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Oscillation criteria for a class of nonlinear
differential equations of third order

by N. PARHI and P. Das (Berhampur)

Abstract. Oscillation criteria are obtained for nonlinear homogeneous third order
differential equations of the form

y" +a(t)y +p(t)y* =0
and
¥ +at)y +p(t)f(y) =0,
where p and q are real-valued continuous functions on [a, 00), f is a real-valued continuous
function on (—00, 00) and a > 0 is a quotient of odd integers. Sign restrictions are imposed

on p(t) and ¢(¢). These results generalize some of the results obtained earlier in this
direction.

1. Oscillation, nonoscillation and asymptotic behaviour of solutions of
nonlinear third order ordinary differential equations have been the subject
of intensive investigation in recent years (see, in particular, Erbe [1], Erbe
and Rao [2], Heidel [3], Kura [4], Nelson [6] and Waltman [13] for nonlinear
homogeneous equations, and Parhi [7, 8] and Parhi and Parhi [10, 11] for
nonlinear nonhomogeneous equations).

In this paper we obtain oscillation criteria for nonlinear homogeneous
third order differential equations of the form

(E1) y" +a(t)y +p(t)y* =0,
where p,q € C([a,0),R), a € R and a > 0 is a quotient of odd integers, and
(E2) v +qt)y +pt)f(y) =0,

where p and ¢ are as in (E;) and f : R — R is continuous. Our results
on (E;) and (E2) with p(t) > 0 and g(¢) > 0 generalize and supplement
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the results of Waltman [13]. In [1], Erbe has obtained oscillation criteria for
more general equations

Yy +r(t)y" +q(t)y +p(t)y* =0,

where p, ¢ and o are as in (E;) and r € C([a, 00), R). However, for r(t) = 0,
p(t) > 0 and ¢(t) > 0, our conditions are simpler and results are more gen-
eral than Erbe’s. It seems that oscillation criteria are not known for (E,)
with p(t) < 0 and g(¢) < 0 or p(t) > 0 and ¢(t) < 0. We have obtained some
results in this direction.

By a proper solution of (E;) or (E2) we mean a solution y(t) which exists
on some half-line [T}, 00) C [a, 00), where T, depends on y, and is nontrivial
in any neighbourhood of infinity. Here we restrict our attention to real-valued
proper solutions of (E;) or (Ez2). A proper solution is said to be oscillatory
if it has arbitrarily large zeros; otherwise, it is called nonoscillatory.

In Section 2, we consider (E;) and (Eg) with p(¢) > 0 and ¢(¢) > 0.
Section 3 is concerned with oscillation criteria for (E;) with p(¢) > 0 and
q(t) < 0 and with p(t) < 0 and ¢(¢) < 0.

2. This section deals with oscillation criteria for (E;) and (Eg) with
p(t) > 0 and ¢(¢) > 0. Our results generalize and supplement the following
theorems of Waltman [13]:

THEOREM 1. Suppose that p(t) > 0, q(t) > 0 and q is continuously
differentiable such that ¢'(t) < 0. If

(1) A+ Bt — j(fp(u)du)ds<0

for large t and for any real numbers A and B, then a proper solution of (E1)
which has a zero is oscillatory.

THEOREM 2. Suppose that p(t) > 0, q(t) > 0 and q is continuously

differentiable. Let f(y)/y > B > 0 for y # 0 and some B. If Bp(t)—¢'(t) > 0

and
o0

J t(Bp(t) — ¢'(1)) dt = oo,

then a proper solution of (E3) which has a zero is oscillatory.
The following result due to Lazer [5] is required in the sequel.

LEMMA 1. If y € C3(la,0),R) such that y(t) > 0, ¥'(t) > 0 and
y"'(t) <0 fort > a, then

y(@) 1

iminfo @y 2 2
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Remark 1. For f(y) = y*, where a > 0 (# 1) is a quotient of odd
integers, the condition f(y)/y > 8 > 0 for y # 0 and some [ takes the form
fy)/y>B=0,and fora=1,3=1.

