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Second order semilinear Volterra integrodifferential
equation in Banach space

by JAN BOCHENEK (Krakéw)

Abstract. By using the theory of strongly continuous cosine families of linear oper-
ators in Banach space the existence of solutions of some semilinear second order Volterra
integrodifferential equations in Banach spaces is proved. The results are applied to some
integro-partial differential equations. '

1. Introduction. We consider the abstract semilinear second order ini-
tial value problem
d?u :
— =Au+ [ g(t,s,u(s),u'(s))ds + f(t), tER,

W) =2, ZO=uy,

where A is a linear operator from a real Banach space X into itself, u is a
mapping from R to X, g is a nonlinear mapping from R x R x X x X into
X, and f is a function from R to X; z,y € X. In this paper we discuss
the problem of existence and uniqueness of solutions of (1). We extend the
results by C. C. Travis and G. F. Webb [4], using the author’s results [1].
In particular, we consider the classical solutions of (1) under more general
hypotheses on g and f than in [4]. Our main tool is the theory of strongly
continuous cosine families of linear operators in Banach space. The basic
ideas and results of this theory can be found for example in (5].

2. Preliminaries. Let A be the linear operator defined in Section 1. We
make the following assumption on A.

(Z,) A is the infinitesimal generator of a strongly continuous cosine
family {C(t) : t € R} of bounded linear operators from the Banach space X
into itself.
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Recall that the infinitesimal generator of a strongly continuous cosine
family C(t) is the operator A : X D D(A) — X defined by
(2) Az := (d?/dt*)C(t)z|s=0, « € D(A),
where
(83) D(A):={z € X :C(t)z is twice continuously differentiable in ¢} .
Let
E :={z € X : C(t)z is once continuously differentiable in ¢} .

It is known (see [5, Proposition 2.2]) that D(A) is dense in X and A is a
closed operator in X.
We define the associated sine family S(t), t € R, by

(4) S(t)z = fc )zds, z€X,teR.

From assumption (Z;) it follows (see [5, (2.11) and (2.12)]) that there are
constants M > 1 and w > 0 such that

(5) IC®)|| < Me“!!l and |S(t)|| < Me“!!l  fort e R.

Remark that S(t)X C F and S(t)E C D(A) for t € R, (d/dt)C(t)x =
AS(t)x for ¢ € E and t € R, and (d2/dt?)C(t)z = AC(t)z = C(t)Azx for
z € D(A) and t € R (see [5, (2.17)-(2.19)]). For z € X and s,r € R, we
have (see [5])

(6) f S(t)z dt € D(A),

-]
T

(7) A [ St)yzdt=[C(r) - C(s)]z.
$§
Note that the adjoint operator A* : X* — X* is well defined, for D(4) = X.
We make the following assumption on A*.

(Z2) The adjoint operator A* is densely defined in X*, i.e. D(A*) = X™*.

3. Existence of solutions in a special case. In this section we
consider a special case of the problem (1):

(8) %=Au+ Ofg(t,s,U(s))dHf(t)v teR,
du
u0) =z, —(0)=y.

The motivation for this comes from [4], where (8) is considered under the
assumption that g is continuously differentiable in its first variable and
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f : R — X is continuously differentiable. We replace this assumption by
the local Lipschitz condition.

Without loss of generality we can assume that A is boundedly invertible.
It is proved in [3, §6] that for 0 < a < 1 the fractional powers (—A)® exist
as closed linear operators in X, D((—A)%) C D((—=4)?) for0< < a <1,
and (—A4)*(—A)? = (—A)**P for 0 < a + B < 1. We assume in addition
(cf. [4])

(Z3) For 0 < a < 1, (-A)* maps D((—A)*) onto X and is 1-1, so
that D((—A)?) is a Banach space when endowed with the norm ||z}, :=
l{(—A)z|, z € D((—A)*>). We denote this Banach space by X,. We further
assume that A~! is compact.

We need the following lemmas:
LEMMA 1 ([4, Lemma 2.1]). Suppose (Z1) and (Z3) hold. Then
(9) for0<a <1, (—A)™® is compact if and only if A~! is compact,

(10) for0 < a < 1landt € R, (—A)"°C(t) = C(t)(—A)~* and
(—A)=S() = S()(-A)~e.

LEMMA 2. Suppose (Z1)—(Z3) hold. Letv: [-T,T) — X, for T > 0, be a
Lipschitzian mapping with Lipschitz constant L > 0, and let

(11) q(t) := f S(t - s)v(s)ds for t € [-T,T).

Then g is twice continu;usly differentiable in [~ T, T] with q(t) € D(A), and
(12) q(t)= ft C(t-s)v(s)ds, te[-T,T],

(13) q'(t) = z:q(t) +o(t), tel-T,T];

(14) (-4 () e E for0<a<l,te[-T,T].

Proof. This follows from Lemmas 1-4 of [1].
We make the following assumptions on the functions g and f:

(Z4) g : Rx R x D — X is continuous, where D is an open subset of X,
for some « € [0, 1),

(Zs) f is locally Lipschitz, and g is locally Lipschitz with respect to the
first variable (i.e. for given tg € R there exist T > 0, an open bounded
neighborhood D, C D of z and a constant a > 0 such that ||g(s1,7,z1) —
9(s2,7,z1)| < a|sy — 82| for all s1,s2,7 € (to — T,to+ T) and z; € D).

THEOHEM 1. Let assumptions (Z,)—(Zs) hold. Let z € D and (—A)>" 1y
€ E. There erist T > 0 and a continuous function u : [-T,T] — X,
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satisfying

(15) u(t) =C(t)z+ S(t)y + f (t—s) j g(s,r,u(r))drds
0 0

+ fS(t-s)f(s)ds., te[-T,7].

