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Generalized solutions to boundary value problems
for quasilinear hyperbolic systems

of partial differential-functional equations

by Tomasz Cz lapiński (Gdańsk)

Abstract. Generalized solutions to quasilinear hyperbolic systems in the second
canonical form are investigated. A theorem on existence, uniqueness and continuous
dependence upon the boundary data is given. The proof is based on the methods due to
L. Cesari and P. Bassanini for systems which are not functional.

1. Introduction. We denote by C(X,Y ) the set of all continuous
functions from X to Y , where X,Y are any metric spaces. Let a0 > 0,
B = [−b0, 0] × [−b, b], where b0 ∈ R+, b = (b1, . . . , br) ∈ Rr+, R+ = [0,∞).
For z : [−b0, a0] × Rr → Rm and (x, y) = (x, y1, . . . , yr) ∈ [0, a0] × Rr,
define z(x,y) : B → Rm by z(x,y)(t, s) = z(x + t, y + s), (t, s) ∈ B. Put
Ω = [0, a0]×Rr×C(B,Rm), and denote by M(m, r) the set of all real m×r
matrices.

Let
A : Ω →M(m,m) , A = [Aij ], i, j = 1, . . . ,m,
% : Ω →M(m, r), % = [%ij ], i = 1, . . . ,m, j = 1, . . . , r,

f : Ω →M(m, 1), f = [f1, . . . , fm]T ,

be given functions of the variables (x, y, w), y=(y1, . . . , yr), w=(w1, . . . , wr),
and T the transpose symbol. Note that if (x, y) ∈ [0, a0]× Rr is fixed then
A(x, y, ·), %(x, y, ·), f(x, y, ·) are operators on the function space C(B,Rm).
Furthermore, let

Bl : Rr →M(m,m), Bl = [Blij ], i, j = 1, . . . ,m,
ψ : Rr → Rr, ψ = (ψ1, . . . , ψr) ,

where l=1, . . . , N , m≤N , be given functions of the variable y=(y1, . . . , yr).
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We consider the following hyperbolic differential-functional system in the
second canonical form:

(1)
m∑
j=1

Aij(x, y, z(x,y))
[
Dxzj(x, y) +

r∑
k=1

%ik(x, y, z(x,y))Dyk
zj(x, y)

]
= fi(x, y, z(x,y)), i = 1, . . . ,m ,

with the boundary data on N arbitrary (not necessarily distinct) hyper-
planes x = al, al ∈ [0, a0], l = 1, . . . , N ,

(2)
N∑
l=1

Bl(y)z(al, y) = ψ(y), y ∈ Rr .

A function z ∈ C(Ia,Rm), Ia = [0, a]×Rr, where a ∈ (0, a0], is a solution
of (1), (2) if z has partial derivatives Dxz, Dyk

z, k = 1, . . . , r, a.e. on Ia,
satisfies (1) a.e. on Ia and (2) for all y ∈ Rr.

If b0 = 0 and b = 0 then the differential-functional system (1) reduces
to a differential system in the second canonical form. Generalized (a.e.)
solutions of systems of that form have been investigated in a large number
of papers. We mention here the papers of P. Bassanini [1]–[3] and L. Ce-
sari [5], [6]. Quasilinear hyperbolic systems with a retarded argument have
been studied by Z. Kamont and J. Turo [12]–[15]. In [19]–[22] J. Turo has
also considered the existence and uniqueness of generalized solutions for
differential-functional hyperbolic systems with operators of Volterra type.
In that case the given functions are superpositions of functions defined on
subsets of a finite-dimensional Euclidean space with operators of Volterra
type. The main assumptions for the operators have been formulated in the
form of linear inequalities given on some function space. Classical solutions
to nonlinear equations with the same model of functional dependence have
been investigated in [11], [18].

In this paper we consider a new model of differential-functional systems
which has been used in [9] for initial value problems. For each (x, y) ∈
[−b0, a0] × Rr and for any z : [−b0, a0] × Rr → Rm we denote by z(x,y) the
translation of the restriction of z to B. In other words, the graph of z(x,y) is
the graph of z : [x− b0, x]× [y− b, y+ b]→ Rm shifted to B. Since the given
functions are now operators on z(x,y) we no longer need the assumption that
the right-hand side of the system is the superposition of some function and
an operator of Volterra type. This simple model is well known for ordi-
nary differential-functional equations (see [10], [16]). It is also very general
since systems of differential equations with retarded argument ([12]–[15]),
differential-integral systems ([17]) and differential-functional systems with
operators of Volterra type ([19]–[22]) can be obtained from (1) by special-
izing the given functions. Our formulation of the problem enables us to get
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new examples of differential-functional systems which cannot be obtained
from the results cited above. More detailed comparison between the model
of functional dependence proposed in this paper and that used in [19]–[22]
is presented in [7], [8]. The method which we use is based on the Banach
fixed point theorem in a product space and it is close to that used in [14].

2. Assumptions and notations. Let ‖η‖m= max1≤i≤m |ηi| in Rm and
‖U‖m,k = max1≤i≤m

∑m
j=1 |Uij | in M(m, k). For short we write ‖η‖, ‖U‖.

