A method of construction of an invariant measure

by Antoni Leon Dawidowicz (Kraków)

Abstract. A method of construction of an invariant measure on a function space is presented.

0. Introduction. The problem of existence of a measure invariant with respect to the dynamical system generated by the differential equation

(1)
$$\frac{\partial u}{\partial t} + c(x)\frac{\partial u}{\partial x} = f(u)$$

has been considered by Lasota [4], Rudnicki [5] and the author [1], [2]. At present, there are various theorems on the existence and properties of such measures. In this paper we present a general method of construction of an invariant measure.

1. Formulation of the result. Consider the differential equation

(2)
$$\frac{\partial u}{\partial t} + x \frac{\partial u}{\partial x} = \lambda u, \quad t \ge 0, \ 0 \le x \le 1,$$

with the initial condition

$$(3) u(0;x) = v(x)$$

and the boundary condition

$$(4) u(t;0) = 0.$$

This problem generates a semidynamical system on the space V of all Lipschitz functions on the interval [0;1] vanishing at 0 by the formula

(5)
$$T_t v(x) = e^{\lambda t} v(xe^{-t})$$

Denote by ||v'|| the maximal Lipschitz constant of v, i.e.

$$||v'|| = \sup_{0 \le x < y \le 1} \frac{|v(y) - v(x)|}{y - x}.$$

¹⁹⁹¹ Mathematics Subject Classification: Primary 28D05.
Key words and phrases: dynamical system, invariant measure.

For Lipschitz functions this supremum is finite.

DEFINITION. Let $\lambda > 1$. A measure μ on V satisfies assumption A if there exists a sequence $\{\varrho_n\}$ of positive real numbers and a positive constant K such that

(i)
$$\frac{\varrho_n}{2^{(\lambda-1)n}} \le K, \quad n = 1, 2, \dots,$$

(ii)
$$\sum_{n=0}^{\infty} \mu(\{v: ||v'|| \ge \varrho_n\}) < \infty.$$

THEOREM 1. Let $\lambda > 1$ and suppose μ satisfies assumption A. Then we can construct a T_1 -invariant measure $\widehat{\mu}$. The construction has the following property: If μ is T_1 -invariant, then $\widehat{\mu} = \mu$.

2. Proof of Theorem 1. Let $A:V\to V$ be given by $(Av)(x)=v(\frac{1}{2}(x+1))-v(\frac{1}{2})$ and let $\mu'(E)=\mu(A^{-1}(E))$. Clearly μ' also satisfies (i), (ii) (with another sequence $\{\varrho_n\}$). Define $\Phi:V^{\mathbb{N}}\to \mathcal{P}(V)$ by

(6)
$$w \in \Phi(v_0, v_1, ...) \Leftrightarrow \forall n, \ w(2^{-n-1}(x+1)) - w(2^{-n-1}) = 2^{-\lambda n} v_n(x)$$
 for $0 \le x \le 1$.

This condition determines the values of w on the interval $[2^{-n-1}; 2^{-n}]$ up to an additive constant. Since w(0) = 0 the condition $w \in \Phi(v_0, v_1, \ldots)$ can be satisfied by at most one function w. Hence $\operatorname{card} \Phi(v_0, v_1, \ldots) \leq 1$.

Let $\widehat{\mu}'$ be the product measure on $V^{\mathbb{N}}$. We claim that $\widehat{\mu}'(\{(v_0, v_1, \ldots) : \Phi(v_0, v_1, \ldots) = \emptyset\}) = 0$. First suppose the sequence $\{v_n\}$ satisfies

$$(7) \exists n_0 \ \forall n \ge n_0 \quad \|v_n'\| \le \varrho_n .$$

Let $\overline{w}(x)=2^{-\lambda n}v_n(2^{n+1}x-1)+C_n$ for $x\in[2^{-n-1};2^{-n}]$ where the constant C_0 is arbitrary and $\{C_n\}$ is a sequence such that \overline{w} is continuous on (0;1]. Since, for $n\geq n_0$, $\overline{w}\,|\,[2^{-n-1};2^{-n}]$ satisfies the Lipschitz condition with constant $2\varrho_n 2^{-(\lambda-1)n}\leq 2K$, the function \overline{w} also satisfies the Lipschitz condition and in consequence $\lim_{x\to 0}\overline{w}(x)$ exists. Define

$$w(x) = \overline{w}(x) - \lim_{y \to 0} \overline{w}(y)$$

for x>0 and w(0)=0. Hence $w\in \varPhi(v_0,v_1,\ldots)$ and in consequence for every sequence (v_0,v_1,\ldots) satisfying $(7),\varPhi(v_0,v_1,\ldots)$ is nonempty. Moreover, from the Borel-Cantelli lemma it follows that the set of sequences satisfying condition (7) has full measure.