In view of the above remark, the following theorem holds for both (E,)
and (Eg)

THEOREM 3. Suppose that p(t) > 0, q(t) > 0, g is continuously differen-
tiable, f(y)/y > B >0 for y # 0 and some B and 20p(t) —q'(t) > 0 but #0
on any subinterval of [0,00). Let F(y) be given by

F(y) = (y)" - 2yy" — a(t)y”.
If the second order differential equation
(2) 2" + (q(t) + mBtp(t))z =0,
0 < m < 1/2, is oscillatory (i.e. all its proper solutions are oscillatory),
then a proper solution y(t) of (Eq) for which F(y(to)) > 0 for some tg > Ty,

is oscillatory. In particular, any proper solution of (E;) which has a zero is
oscillatory.

Proof. Suppose that y(¢) is nonoscillatory. So there exists a ¢ > tg such
that F(y(c)) > 0 and y(t) # 0 for t > c. Let y(¢) > 0 for t > c; the other
case is similar.

By (E2) we have

f(y(®)

d !
3 PN =0 (20 /D - (0).

Then the assumption 28p(t)—¢'(t) > 0 implies that F(y(t)) is increasing and
hence F(y(t)) > F(y(c)) > 0 for t > ¢. If possible, let t; and t3 (c < ¢; < t3)
be consecutive zeros of y'(t). So F(y(¢1)) > 0 and F(y(t2)) > 0, that is,

—2y(t1)y" (t1) > q(t1)y*(t1) > 0,
—2y(t2)y" (t2) > q(t2)y?(t2) > 0.

Thus y”(¢1) < 0 and y”(t2) < 0. This is impossible because t; and t; are
consecutive zeros of y'(t). So y’(t) has at most one zero in (¢, 00), and hence
there exists a b > ¢ such that y’(t) > 0 or < 0 for ¢t > b.

If possible, let y’(t) > 0 for t > b. From (E;) it is clear that y"/(t) < 0
fort > b. Let d > b. From Lemma 1 it follows that

for t > d. Thus, for t > d,
f(y(®) f(yit)) y(t) g(t _d).

y'(t) oy v'(@)
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This in turn implies that

ty'(t) ~ 2 2t
Let 0 < m < 1/2. Choose T so large that 3/2 — 8d/(2t) > mfB for t > T.

Then
f(y(@)
ty'(t)
for t > T. Clearly, y'(¢) is a nonoscillatory solution of the second order
equation

f(y(t) S B pd

> mf

" fy(®)
2"+ |q(t) + p(t) o) z=0
for t > T. From Sturm’s comparison theorem it follows that the equation (2)
is nonoscillatory, a contradiction.

Hence y'(t) < 0 for ¢t > b. We consider three cases, viz. (i) y”(t) < 0,
(ii) ¥"”(t) > 0 and (iii) ¥”(¢t) changes sign for large ¢, and derive a con-
tradiction in each case. Clearly, y’(t) < 0 and y”(¢t) < 0 for large ¢t imply
that y(¢) < O eventually, a contradiction. If y”(¢) > 0 for large t, then
lim; ., ¥'(t) exists and is nonpositive. From (3) we obtain

F(y(t) = f [2p(s) y(s) — ¢'(s)y*(s)] ds,
that is,
(4) f [2p(5) f (y(s))y(s) — ¢'(8)y*(s)] ds .

Thus, from (4), hmt_,oo(y (t))? is positive, that is, lim; oot/(t) =
u < 0, and hence y(t) < 0 eventually, a contradiction. Suppose that y”(t)
changes sign for large t. So y’(t) has maxima for large ¢t. We claim that
limsup,_, ., y'(t) = 0. If not, limsup,_,, ¥'(¢) = A < 0. Thus, for 0 < € <
—, there exists a T > b such that y'(t) < A + ¢ for t > T. Consequently,
y(t) < 0 for large t, a contradiction. Hence our claim holds. Let (t,) be
the sequence of maxima of y'(t). So limsup,,_, ., ¥'(t,) = 0. Clearly, (t,)
contains a subsequence (s,) such that lim,_ . ¥'(sn) = 0. However, since
y"(sn) =0, from (3) it follows that

(¥ (52))% = (¥ (51))% — 2y(sa)y" (s) — q(sa)y>(5n)

— Fy(@)+ [ [2p()f(u(s))y(s) — a'(s)y*(s)] ds

c

Hence lim, o0 (3'(s,))% > 0, a contradiction.
Thus the theorem is proved.
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Remark 2. Theorem 3 is more general than Theorem 2 due to Waltman.
In the following we show that the conditions in Theorem 2 imply those of
Theorem 3. Clearly, 8p(t) —q’(t) > 0 implies that 28p(t) —¢’(t) > 0. Further,
if

[ t(60(t) - ' (8)) dt =

a

then either
oo oo
f tp(t)dt =00 or — f tq'(t)dt = o

But
t t

- f sq'(s)ds < aq(a) + f q(s) ds

a

implies that [ g(t) dt = co when — [ t¢(t) dt = oo. Hence

J 1Bp(t) - d' () dt = o0

a

implies that
[ (a(t) + mBtp(t)) dt = co.