For w ∈ C(B,Rm) put ‖w‖0 = sup{‖w(t, s)‖ : (t, s) ∈ B}. Let C0+L(B,Rm)
denote the set of all functions w ∈ C(B,Rm) such that

‖w‖L = sup{[|t− t|+‖w−w‖]−1‖w(t, s)−w(t, s)‖ : (t, s), (t, s) ∈ B} <∞ .

We equip this set with the norm ‖w‖0+L = ‖w‖0 +‖w‖L, w ∈ C0+L(B,Rm).
Furthermore, for any q ∈ R+ we set C(B,Rm, q) = {w ∈ C(B,Rm) : ‖w‖0 ≤
q}, C0+L(B,Rm, q) = {w ∈ C0+L(B,Rm) : ‖w‖0+L ≤ q}.

Assumption H1. 1o A ∈ C(Ω,M(m,m)) and there is a constant ν > 0
such that detA(x, y, w) ≥ ν for any (x, y, w) ∈ Ω.

2o There are nondecreasing functions n, l : R+ → R+ such that for any
q ∈ R+ we have

(i) ‖A(x, y, w)‖ ≤ n(q), (x, y, w) ∈ [0, a0]× Rr × C(B,Rm, q),
(ii) ‖A(x, y, w) − A(x, y, w)‖ ≤ l(q)[|x − x| + ‖y − y‖ + ‖w − w‖0],

(x, y, w), (x, y, w) ∈ [0, a0]× Rr × C0+L(B,Rm, q).
R e m a r k 1. Assumption H1 yields that A−1(x, y, w) exists for any

(x, y, w) ∈ Ω. Furthermore, there are nondecreasing n′, l′ : R+ → R+ such
that condition 2o of Assumption H1 holds with A,n, l replaced by A−1, n′, l′,
respectively.

Let θ denote the set of all functions l : [0, a0] × R+ → R+ such that
l(·, q) : [0, a0]→ R+ is measurable for any q ∈ R+, and l(x, ·) : R+ → R+ is
nondecreasing for a.e. x ∈ [0, a0].

Assumption H2. 1o %(·, y, w) : [0, a0] → M(m, r) is measurable for all
(y, w) ∈ Rr × C(B,Rm).

2o %(x, ·) : Rr × C(B,Rm)→M(m, r) is continuous for a.e. x ∈ [0, a0].
3o There are a nondecreasing function n1 : R+ → R+ and l1 ∈ θ such

that for any q ∈ R+ we have

(i) ‖%(x, y, w)‖ ≤ n1(q), (x, y, w) ∈ [0, a0]× Rr × C(B,Rm, q),
(ii) ‖%(x, y, w)−%(x, y, w)‖≤l1(x, q)[‖y − y‖+‖w − w‖0] for all (y, w),

(y, w) ∈ Rr × C0+L(B,Rm, q) and for a.e. x ∈ [0, a0].

Assumption H3. 1o f(·, y, w) : [0, a0] → M(m, 1) is measurable for all
(y, w) ∈ Rr × C(B,Rm).

2o f(x, ·) : Rr × C(B,Rm)→M(m, 1) is continuous for a.e. x ∈ [0, a0].
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3o There are a nondecreasing function n2 : R+ → R+ and l2 ∈ θ such
that for any q ∈ R+ we have

(i) ‖f(x, y, w)‖ ≤ n2(q), (x, y, w) ∈ [0, a0]× Rr × C(B,Rm, q),
(ii) ‖f(x, y, w)− f(x, y, w)‖ ≤ l2(x, q)[‖y− y‖+ ‖w−w‖0] for all (y, w),

(y, w) ∈ Rr × C0+L(B,Rm, q) and for a.e. x ∈ [0, a0].

For (x, y, w) ∈ Ω, l = 1, . . . , N , we put

(3)
A(x, y, w) = E + Ã(x, y, w), A−1(x, y, w) = E +A(x, y, w),

Bl(y) = El + B̃l(y), E = [δij ], El = [δliδij ], i, j = 1, . . . ,m ,

and

σ0 = sup
{ N∑
l=1

‖B̃l(y)‖ : y ∈ Rr
}
,

σ1 = sup{‖Ã(x, y, w)‖ : (x, y, w) ∈ Ω} ,
σ2 = sup{‖A(x, y, w)‖ : (x, y, w) ∈ Ω} .

Assumption H4. 1o ψ ∈ C(Rr,Rm) and there are constants Γ,Λ ∈ R+

such that for all y, y ∈ Rr we have

‖ψ(y)‖ ≤ Γ, ‖ψ(y)− ψ(y)‖ ≤ Λ‖y − y‖ .
2o Bl ∈ C(Rr,M(m,m)), detBl(y) 6= 0 for all l = 1, . . . , N , y ∈ Rr, and

there is a constant G ∈ R+ such that
N∑
l=1

‖Bl(y)−Bl(y)‖ ≤ G‖y − y‖, y, y ∈ Rr .

3o (σ0 + σ1)(1 + σ2) < 1.