Now, let $\widehat{\mu}$ be defined by

(8)
$$\widehat{\mu}(E) = \widehat{\mu}'(\{(v_0, v_1, \ldots) : \Phi(v_0, v_1, \ldots) \subset E\}).$$

Clearly, $\widehat{\mu}$ is the transport of $\widehat{\mu}'$ by a map defined on a full-measure set. The invariance and the ergodicity follow from an argument analogous to that

in [1]. From the construction it also follows that if μ is T_1 -invariant, then $\mu = \hat{\mu}$.

Remark. By the same method as in [1] a T-invariant measure can be constructed.

3. Properties of the measure $\hat{\mu}$

THEOREM 2. The measure $\hat{\mu}$ is defined on the σ -algebra of Borel sets for the topology of uniform convergence.

Proof. Let Σ be the σ -algebra on which $\widehat{\mu}$ is defined, i.e. $E \in \Sigma$ if and only if $(\tau \Phi)^{-1}(E)$ is $\widehat{\mu}'$ -measurable where $\tau \Phi(v_0, v_1, \ldots)$ denotes the unique element of $\Phi(v_0, v_1, \ldots)$. Since V is a separable space it is sufficient to prove that if $\widetilde{v} \in V$, $\varepsilon > 0$ then $U(\widetilde{v}; \varepsilon) = \{v : \sup_{x \in [0;1]} |v(x) - \widetilde{v}(x)| < \varepsilon\}$. In [2] (Lemma 4) it is proved that the map

$$(v_0, v_1, \ldots) \mapsto \sup_{x \in [0;1]} |\tau \Phi(v_0, v_1, \ldots)(x) - \widetilde{v}(x)|$$

is measurable, which completes the proof.

THEOREM 3. If μ is positive on open nonempty sets, then so is $\widetilde{\mu}$.

Proof. First, let $G(n;\varepsilon)=\{v\in V: \forall x\in [0;2^{-n}], |v(x)|<\varepsilon\}$. From the proof of Lemma 5 of [2] it follows that if $\widehat{\mu}(G(n;2^{\lambda}\varepsilon))>0$, then there exists $\varepsilon'<\varepsilon$ such that $\widehat{\mu}(G(n+1;\varepsilon'))>0$. Clearly $\widehat{\mu}(G(n;\varepsilon))=\widehat{\mu}(G(n+1;\varepsilon'))\widehat{\mu}'(\{v\in V: \|v\|<2^{\lambda n}(\varepsilon-\varepsilon')\})>0$. By an argument analogous to that in [2] it follows that $\widehat{\mu}(G(n;\varepsilon))>0$. The end of proof is also analogous to [2].

4. Examples

EXAMPLE 1. Let $\{\sigma_n\}$ and $\{p_n\}$ be as in [1] and let $\mu(E) = \sum_{\sigma_n \in E} p_n$. In this situation the measure obtained from μ by the procedure presented in Theorem 1 is the measure considered in [1], [2] (clearly, with another sequence $\{\sigma_n\}$).

EXAMPLE 2. Let μ_W be the Wiener measure on C[0;1] and let $I:C[0;1] \to V$ be defined by the formula

(9)
$$(Iv)(x) = \int_0^x v(s) ds.$$

Let μ be the transport of the Wiener measure by I. Using [4] it can be proved that μ satisfies assumption A. By the presented procedure we can obtain a Gaussian T_1 -invariant measure.

References

- [1] A. L. Dawidowicz, On the existence of an invariant measure for the dynamical system generated by partial differential equation, Ann. Polon. Math. 41 (1983), 129-137.
- [2] —, On the positivity of an invariant measure on open non-empty sets, ibid. 50 (1989), 185-190.
- [3] T. Hida, Brownian Motion, Springer, New York 1980.
- [4] A. Lasota, Invariant measures and a linear model of turbulence, Rend. Sem. Mat. Univ. Padova 61 (1979), 39-48.
- [5] R. Rudnicki, Invariant measure for the flow of a first order partial differential equation, Ergodic Theory Dynamical Systems 5 (1985), 437-446.

INSTITUTE OF MATHEMATICS JAGIELLONIAN UNIVERSITY REYMONTA 4 30-059 KRAKÓW, POLAND

> Reçu par la Rédaction le 10.8.1989 Révisé le 10.3.1992