f. From Example 3, we see that this order is best possible. We
now show that there exists a constant M such that n2(n − 1)2|an|2 ≤ M2.
Because p ≺ q and f ′ ≺ k′, we have

n−1∑
k=1

|bk|2 ≤
n−1∑
k=1

B2
k

and

1 +
n−1∑
k=2

k2|ak|2 ≤ 1 +
n−1∑
k=2

k2A2
k

by Rogosinski’s result ([R], see also [D, p. 192]). From

n(n− 1)an =
n−1∑
k=1

kakbn−k ,

we obtain

n2(n− 1)2|an|2 ≤
( n−1∑
k=1

|bk|2
)(

1 +
n−1∑
k=2

k2|ak|2|
)

≤
( n−1∑
k=1

B2
k

)(
1 +

n−1∑
k=2

k2A2
k

)
by using the Cauchy–Schwarz inequality and the Rogosinski-type results.
From the bound on Bk given in Example 1, we have

∞∑
k=1

B2
k <

64
π4

∞∑
k=1

k−2

(
1 +

1
2

log(2k − 1)
)2

<∞ .

Furthermore, observe that

1 +
∞∑
k=2

kAkz
k−1 = k′(z) = exp

{ ∞∑
k=1

k−1Bkz
k
}
.
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Then an inequality of Milin (see [P, p. 81]) gives

1 +
∞∑
k=2

k2A2
k ≤ exp

{ ∞∑
k=1

k−1B2
k

}
<∞ .

The proof of Theorem 5 is complete if we set

M2 =
( ∞∑
k=1

B2
k

)(
1 +

∞∑
k=2

k2A2
k

)
.

Rønning’s work [Rø, Thm. 5] implies our Theorem 5. Since we also
employ our method of proof in Section 6, we have included our proof.

R e m a r k. We know that f ′(z)−1 ≺ k′(z)−1 from Theorem 3 and that
(π2/8)(k′(z)− 1) is in the class CV from Example 2. Rogosinski’s result [R]
for subordinate functions implies that if f(z) = z+a2z

2 +a3z
3 + . . . ∈ UCV,

then n|an| ≤ 2A2 = 8/π2 (n = 2, 3, . . .). Moreover,

n(n− 1)|an| ≤
n−1∑
k=1

k|ak||bn−k|

= |bn−1|+
n−1∑
k=2

k|ak||bn−k| ≤
8
π2

+
64
π4

(n− 2) .

Here we have used the bound |bk| ≤ 8/π2 which is given in Section 2.
Therefore, we have for n ≥ 4,

n|an| ≤
8

3π2
+

128
3π4

< 0.71 ,

which improves Goodman’s result that n|an| ≤ 1 [G1]. This upper bound
can be slightly improved by iterating the preceding method.

6. Open problems. It might seem that Theorem 4 suggests that the
coefficients of the function k provide sharp upper bounds on all coefficients
for the class UCV. Unfortunately, this nice situation cannot be the case
for all n sufficiently large since we can show that An = O((log n)2/n3) as
n → ∞. From the proof of Theorem 5, we know that there is a finite
constant M such that n(n− 1)An ≤M for all n. Hence we have

n(n−1)An =
n−1∑
k=1

(n− k)An−kBk ≤ Bn−1 +M

n−2∑
k=1

1
n− k − 1

Bk

<
8

(n− 1)π2

(
1 +

1
2

log(2n− 3)
)

+
8M
π2

n−2∑
k=1

1
k(n− k − 1)

(
1 +

1
2

log(2k − 1)
)
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=
8

(n− 1)π2

{
1 +

1
2

log(2n− 3)

+M

n−2∑
k=1

1
k

(
2 +

1
2

log(2k − 1) +
1
2

log(2n− 2k − 3)
)}

<
8

(n− 1)π2

{
1 +

1
2

log(2n− 3) +M(2 + log(2n− 5))
n−2∑
k=1

1
k

}
<

8
(n− 1)π2

(
1 +

1
2

log(2n− 3)
)

(1 + 2M +M log(2n− 5)) ,

which tends to zero as n tends to infinity.
Therefore, for the class UCV plausible sharp coefficient bounds and as-

sociated extremal functions for all n ≥ 4 remain open problems. Also, what
is the smallest value of n such that the nth coefficient of k does not provide
the sharp upper bound on the nth coefficient over the class UCV? Perhaps
as n increases, the extremal function for the nth coefficient might change
from k(z) = k2(z) to km(z) with 2 < m ≤ n.

It would be of interest to give an internal geometric characterization of
uniformly convex regions. Specifically, a region Ω in the complex plane is
called uniformly convex if Ω = f(D) for some function f in UCV. Can one
find an internal geometric condition on a convex region Ω containing the
origin which is necessary and sufficient for the Riemann mapping function
f of D onto Ω which satisfies f(0) = 0 to belong to UCV after possible
normalization of the derivative at the origin? Since the class UCV is not
linearly invariant [G1] it seems that the base point 0 inΩ must play some role
in this geometric characterization. Also, the characterization of uniformly
convex regions should be invariant under rotations about the origin and
stretchings.

Acknowledgements. We wish to thank A. W. Goodman for bring-
ing the work of F. Rønning to our attention and R. Barnard for a useful
suggestion.

References

[D] P. Duren, Univalent Functions, Grundlehren Math. Wiss. 259, Springer, New York
1983.

[G] G. M. Goluz in, On the majorization principle in function theory , Dokl. Akad.
Nauk SSSR 42 (1935), 647–650 (in Russian).

[G1] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991),
87–92.

[G2] —, Coefficient problems in geometric function theory , to appear.



Uniformly convex functions 175

[K] H. Kober, Dictionary of Conformal Representations, Dover, New York 1957.
[P] Ch. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen

1975.
[R] W. Rogos insk i, On the coefficients of subordinate functions, Proc. London Math.

Soc. 48 (1943), 48–82.
[Rø] F. Rønning, Uniformly convex functions and a corresponding class of starlike

functions, Proc. Amer. Math. Soc., to appear.

DEPARTMENT OF MATHEMATICAL SCIENCES

UNIVERSITY OF CINCINNATI

CINCINNATI, OHIO 45221-0025

U.S.A.
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Added in proof (May 1992). In the notation of Theorem 4, we can now show that
|a4| ≤ A4. The open problems in Section 6 should be modified accordingly.