We denote by B1(a,Q,Q1, Q2), where a ∈ (0, a0], Q,Q1, Q2 ∈ R+, the
set of all functions z ∈ C(Ia,Rm) such that for all (x, y), (x, y) ∈ Ia we have

(i) ‖z(x, y)‖ ≤ Q,
(ii) ‖z(x, y)− z(x, y)‖ ≤ Q1|x− x|+Q2‖y − y‖.
Note that B1(a,Q,Q1, Q2) is a closed subset of the Banach space of

all continuous and bounded vector functions z : Ia → Rm with the norm
‖z‖Ia

= sup{‖z(x, y)‖ : (x, y) ∈ Ia}.
For a ∈ (0, a0] define the constants Lia(Q,Q1, Q2) =

∫ a
0
li(t, Q + Q1

+Q2) dt, i = 1, 2. In the sequel we write Lia for short.
Let a ∈ (0, a0] be so small that

(4) L1a(1 +Q2) < 1 ,

and let Q,Q1, Q2 ∈ R+, p ∈ (0, 1). Then we denote by B2(a,Q,Q1, Q2, p)
the set of all functions h ∈ C(∆a,M(m, r)), ∆a = [0, a] × [0, a] × Rr, such
that for all (x, x, y), (ξ, x, y), (ξ, x, y) ∈ ∆a, i = 1, . . . ,m, we have
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(i) hi(x, x, y) = 0,
(ii) ‖hi(ξ, x, y)−hi(ξ, x, y)‖ ≤ n1(Q)|ξ− ξ|+ γan1(Q)|x−x|+ p‖y− y‖,

where γa = [1 − L1a(1 + Q2)]−1, hi = (hi1, . . . , hir). It is easily seen that
B2(a,Q,Q1, Q2, p) is a closed subset of the Banach space of all continuous
and bounded matrix functions h : ∆a → M(m, r) with the norm ‖h‖∆a

=
max1≤i≤m sup{‖hi(ξ, x, y)‖ : (ξ, x, y) ∈ ∆a}. Indeed, for all (ξ, x, y) ∈ ∆a,
i = 1, . . . ,m, we have

‖hi(ξ, x, y)‖ = ‖hi(ξ, x, y)− hi(x, x, y)‖ ≤ n1(Q)|ξ − x| ≤ n1(Q)a ,

which yields ‖h‖∆a ≤ n1(Q)a.
For any h ∈ B2(a,Q,Q1, Q2, p) let g : ∆a →M(m, r) be defined by

(5) gi(ξ, x, y) = y + hi(ξ, x, y), (ξ, x, y) ∈ ∆a, i = 1, . . . ,m ,

where gi = (gi1, . . . , gir), hi = (hi1, . . . , hir). Then for all (x, x, y), (ξ, x, y),
(ξ, x, y) ∈ ∆a, i = 1, . . . ,m, we have

(i) gi(x, x, y) = y,
(ii) ‖gi(ξ, x, y)−gi(ξ, x, y)‖ ≤ n1(Q)|ξ−ξ|+γan1(Q)|x−x|+(1+p)‖y−y‖.

3. The operators V (1), V (2) and their properties. Let 〈·, ·〉 be a
scalar product in Rm, let gi(t, x, y) be defined by (5) and set

z∗i (t, x, y) = (z1(t, gi(t, x, y)), . . . , zm(t, gi(t, x, y))) ,
A∗i (t, x, y)

= (Ai1(t, gi(t, x, y), z(t,gi(t,x,y))), . . . , Aim(t, gi(t, x, y), z(t,gi(t,x,y)))) .

We consider the operators Z = V (1)[z, h], H = V (2)[z, h] defined for z ∈
B1(a,Q,Q1, Q2), h ∈ B2(a,Q,Q1, Q2, p) as follows:

Z(x, y) = A−1(x, y, z(x,y))(∆1(x, y) +∆2(x, y) +∆3(x, y)) ,
∆k(x, y) = (∆k1(x, y), . . . ,∆km(x, y)), k = 1, 2, 3,

∆1i(x, y) = ψi(gi(ai, x, y)) +
x∫

ai

fi(t, gi(t, x, y), z(t,gi(t,x,y))) dt,

∆2i(x, y) =
x∫

ai

〈DtA
∗
i (t, x, y), z∗i (t, x, y)〉 dt(6)

+ 〈A∗i (ai, x, y), z∗i (ai, x, y)〉 ,

∆3i(x, y) = −
N∑
l=1

〈Bli(gi(ai, x, y)), z(al, gi(ai, x, y))〉,

i = 1, . . . ,m, (x, y) ∈ Ia ;



182 T. Cz lapiński

and

(7)

H(ξ, x, y) = [Hij(ξ, x, y)], i = 1, . . . ,m, j = 1, . . . , r,

Hi(ξ, x, y) =
ξ∫
x

%i(t, gi(t, x, y), z(t,gi(t,x,y))) dt,

i=1, . . . ,m, (ξ, x, y) ∈ ∆a.

R e m a r k 2. By (3) we may simultaneously replace DtA
∗
i , Ai, Bli in the

above equalities by DtÃ
∗
i , Ãi, B̃li, respectively.