Consequently, equation (2) is oscillatory (see Swanson {12]).

Now we give an example to which Theorem 2 cannot be applied but our
Theorem 3 applies.

ExAMPLE 1. Consider
1
y" + <1+ tz)y +5B+eM)y=0, t>1,

where 8 > 0. Clearly, Ap(t) — q'(t) > 0. But

o0

[ tBp(t) - ¢(®) dt = (B+2) f

1
so Waltman’s theorem cannot be applied. Now, for 0 < m < 1/2,

f(Q(t)‘{"mﬂtP(t))dt: f (1+ti2) dt+mﬂ1f;i_2t._

1 1
Thus the equation (2) is oscillatory, and Theorem 3 applies.

Remark 3. We show that (1) is equivalent to f p(t) dt = oo. Set

t s

G(t) = f(fp(u)du) ds.

a a
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So (1) holds for large ¢t and arbitrary A and B if and only if

(5) tlim G(t)/t = o0

Further, (5) holds if and only if lim;_.o G'(t) = o0, that is, [~ p(t) dt = oo,
which proves our claim.

Remark 4. We may note that, for 3 > 0,

o0 o0

f q(t)dt = oo implies that f (g(t) + mpBtp(t))dt =
and hence (2) is oscillatory. If 8 > 0, then

[o <] 00

f p(t)dt = oo implies that f (q(t) + mBtp(t)) dt = oo

and thus (2) is oscillatory. Therefore, Theorem 3 provides alternative condi-
tions, when compared to Theorem 1 of Waltman, under which every proper
solution of (E;) which has a zero is oscillatory. The following examples
strengthen our remark.

ExAMPLE 2. Consider
1 1
y”, I (1 I tz)y, I t3ya ) t 2 17

where a > 0 is a quot1ent of odd integers. Waltman’s result cannot be ap-
plied because [ p(t)dt < oo. However, [ g(t)dt = oo, and Theorem 3
applies.

ExXAMPLE 3. Consider
1 1
Y+ 5y + 5y =0, t21,

where a > 0 is a quotient of odd integers. Clearly, f1 (t)dt < oo and

fl q(t) dt < co. But Theorem 3 can be applied because lim;_,, t2q(t) = 1 >
1/4 and hence the equation z” + (1/t%)z = 0 is oscillatory (see [12], p. 45).

Remark 5. It is clear that Theorem 3 generalizes the following theorem
due to Lazer [5].

THEOREM 4. If p(t) > 0, q(t) > 0, 2p(t) — ¢'(t) > 0 and not identically
zero in any interval and there ezists a number m < 1/2 such that the second
order differential equation

2" + [a(t) + mitp(t))z = 0
is oscillatory, then the third order differential equation

¥y +qt)y +p(t)y=0
admits oscillatory solutions.
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3. In this section we consider oscillation criteria for (E1) with p(¢) > 0
and ¢(t) < 0 and with p(¢) < 0 and ¢(¢) < 0.
The following lemma due to Parhi and Nayak [9)] is used in the sequel.

LEMMA 2. If r,p,f € C([a,©),R) such that r(t) > 0, p(t) > 0 and
f(t) >0, then all solutions of

(r(®)y") — p(t)y = f(t)
are nonoscillatory.

THEOREM 5. Suppose that p(t) > 0, g(t) < 0, ¢'() < 0 and ¢(t) is
bounded. Let a > 1. If
o o]

(6) J [p0)- 7 (-a0p?] at = o,

a

then a proper solution of (El) which has a zero is oscillatory.

