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On Cauchy–Riemann submanifolds
whose local geodesic symmetries
preserve the fundamental form

by Sorin Dragomir (Stony Brook, N.Y.) and Mauro Capursi (Bari)

Abstract. We classify generic Cauchy–Riemann submanifolds (of a Kaehlerian mani-
fold) whose fundamental form is preserved by any local geodesic symmetry.

Introduction. Let (M2m, g, J) be a Hermitian manifold of complex
dimension m, where g denotes the Hermitian metric, while J stands for the
complex structure. Let Ψ : Mn →M2m be an isometric immersion of a real
n-dimensional Riemannian manifold (Mn, g) in M2m. Let E →Mn be the
normal bundle of Ψ . Then Mn is a Cauchy–Riemann (C.R.) submanifold
of M2m if it carries a pair of complementary distributions (D,D⊥) such
that D is holomorphic (i.e. Jx(Dx) = Dx, x ∈ Mn) and D⊥ is totally real
(i.e. Jx(D⊥x ) ⊆ Ex, x ∈ Mn). Let tanx, norx be the natural projections
associated with the direct sum decomposition

Tx(M2m) = Tx(Mn)⊕ Ex , x ∈Mn .

Each C.R. submanifold Mn of an (almost) Hermitian manifold M2m is
known to possess a natural f -structure P (in the sense of K. Yano [7])
given by PX = tan(JX). The fundamental 2-form Ω of Mn is given by

Ω(X,Y ) = g(X,PY ) ,
for any tangent vector fields X, Y on Mn. In the present note we are
concerned with the following:

Problem. Let M2m be an (almost) Hermitian manifold. Classify its
C.R. submanifolds Mn all of whose local geodesic symmetries preserve the
fundamental form.

Let Mn be such a C.R. submanifold. Set q = dimR D
⊥
x , x ∈ Mn. By a

result of K. Sekigawa–L. Vanhecke [5], if Mn is invariant (i.e. q = 0) then
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Mn is a locally symmetric Kaehler manifold. Our contribution regards the
generic case (i.e. q = codimMn) and consists in the following:

Theorem. Let Mn be an n-dimensional generic C.R. submanifold of the
Kaehlerian manifold M2m. If all local geodesic symmetries of Mn preserve
the fundamental form, then Mn is locally a Riemannian product M2(n−m)×
M2m−n, where M2(n−m) is a totally geodesic complex submanifold of M2m,
while M2m−n is a totally real submanifold of M2m.

The key ingredient in the proof is a result by A. Gray [4], which pro-
vides power series expansions for analytic covariant tensor fields in normal
coordinates.

2. Proof of the Theorem. Let (Mn, D,D⊥) be a C.R. submanifold of
the Kaehlerian manifold (M2m, g, J). Let x ∈ Mn and (Ux, xi) a local sys-
tem of normal coordinates at x, xi(x) = 0, 1 ≤ i ≤ n. Let Rijkl denote the
Riemann–Christoffel tensor field of (Mn, g) and ∇i covariant differentiation.
Let Wα1...αs

be an analytic covariant tensor field of type (0, s) on Mn. By
a result of A. Gray [4], if p ∈ U then

(2.1) Wα1...αs(p) = Wα1...αs(x) +
n∑
i=1

(∇iWα1...αs)(x)xi

+
1
2

n∑
i,j=1

{
∇2
ijWα1...αs −

1
3

n∑
t=1

s∑
h=1

RiαhjtWα1...αh−1tαh+1...αs

}
(x)xixj

+
1
6

n∑
i,j,k=1

{
∇3
ijkWα1...αs −

n∑
t=1

s∑
h=1

Riαhjt(∇kWα1...αh−1tαh+1...αs)

− 1
2

n∑
t=1

s∑
h=1

(∇iRjαhkt)Wα1...αh−1tαh+1...αs

}
(x)xixjxk + θ(x4)

where xi = xi(p) (cf. also B. Y. Chen–L. Vanhecke [1], p. 31).
Let γ : r → expx(rX) ∈ Ux be a geodesic (parametrized by arc length)

of (Mn, g), where X ∈ Tx(Mn), ||X|| = 1. Let Ω be the fundamental
2-form of Mn. We work under the basic assumption that each local geodesic
symmetry f : expx(rX)→ expx(−rX) preserves Ω, i.e. f∗Ω = Ω, or

(2.2) Ωij(expx(rX)) = Ωij(expx(−rX)) .