Lemma 1. Suppose that Assumptions H1–H4 hold and that

(8) (1 + σ2)Γ + (1 + σ2)(σ0 + σ1)Q < Q,

(9) l′(Q)(1 +Q1)[Γ + (σ0 + σ1)Q] + (1 + σ2)[n1(Q)(Λ+GQ)

+ l(Q)Q(2 + n1(Q) + 2Q1 +Q2n1(Q))]
+ n1(Q)(1 + σ2)(σ0 + σ1)Q2 < Q1,

(10) l′(Q)(1+Q2)[Γ+(σ0+σ1)Q]+(1+σ2)[(1+p)(Λ+GQ)+l(Q)Q(1+Q2)]
+ (1 + p)(1 + σ2)(σ0 + σ1)Q2 < Q2 .

Then for a∈(0, a0] sufficiently small the operator V (1) maps B1(a,Q,Q1, Q2)
×B2(a,Q,Q1, Q2, p) into B1(a,Q,Q1, Q2).

P r o o f. Let Z=V (1)[z, h], z∈B1(a,Q,Q1, Q2), h ∈ B2(a,Q,Q1, Q2, p).
By the estimates

‖∆1(x, y)‖ ≤ max
1≤i≤m

{
|ψi(gi(ai, x, y))|

+
∣∣∣ x∫
ai

fi(t, gi(t, x, y), z(t,gi(t,x,y))) dt
∣∣∣}

≤ Γ +
x∫

ai

n2(Q) dt ≤ Γ + n2(Q)a,

‖∆2(x, y)‖ ≤ max
1≤i≤m

{∣∣∣ x∫
ai

〈DtÃ
∗
i (t, x, y), z∗i (t, x, y)〉 dt

∣∣∣
+ |〈Ã∗i (ai, x, y), z∗i (ai, x, y)〉|

}
≤

x∫
ai

l(Q)(1 + n1(Q) +Q1 +Q2n1(Q))Qdt+ σ1Q

≤ l(Q)(1 + n1(Q) +Q1 +Q2n1(Q))Qa+ σ1Q,

‖∆3(x, y)‖ ≤ max
1≤i≤m

∣∣∣− N∑
l=1

〈B̃li(gi(ai, x, y)), z(al, gi(ai, x, y))〉
∣∣∣ ≤ σ0Q ,
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we obtain

‖Z(x, y)‖
≤ (1 +σ2)[Γ +n2(Q)a+ l(Q)(1 +n1(Q) +Q1 +Q2n1(Q))Qa+σ1Q+σ0Q] ,

(x, y) ∈ Ia. By (8) we can choose a so small that

(11) (1 + σ2)[Γ + (σ1 + σ0)Q]
+(1 + σ2)[n2(Q) + l(Q)(1 + n1(Q) +Q1 +Q2n1(Q))Q]a ≤ Q ,

and thus for (x, y) ∈ Ia we obtain

(12) ‖Z(x, y)‖ ≤ Q .

For any (x, y), (x, y) ∈ Ia, we have

Z(x, y)− Z(x, y) = α0 + α1 + α2 + α3 ,

where

α0 = (A−1(x, y, z(x,y))−A−1(x, y, z(x,y)))[∆1(x, y) +∆2(x, y) +∆3(x, y)],

αi = A−1(x, y, z(x,y))[∆i(x, y)−∆i(x, y)], i = 1, 2, 3 .

We can estimate the above terms as follows:

‖α0‖ ≤ [l′(Q)(1 +Q2)|x− x|+ l′(Q)(1 +Q2)‖y − y‖]
× [‖∆1(x, y)‖+ ‖∆2(x, y)‖+ ‖∆3(x, y)‖]

≤ [Γ + n2(Q)a+ l(Q)(1 + n1(Q) +Q1 +Q2n1(Q))Qa
+ σ1Q+ σ0Q]l′(Q)(1 +Q1)|x− x|
+ [Γ + n2(Q)a+ l(Q)(1 + n1(Q) +Q1 +Q2n1(Q))Qa
+ σ1Q+ σ0Q]l′(Q)(1 +Q1)‖y − y‖,

‖α1‖ ≤ (1 + σ2) max
1≤i≤m

{
|ψi(gi(ai, x, y))− ψi(gi(ai, x, y))|

+
∣∣∣ x∫
ai

[fi(t, gi(t, x, y), z(t,gi(t,x,y)))

− fi(t, gi(t, x, y), z(t,gi(t,x,y)))] dt
∣∣∣

+
∣∣∣ x∫
x

fi(t, gi(t, x, y), z(t,gi(t,x,y))) dt
∣∣∣}

≤ (1 + σ2)[Λγa + L2a(1 +Q2)γa + n2(Q)a]|x− x|
+ (1 + σ2)[Λ(1 + p) + L2a(1 +Q2)(1 + p)]‖y − y‖,