Proof. Let |g(t)| < M, where M is a positive real number. Let y(t) be a
proper solution of (E;) such that y(to) = 0 for some ¢ty > T,,. We claim that
y(t) is oscillatory. If not, there exists a ¢ > to such that y(c) = 0 and y(¢) # 0
for t > c. Without any loss of generality, we may assume that y(¢) > 0 for
t > c. Clearly, —y'(t) is a solution of the second order differential equation

2" +q(t)z = p(t)y*(t) .
From Lemma 2, it follows that the above equation is nonoscillatory. So there
exists a b > ¢ such that y'(¢) # 0 for ¢ > b.

Suppose that y'(¢t) < 0 for ¢t > b. Since y(c) = 0 and y(t) > 0 for t > ¢,
there exists a t;, ¢ < t; < b, such that y'(¢1) = 0 and ¥/(¢) < 0 for ¢t > t;.
Now multiplying (E;) through by y’() and integrating the resulting identity
from t; to t (t; < t), we obtain

¢
YOY'(t) = [ [1"())* - a(s)(¥'(5))* = p(s)y*(s)y'(s)] ds > 0.
121
Thus y”(¢t) < 0 for t > t;. This in turn implies that y(¢) < 0 for large ¢, a
contradiction.

So y'(t) > 0 for t > b. Suppose that y(¢) is bounded. Integrating (E;)

from b to ¢, we obtain
t
y'(t) <y"(b) — g(t)y(t) —y*(®) [ p(s)ds.
b
Clearly, (6) implies that [ p(t)dt = oo. Hence lim;_.c y”(t) = —occ. This
in turn implies that y'(t) < 0 for large ¢, a contradiction. Next, let y(t) be
unbounded. So there exists a to > b such that y(¢) > 1 for ¢ > t5. Then
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z(t) = y'(t)/y(t), for t > to, satisfies
(7) 2"(8) + 32(1)2'(t) < —[2°(t) + q(t)2(t) + p(t)].-
It is easy to see that the minimum of z3(t) + q(t)z(t) + p(t) over all positive
z(t) is p(t) — ﬁi(—q(t))g‘/z. Thus
2 o
- (a0

for t > ts. Integrating (8) from t; to t and making use of (6), we obtain
Z'(t) — —oo as t — oo, which implies that 2(t) < 0 for large ¢, a contradic-
tion.

This completes the proof of the theorem.

(8) 2"(t) + 32(1)2'(t) < — |p(t)

Remark 6. The above theorem partially generalizes the following the-
orem due to Lazer [5].

THEOREM 6. If p(t) > 0, q(t) < 0 and

oo

[ o= 2 catn?] de = .

then (E;) with a = 1 admits oscillatory solutions.
The following example illustrates Theorem 5.

ExAMPLE 4. Consider
1
yll/_(2_t_2_)yl+etya:0’ tzl,

where a > 1 is a quotient of odd integers. Clearly, all the conditions of
Theorem 5 are satisfied.

It is interesting to note that Theorem 5 may be put in the following
form which may be viewed as a stability theorem for nonoscillatory solutions
of (El)

THEOREM 7. Suppose that the conditions of Theorem 5 hold. For any
proper nonoscillatory solution y(t) of (E1), the following properties hold for
large t:

(i) sgny(t) = sgny"(t) # sgny’'(t) = sgny”'(¢),

(i) limg 0o y(t) = lim; o0 ¥'(t) = limp— 0o y”'(t) = 0.

Proof. From Theorem 5, it follows that y(t) # 0 for ¢ > a. Without
any loss of generality, we may assume that y(¢)-> 0 for ¢ > a. Proceeding
as in Theorem 5 we may show that y'(t) < 0 for large t. Consequently, from
(E;) we obtain y"’(¢) < 0 for large ¢, and hence y"(t) > 0 or < 0 for large ¢.
But y"(t) < 0 for large t gives y(t) < O for large t, a contradiction. Thus
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y"(t) > 0 eventually. Hence (i) holds. Clearly, (ii) follows from (i) and the
observation that (6) implies f:o p(t)dt = oo. -
Thus the theorem is proved.

In the sequel we improve the following result due to Nelson [6]:

THEOREM 8. Let ¢'(t) and p(t) be continuous and p(t) > 0, q(t) < 0 with
q'(t) > 0. For any A and B suppose that

t s

A+ Bt - f(fp(u)du)ds<0

a a

for large t. Then any nonoscillatory solution y(t) of the equation
v +qt)y +pt)y*™ 1 =0, n=1,23...,
has the following properties:
sgny(t) = sgny”(t) # sgny'(),
Jim y”(t) = lim ¢'(2) =0,  lim |y(t)] =L > 0.
Further, if
9) p(t)>e>0,
then lim;_, . y(t) = 0.