The local parametric equations (in normal coordinates) of γ are xi(r) =
rXi, 1 ≤ i ≤ n. Thus the power series expansion formula (2.1) leads
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to the expansion

(2.3) Ωα1α2(γ(r)) = Ωα1α2(x) +
n∑
i=1

Xi(∇iΩα1α2)(x)r

+
1
2

n∑
i,j=1

XiXj

{
∇2
ijΩα1α2 −

1
3

n∑
t=1

(Riα1jtΩtα2 +Riα2jtΩα1t)
}

(x)r2

+
1
6

n∑
i,j=1

XiXjXk

{
∇3
ijkΩα1α2 −

n∑
t=1

(Riα1jt∇kΩtα2 +Riα2jt∇kΩα1t)

− 1
2

n∑
t=1

(Ωtα2∇iRjα1kt +Ωα1t∇iRjα2kt)
}

(x)r3 + θ(r4) .

Let {ei}1≤i≤n be an orthonormal basis of Tx(Mn) such that e1 = X. We
suppose the normal coordinates at x have been chosen such that ∂/∂xi | x =
ei, 1 ≤ i ≤ n. By straightforward computation our (2.3) turns into

Ωij(γ(r)) = 〈ei, Pxej〉+ 〈ei, (∇P )x(X, ej)〉r(2.4)
+ 1

2 〈ei, (∇
2P )x(X,X, ej)− 1

3 (RP + PR)xej〉r2

+ 1
6 〈ei, (∇

3P )x(X,X,X, ej)−Rx(∇P )x(X, ej)
− (∇P )x(X,Rxej)− 1

2{(∇XR)(Pxej , X)X

+ Px(∇XR)(ej , X)X}〉r3 + θ(r4)

where 〈 , 〉 = gx and Rx denotes the transformation Rxv = R(v,X)X,
v ∈ Tx(Mn). Next (2.2) and (2.4) furnish ∇P = 0, i.e. the canonical
f -structure of Mn is parallel and

(2.5) (∇XR)(PY,X)X + P (∇XR)(Y,X)X = 0

for any Y ∈ Tx(Mn). Set FZ = nor(JZ) for any tangent vector field Z
on Mn. Then F is a normal bundle valued 1-form on Mn vanishing on
the holomorphic distribution. Set tξ = tan(Jξ), fξ = nor(Jξ), for any
cross-section ξ in E → Mn. Clearly, if Mn is generic (q = 2m − n) then
f = 0. Let σ be the second fundamental form of Ψ and aξ the Weingarten
operator (associated with the normal section ξ). Let ∇ be the Levi-Civita
connection of (M2m, g). Yet g is Kaehlerian, i.e. ∇J = 0; by the Gauss and
Weingarten formulae (see e.g. eqs. (1.1)–(1.2) of [9], p. 19) and identification
of tangential, respectively normal, components, one obtains

(∇XP )Y = aFYX + tσ(X,Y ) ,(2.6)
(∇XF )Y = −σ(X,PY )(2.7)

for any tangent vector fields X, Y on Mn. As P is parallel, FP = 0 and
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t = J , formula (2.6) gives

(2.8) σ(X,PY ) = 0

and by (2.7), F is parallel, too. As a consequence both the holomorphic and
totally real distributions are parallel and thus Mn is locally a Riemannian
product. It is easily seen that (2.8) also yields that M2(n−m) is totally
geodesic.

R e m a r k s. (i) Let M2m be a complete simply connected complex
space-form (of constant holomorphic curvature c). Combining our Theorem
with a result by K. Yano–M. Kon [8], one shows that if Mn is a complete
generic submanifold obeying (2.2) then either Mn is an m-dimensional to-
tally real (i.e. P = 0) submanifold of M2m, or c = 0 and Mn is congruent
to Cn−m ×M2m−n, where M2m−n is a totally real submanifold of Cm.

(ii) The curvature identity (2.5) does not contribute further to the clas-
sification of generic submanifolds (subject to (2.2)) of complex space-forms.
Indeed, by remark (i), either P = 0 and thus (2.5) is identically satisfied,
or c = 0 and then (by the Gauss eq. (1.10) of [9], p. 78), R(Y,Z)W =
aσ(Z,W )Y − aσ(Y,W )Z for any tangent vector fields Y , Z, W on Mn. As
Mn is generic, any normal field ξ may be written as ξ = FY for some Y
tangent to Mn. Thus (2.6) and (2.8) yield aξPY = 0 for any Y , ξ. Conse-
quently, R(PY,Z)W = R(Y, PZ)W = R(Y, Z)PW = 0 and (2.5) turns into
P∇X(R(Y,X)i⊥X) = 0, where i⊥ = −tF ; now this is identically satisfied,
as D⊥ is parallel.

(iii) Let M2m be a locally conformal Kaehler manifold (see e.g. I. Vais-
man [6]). Let Mn be a generic C.R. submanifold subject to (2.2). Repeating
the arguments in the proof of our Theorem, we obtain ∇P = 0. Then, by a
result of [2; II, Th. 1, p. 2], if the 1-form ω induced by the Lee form of M2m

has no singular points (i.e. ωx 6= 0, for any x ∈ Mn) then Mn is a totally
real submanifold of M2m (see also [3]).
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