‖α2‖ ≤ (1 + σ2) max
1≤i≤m

{∣∣∣ x∫
ai

〈Ã∗i (t, x, y)− Ã∗i (t, x, y), Dtz
∗
i (t, x, y)〉 dt

∣∣∣
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+
∣∣∣ x∫
ai

〈DtÃ
∗
i (t, x, y), z∗i (t, x, y)− z∗i (t, x, y)〉 dt

∣∣∣
+
∣∣∣ x∫
x

〈DtÃ
∗
i (t, x, y), z∗i (t, x, y)〉 dt

∣∣∣
+ |〈Ã∗i (x, x, y)− Ã∗i (x, x, y), z∗i (x, x, y)〉|

+ |〈Ã∗i (ai, x, y), z∗i (ai, x, y)− z∗i (ai, x, y)〉|
}

≤ (1 + σ2){l(Q)(1 +Q2)γa(Q1 +Q2n1(Q))a
+ l(Q)(1 + n1(Q) +Q1 +Q2n1(Q))Q2γaa

+ l(Q)(1 + n1(Q) +Q1 +Q2n1(Q))Q
+ l(Q)(1 +Q1)Q+ σ1Q2γa}|x− x|
+ (1 + σ2){l(Q)(1 +Q2)(1 + p)(Q1 +Q2n1(Q))a
+ l(Q)(1 + n1(Q) +Q1 +Q2n1(Q))Q2(1 + p)a
+ l(Q)(1 +Q2)Q+ σ1Q2(1 + p)}‖y − y‖,

‖α3‖ ≤ (1 + σ2)

× max
1≤i≤m

{∣∣∣ N∑
l=1

〈B̃li(gi(ai, x, y))− B̃li(gi(ai, x, y)), z(al, gi(ai, x, y))〉
∣∣∣

+
∣∣∣ N∑
l=1

〈B̃li(gi(ai, x, y)), z(al, gi(ai, x, y))− z(al, gi(ai, x, y))〉
∣∣∣}

≤ (1 + σ2)γa[GQ+ σ0Q2]|x− x|+ (1 + σ2)(1 + p)[GQ+ σ0Q2]‖y − y‖ .
In estimating α2 we have used integration by parts. From the above in-
equalities we obtain

‖Z(x, y)− Z(x, y)‖ ≤W1a|x− x|+W2a‖y − y‖ ,
where

W1a = l′(Q)(1 +Q1)[Γ + (σ1 + σ0)]
+ (1 + σ2)[γa(Λ+GQ) + l(Q)Q(2 + n1(Q) + 2Q1 +Q2n1(Q))]
+ γa(1 + σ2)(σ1 + σ0)Q2 +W ′1a ,

W2a = l′(Q)(1 +Q2)[Γ + (σ1 + σ0)]
+ (1 + σ2)[(1 + p)(Λ+GQ) + l(Q)Q(1 +Q2)]
+ (1 + p)(1 + σ2)(σ1 + σ0)Q2 +W ′2a ,

and W ′1a ≥ 0, W ′2a ≥ 0 are some constants such that lima→0+ W ′1a =
lima→0+ W ′2a = 0. By (9), (10) we can choose a so small that

(13) W1a ≤ Q1, W2a ≤ Q2 .
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Hence, for any (x, y), (x, y) ∈ Ia we get

(14) ‖Z(x, y)− Z(x, y)‖ ≤ Q1|x− x|+Q2‖y − y‖ .
Finally, if a ∈ (0, a0] is so small that inequalities (4), (11), (13) hold,

then by (12), (14) we have Z ∈ B1(a,Q,Q1, Q2). This completes the proof.

Lemma 2. Suppose that Assumption H2 holds, Q,Q1, Q2 ∈ R+, p ∈ (0, 1)
and a ∈ (0, a0] is so small that

(15) L1a(1 + p)(1 +Q) ≤ p .
Then the operator V (2) maps B1(a,Q,Q1, Q2) × B2(a,Q,Q1, Q2, p) into
B2(a,Q,Q1, Q2).

P r o o f. Let H=V (2)[z, h], z∈B1(a,Q,Q1, Q2), h∈B2(a,Q,Q1, Q2, p). It
is easy to see that for any (ξ, x, y), (ξ, x, y), (ξ, x, y) ∈ ∆a, i = 1, . . . ,m, we
have

Hi(x, x, y) = 0, ‖Hi(ξ, x, y)−Hi(ξ, x, y)‖ ≤ n1(Q)|ξ − ξ|,

‖Hi(ξ, x, y)−Hi(ξ, x, y)‖

≤
∣∣∣ ξ∫
x

‖%i(t, gi(t, x, y), z(t,gi(t,x,y)))− %i(t, gi(t, x, y), z(t,gi(t,x,y)))‖ dt
∣∣∣

≤
∣∣∣ ξ∫
x

l1(t, P +Q)(1 +Q)‖gi(t, x, y)− gi(t, x, y)‖ dt
∣∣∣

≤ L1a(1 +Q)(1 + p)‖y − y‖ ≤ p‖y − y‖
by (15). Note that (15) implies (4), and thus for any (ξ, x, y), (ξ, x, y) ∈ ∆a,
i = 1, . . . ,m, we have

‖Hi(ξ, x, y)−Hi(ξ, x, y)‖ ≤
∣∣∣ x∫
x

‖%i(t, gi(t, x, y), z(t,gi(t,x,y)))‖ dt
∣∣∣

+
∣∣∣ ξ∫
x

‖%i(t, gi(t, x, y), z(t,gi(t,x,y)))− %i(t, gi(t, x, y), z(t,gi(t,x,y)))‖ dt
∣∣∣

≤ [n1(Q) + L1a(1 +Q)γa]|x− x| = γa|x− x| .
From the above inequalities we derive H ∈ B2(a,Q,Q1, Q2, p). This is our
claim.