THEOREM 9. Suppose that p(t) > 0, g(t) < 0 and ¢'(t) > 0. Let a > 1.
If f:o p(t) dt = oo, then for any proper nonoscillatory solution y(t) of (E;),
the following properties hold for large t:

sgny(t) = sgny”(t) # sgny'(t) = sgny”'(t),
flim y(t) = tlim_y'(t) = tlim y'(t) =0.

In view of Remark 3, the proof of Theorem 9 is the same as that of
Theorem 8 of Nelson, except that we have to show that lim, , y(¢t) = 0
without the extra condition p(t) > ¢ > 0.

Let y(t) > 0 for large ¢t. So y’(t) < 0 and y”(t) > 0 for large ¢. If possible,

let lim;,c y(t) = A > 0. So y(t) > A for large t. Now integrating (E;)
from t; to t, t; sufficiently large, we get

y'(t) <y'(t) = 2> [ p(s)ds.

Hence y”(t) < 0 for large t, a contradiction. Thus lim;_,, y(t) = 0.
Theorem 9 may be viewed as an oscillation criterion as follows:

THEOREM 10. Suppose that the conditions of Theorem 9 hold. Then a
proper solution of (E;) which has a zero is oscillatory.
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Proof. If possible, suppose that y(t) is a nonoscillatory solution of (E;)
with y(¢g) = 0 for some t; > a and y(t) # 0 for ¢ > to. Without any loss
of generality, we may assume that y(¢) > 0 for ¢t > to. Consequently, from
Theorem 9 it follows that y'(t) < 0 for ¢ > ¢, > tp. Hence there exists a
ta € (to,t1) such that y'(t2) = 0 and y'(¢) < 0 for ¢ > t5. Now multiplying
(E;) through by %'(t) and integrating the resulting identity from ¢, to ¢
(t2 < t), we get

t
YOy (t) = [ (")) - a(s)(¥(5)* — p(s)y*(s)y'(s)] ds > 0.
t2
Thus y"'(t) < 0 for t > ¢2, a contradiction, which completes the proof of the
theorem.

THEOREM 11. Suppose that p(t) < 0, q(t) < 0 and ¢'(t) > 0. If [ p(t) dt
= —o00, then every bounded proper solution of (E;) is either oscillatory or
tends to zero as t — oo.

Proof. Let y(t) be a bounded proper solution of (E;). Suppose that y(t)
is nonoscillatory. Without any loss of generality, assume that y(¢) > 0 for
t > to > T,. We have to show that lim; . y(t) = 0.

Clearly, y'(¢) is a solution of the second order nonhomogeneous equation

2" +q(t)z = —p(t)y*(t).
By Lemma 2, y’(t) is nonoscillatory. So there exists a t; > tp such that
y'(t) > 0 or < 0 for t > t;. Suppose that y'(t) > 0 for t > ¢;. Then
y"(t) > 0 for t > t; from (E;). Thus y"(¢) is nonoscillatory (note that
y"'(t) = 0 implies that y(¢) is unbounded). If y”(¢) > 0 for large ¢, then y(¢)
is unbounded. So y”(t) < 0 for t > t; > t;. Now multiplying (E;) through
by y(t) and integrating the resulting identity from ¢, to ¢, we obtain

(' (1) < (' (1)* = 2y(t)y" (t) — q(t)y?(2)

< (¥ (t2))* — alt2)y? (t2) — 2u(t2)y" (82) + 2y°* ' (t2) [ p(s)ds.

Thus (y'(¢))? < 0 for large ¢, a contradiction.
Hence y'(t) < 0 for t > t;. Consequently, lim,;_, ., y(t) exists. If possible,
let lim¢— o0 y(t) = A > 0. Now integrating (E;) from t; to t, we get

t
y"(t) 2 y"(t1) + q(t)y(tr) — y*(t) [ p(s)ds.
ty
Hence lim;_, o y”(t) = 0o, and so y’(¢) > 0 for large t, a contradiction. Thus

This completes the proof of the theorem.
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