For a ∈ (0, a0] define constants

E1a = l′(Q)[Γ + n2(Q)a+ l(Q)(1 + n1(Q) +Q1 +Q2n1(Q))Qa+ σ1Q

+ σ0Q] + (1 + σ2)[L2a + l(Q)(Q1 +Q2n1(Q))a

+ l(Q)(1 + n1(Q) +Q1 +Q2n1(Q))a+ l(Q)Q+ σ1 + σ0],
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E2a = (1 + σ2)[Λ+ L2a(1 +Q2) + l(Q)(1 +Q2)(Q1 +Q2n1(Q))a

+ l(Q)Q1(1 + n1(Q) +Q1 +Q2n1(Q))a+ σ1Q2 +GQ+ σ0Q2] .

Lemma 3. Let Assumptions H1–H4 hold , Q,Q1, Q2 ∈ R+, p ∈ (0, 1)
and a ∈ (0, a0] be so small that inequality (4) holds. Then for any z, z′ ∈
B1(a,Q,Q1, Q2), h, h′ ∈ B2(a,Q,Q1, Q2, p), we have

‖V (1)[z, h]− V (1)[z′, h′]‖Ia
≤ E1a‖z − z′‖Ia

+ E2a‖h− h′‖∆a
,(16)

‖V (2)[z, h]− V (2)[z′, h′]‖Ia
≤ L1a‖z − z′‖Ia

+ L1a(1 +Q)‖h− h′‖∆a
.(17)

P r o o f. Let z, z′ ∈ B1(a,Q,Q1, Q2) and h, h′ ∈ B2(a,Q,Q1, Q2, p). For
any (x, y) ∈ Ia we have

V (1)[z, h](x, y)− V (1)[z′, h′](x, y) = β0 + β1 + β2 + β3 ,

where
β0 = (A−1(x, y, z(x,y))−A−1(x, y, z′(x,y)))[∆1(x, y) +∆2(x, y) +∆3(x, y)],

βi = A−1(x, y, z′(x,y))[∆i(x, y)−∆′i(x, y)], i = 1, 2, 3,

and formulas for ∆′1, ∆
′
2, ∆

′
3 arise from (6) by replacing z, h by z′, h′, re-

spectively. Analogously to Lemma 1 we have

‖β0‖ ≤ l′(Q)[Γ + n2(Q)a+ l(Q)(1 + n1(Q)
+Q1 +Q2n1(Q))Qa+ σ1Q+ σ0Q]‖z − z′‖Ia

,

‖β1‖ ≤ (1 + σ2)L2a‖z − z′‖Ia
+ (1 + σ2)[Λ+ L2a(1 +Q2)]‖h− h′‖∆a

,

‖β2‖ ≤ (1 + σ2)[l(Q)(Q1 +Q2n1(Q))a
+ l(Q)(1 + n1(Q) +Q1 +Q2n1(Q))a+ l(Q)Q+ σ1]‖z − z′‖Ia

+ (1 + σ2)[l(Q)(1 +Q2)(Q1 +Q2n(Q))a
+ l(Q)(1 + n1(Q) +Q1 +Q2n1(Q))a+ σ1Q]‖h− h′‖∆a

,

‖β3‖ ≤ (1 + σ2)σ0‖z − z′‖Ia
+ (1 + σ2)[GQ+ σ0Q2]‖h− h′‖∆a

.

From the above estimates we get (16). In a similar way we derive (17),
which completes the proof.

4. The main theorem

Theorem. Suppose that Assumptions H1–H4, conditions (8)–(10) and
the inequality

(18) l′(Q)[Γ +Q(σ1 + σ0)] + (1 + σ2)l(Q)Q+ (1 + σ2)(σ1 + σ0) < k ,

are satisfied , where k ∈ (0, 1) is a constant such that k > (σ1 + σ0)(1 + σ2).
Then for a ∈ (0, a0] sufficiently small and for any system of numbers al ∈
[0, a], l = 1, . . . , N , there is a function z ∈ B1(a,Q,Q1, Q2) which is a
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unique solution of the problem (1), (2) in the class B1(a,Q,Q1, Q2). Fur-
thermore, if z, z′ are solutions of (1), (2) with functions ψ,ψ′ respectively
then

(19) ‖z − z′‖Ia ≤ (1− k)−1(1 + σ2)‖ψ − ψ′‖0 ,
where ‖ψ − ψ′‖0 = sup{‖ψ(y)− ψ′(y)‖ : y ∈ Rr}.

P r o o f. Let V = (V (1), V (2)), where V (1), V (2) are defined by (6), (7).
From Lemmas 1–3 it follows that

V : B1(a,Q,Q1, Q2)×B2(a,Q,Q1, Q2, p)
→ B1(a,Q,Q1, Q2)×B2(a,Q,Q1, Q2, p)

is continuous provided that a is so small that (11), (13) and (15) hold. By
(18) we may additionally assume that a is small enough that

(20) E1a < k, L1a(1 +Q2) < k, E2aL1a < (k − E1a)(k − La(1 +Q2)) .

Let α, β > 0 satisfy L1a(k − E1a)−1 ≤ α/β ≤ (k − L1a(1 + Q2))E−1
2a .

Analogously to [4] we define in B1(a,Q,Q1, Q2) × B2(a,Q,Q1, Q2, p) the
following weighted norm:

(21) ‖w‖∗ = α‖z‖Ia + β‖h‖∆a , w = (z, h) ,

where z ∈ B1(a,Q,Q1, Q2), h ∈ B2(a,Q,Q1, Q2, p). It is easy to check
(cf. [4]) that V is a contraction with constant k with respect to this norm.
Thus V has a unique fixed point w = V w, w = (z, h) ∈ B1(a,Q,Q1, Q2)×
B2(a,Q,Q1, Q2, p). Let us prove that z is a solution of (1), (2). From (6)
by integration by parts we obtain

(22) 0 = A−1(x, y, z(x,y))[∆1(x, y) + ∆̃2(x, y) +∆3(x, y)], (x, y) ∈ Ia ,

where ∆1, ∆3 are defined by (6) with z = z, h = h and ∆̃2(x, y) =
(∆̃21(x, y), . . . , ∆̃2m(x, y)) is defined by

∆̃2i(x, y) = −
x∫

ai

〈A∗i (t, x, y), Dtz
∗
i (t, x, y)〉 dt, i = 1, . . . ,m .

Multiplying (22) by A(x, y, z(x,y)) we obtain

∆1i(x, y) + ∆̃2i(x, y) +∆3i(x, y) = 0, (x, y) ∈ Ia, i = 1, . . . ,m ,

which for x = ai yields that z satisfies the boundary condition (2). Thus
(22) reduces to

x∫
ai

[fi(t, gi(t, x, y), z(t,gi(t,x,y))
)− 〈A∗i (t, x, y), Dtz

∗
i (t, x, y)〉] dt = 0 ,

(x, y) ∈ Ia, i = 1, . . . ,m, where g is defined by (5) for h = h. By the same
considerations as in [6] (in particular by using the group property for g) we
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see that z satisfies (1) a.e. in Ia. By the reverse considerations and by the
uniqueness of the fixed point of V we conclude that z is a unique solution
of (1), (2).

It remains to prove (19). Let w = (z, h) = V w, w′ = (z′, h′) = V w′ be
the fixed points of V = (V (1), V (2)) defined by (6), (7) with functions ψ,ψ′

respectively. We then have
‖z − z′‖Ia

≤ (1 + σ2)‖ψ − ψ′‖0 + E1a‖z − z′‖Ia
+ E2a‖h− h′‖∆a

,

‖h− h′‖∆a
≤ L1a‖z − z′‖Ia

+ L1a(1 +Q2)‖h− h′‖∆a
.

From this we obtain (1−E1a−E2aL1a(1−L1a(1+Q2))−1)‖z−z′‖Ia ≤ (1+
σ2)‖ψ−ψ′‖0. By (20) we have 1−k ≤ 1−E1a−E2aL1a(1−L1a(1+Q2))−1,
and from the last inequality we derive (19). This ends the proof.

5. Examples. Put Ω̂ = [0, a0]× Rr × Rm × Rm.

Assumption H5. 1o Â ∈ C(Ω̂,M(m,m)) and there is a constant ν̂ > 0
such that det Â(x, y, u, v) ≥ ν̂ for any (x, y, u, v) ∈ Ω̂.

2o There are constants n, l ∈ R+ such that for all (x, y, u, v), (x, y, u, v) ∈
Ω̂ we have

‖Â(x, y, u, v)‖ ≤ n ,
‖Â(x, y, u, v)− Â(x, y, u, v)‖ ≤ l[|x− x|+ ‖y − y‖+ ‖u− u‖+ ‖v − v‖] .

3o %̂(·, y, u, v) : [0, a0] → M(m, r), f̂(·, y, u, v) : [0, a0] → M(m, 1) are
measurable for any (y, u, v) ∈ Rr × Rm × Rm and %̂(x, ·) : Rr × Rm ×
Rm → M(m, r), f̂(x, ·) : Rr × Rm × Rm → M(m, 1) are continuous for a.e.
x ∈ [0, a0].

4o There are Lebesgue integrable functions l̂1, l̂2 : [0, a0]→ R+ and con-
stants n1, n2 ∈ R+ such that for a.e. x ∈ [0, a0] and for all (y, u, v), (y, u, v) ∈
Rr × Rm × Rm we have

‖%̂(x, y, u, v)‖ ≤ n1, ‖f̂(x, y, u, v)‖ ≤ n2 ,

‖%̂(x, y, u, v)− %̂(x, y, u, v)‖ ≤ l1(x)[‖y − y‖+ ‖u− u‖+ ‖v − v‖] ,

‖f̂(x, y, u, v)− f̂(x, y, u, v)‖ ≤ l2(x)[‖y − y‖+ ‖u− u‖+ ‖v − v‖] .
Let α, β, γ : [0, a0] × Rr → R1+r, where α = (α0, α1, . . . , αr), β =

(β0, β1, . . . , βr), γ = (γ0, γ1, . . . , γr), be given functions such that −b0 ≤
α0(x, y), β0(x, y), γ0(x, y) ≤ x for all (x, y) ∈ [0, a0]×Rr. Suppose that α is
Lipschitz continuous on [0, a0] × Rr and that β, γ are Lipschitz continuous
with respect to the second variable on Rr. Then, if we define

A(x, y, w) = Â(x, y, w(0, 0), w(α(x, y)− (x, y))) ,
%(x, y, w) = %̂(x, y, w(0, 0), w(β(x, y)− (x, y))) ,

f(x, y, w) = f̂(x, y, w(0, 0), w(γ(x, y)− (x, y))) ,
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and if Assumption H5 holds then the functions A, %, f satisfy Assumptions
H1–H3 respectively. Thus the hyperbolic system with retarded argument

(23)
m∑
j=1

Âij(x, y, z(x, y), z(α(x, y)))
[
Dxzj(x, y)

+
r∑

k=1

%̂(x, y, z(x, y), z(β(x, y)))Dyk
zj(x, y)

]
= f̂(x, y, z(x, y), z(γ(x, y))), i = 1, . . . .,m,

is a particular case of (1).
The differential-integral system

(24)
m∑
j=1

Âij

(
x, y, z(x, y),

α̃(x,y)∫
α(x,y)

z(t, s)K(t, s, x, y) dt ds
)[
Dxzj(x, y)

+
r∑

k=1

%̂ik

(
x, y, z(x, y),

β̃(x,y)∫
β(x,y)

z(t, s)K1(t, s, x, y) dt ds
)
Dyk

zj(x, y)
]

= f̂i

(
x, y, z(x, y),

γ̃(x,y)∫
γ(x,y)

z(t, s)K2(t, s, x, y) dt ds
)
, i = 1, . . . ,m ,

where α, α̃, β, β̃, γ, γ̃ : [0, a0] × Rr → R1+r and K,K1,K2 : [0, a0] × Rr ×
[0, a0] × Rr → M(m,m), is also a particular case of (1). In this case if we
make suitable assumptions on α, α̃, β, β̃, γ, γ̃, K,K1,K2 and if Assumption
H5 holds then A(x, y, w) defined by

A(x, y, w) = Â
(
x, y, w(0, 0),

α̃(x,y)∫
α(x,y)

w(t− x, s− y)K(t, s, x, y) dt ds
)

satisfies Assumption H1, and %, f similarly defined satisfy Assumptions H2,
H3 respectively.

Our last example is the system

(25)
m∑
j=1

Âij(x, y, z(x, y), z(α(x, y, z(x,y))))
[
Dxzj(x, y)

+
r∑

k=1

%̂ik(x, y, z(x, y), z(β(x, y, z(x,y))))Dyk
zj(x, y)

]
= f̂i(x, y, z(x, y), z(γ(x, y, z(x,y)))) ,

i = 1, . . . ,m, α, β, γ : Ω → R1+r.
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Lemma 4. Suppose that

1o Assumption H1 holds;
2o α(·, y, w), β(·, y, w), γ(·, y, w) : [0, a0] → R1+r are measurable for any

(y, w) ∈ Rr×C(B,Rm), and α(x, ·), β(x, ·), γ(x, ·) : Rr×C(B,Rm)→ R1+r

are continuous for a.e. x ∈ [0, a0];
3o for any (x, y, w) ∈ Ω we have

α(x, y, w) ∈ B, β(x, y, w) ∈ B, γ(x, y, w) ∈ B ;

4o there is a nondecreasing function D : R+ → R+ such that for all
q ∈ R+, (x, y, w), (x, y, w) ∈ [0, a0]× Rr × C0+L(B,Rm, q) we have

‖α(x, y, w)− α(x, y, w)‖ ≤ D(q)[|x− x|+ ‖y − y‖+ ‖w − w‖0] ;

5o there are nondecreasing functions D1, D2 : R+ → R+ such that for
all q ∈ R+ and (y, w), (y, w) ∈ Rr × C0+L(B,Rm, q) and for a.e. x ∈ [0, a0]
we have

‖β(x, y, w)− β(x, y, w)‖ ≤ D1(q)[‖y − y‖+ ‖w − w‖0] ,
‖γ(x, y, w)− γ(x, y, w)‖ ≤ D2(q)[‖y − y‖+ ‖w − w‖0] .

Then the functions A, %, f defined by

A(x, y, w) = Â(x, y, w(0, 0), w(α(x, y, w)− (x, y))) ,
%(x, y, w) = %̂(x, y, w(0, 0), w(β(x, y, w)− (x, y))) ,

f(x, y, w) = f̂(x, y, w(0, 0), w(γ(x, y, w)− (x, y))) ,

satisfy Assumptions H1, H2, H3 respectively.

R e m a r k 3. Systems (23), (24) can also be obtained from the theory
of differential-functional equations with operators of Volterra type [19]–[22].
System (25) cannot be obtained from that theory.
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