If, in addition, z € D(A) and y € E, then u is twice continuously differen-
tiable, u(t) € D(A) fort € [-T,T], and u satisfies (8).

Proof. Let
(16) B(t)=C(t)z+ S(t)y+ [ S(t—s)f(s)ds
0

and observe that ¢ : R — X, is continuous by virtue of Lemma 2. For v > 0
let

Ny(z) :={z1 € Xo : |z — z1]la < 7}
Now choose v > 0 and T > 0 such that

(17) N,(z)c D,

(18) 18(t) - 2lla < 7/2, te[-T.T).

Let K be the closed bounded convex subset of C := C([-T,T); X4) defined
by

K:={neC:|n-2olc<v/2},
where || - ||c denotes the supremum norm in C. Notice that n(t) € D for
n € K and t € [-T, T, since

In(t) = zlla < lIn(t) = B(O)lla + 18(t) - zlla
<lin—2lle + 18(t) —zlla <v/2+7/2=17
Define the transformation G on K by

(19) (Gn)(t) :=2(t) + j S(t—s) j g(s,r,n(r))drds, te[-T,T].
0

Observe that the function v : [T, T] — X defined by

$

(20) v(s) := fg(s,r,n(r)).dr

0
satisfies the Lipschitz condition by virtue of (Z5). For ¢t € [-T, T] we have

Gn)O-2(Oa = (-4 [=4 [ $t-9) [ alourinr)dras]| <272
0 0
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for sufficiently small 7' > 0, since the function
t 3
(21) -T,T]>t— A f S(t—s) f 9(s,r,n(r))drds € X,
0 0
is continuous by Lemma 2. Further, Gn is continuous as a function from
(-T,T) to X,, and thus G maps K into K.
We next show that G : K — K is continuous. By (Z4), given £ > 0 there
exists 6 > 0 such that for 1,72 € K with |91 — n2||c < 6§ and s € [T, TY,
we have

sup{llg(s,r,m(r)) — g(s,mme(r))l|: -T <7 <T} <e.
On the other hand, for every z* € D(A*) we have

(4 [ $t-9) [ lg(s,m(r)) = g(s,7,ma(r))] dr ds,z")
0 0

=|( [ 8¢=9) [ lols,r,m(m) - g(s,r,m(r))] drds, 472" )
0 0

t s
< ‘ f Me“It=sl fedr'ds‘“A*z’*”.
0 0

Since D(A*) is dense in X* and the mapping (21) is bounded for 7 € K, we
see from the above that the mapping

t s
Kan—»AfS(t—s fgs r,n(r))drds € X
0
is continuous in the weak topology on X.

Now, for m1,m2 € K, t € [-T,T),
1(Gm)(¢) — (Gn2)(t)la

= ||y { - 4 ftS(t—S) f l9(s,7,m (1) = g(s, 7, ma(r))] dr ds |
0 0

a—-1

and the continuity of G follows, by the compactness of the operator (—A)
We next show that the set {Gn: n € K} is equicontinuous as a collection
of functions in C. Forn € K and ~-T <t <t+ h <T, by (19), we have

[(Gn)(t+ k) = (Gn)(D)«
<19t + h) ~ S(t)lla + I(=A)* 7 [(wn)(t + b) = (wn) @)

where

(22) ‘ (wn)(t f S(t — s) jg(s,r,n(r))drds.
0 0
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By Lemma 2, & : [-T,T] — X, is continuous, and so uniformly continuous,
ie ||#(t+h) —P(t)|o = 0as h—0.

On the other hand, we have (cf. [1, Lemma 4])

(=A)* " (wn)(t + h) — (wn)(?)]

8

= (—A)S(h) [(—A)"‘_1 f C(t—s) f g(s,r,n(r drds]

0
+[C(h) — I|(-A)*~ 1[ fS(t—s) fg(s,r,n(r))drds]
0 0

t+h s
+(=4)*! [(—A) f S(t+h—s) f g(s,r,n(r))dr ds]
t 0
=w +w2+ws.

We prove that w; — 0 as h — 0, uniformly in n € K. Indeed, w; =
(=A)S(h)(yn) (), where

wn)(t) = (—A)t [ Cle—s) [ gls,rn(r))drds € B
0 0

for t € [-T,T] and n € K. Since {yn : n € K} is a compact subset of
E we have w; — 0 as h — 0, uniformly in € K. Analogously we have
we = [C(h) — I|(—A)*~(wn)(t) — 0 as h — 0, uniformly in 5 € K.
Since (see [1, (12)])
lwall < (=4 | L(Me“T + 1)k,

where L > 0 is the Lipschitz constant for the function v defined by (20), we
obtain w3 — 0 as h — 0, uniformly in n € K.

The claimed equicontinuity of {Gn: n € K} now follows.

Lastly, we show that for each t € [-T,T] the set {(Gn)(t) : n € K} is
precompact in X, (see [4]).

Since (—A4)™® : X — X, is compact for o < f, it suffices to show that
{(-A)P[(Gn)(t) — #(t)] : n € K} is bounded in X for a < # < 1. We have

I(—A)P(Gn — ®)(t)]|
= -2y -a) [ 5= [ oo aras]|
0 0

< N(=APHL(MeT + 1)t (see [1,(12)]).

By Schauder’s fixed point theorem, G has a fixed point in K, which is
a solution of (15). If z € D(A) and y € E, then the solution of (15) is a
solution of (8) by [1, Theorem 1].
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THEOREM 2 (cf. [4]). Under the assumptions of Theorem 1, if in addition
g maps each closed, bounded set in R x R x D into a bounded set in X, and
if u is a solution of (15) noncontinuable to the right on (0,d)], then either
d = +o00, or given any closed, bounded set U in D, there is a sequence
ty — d~ such that u(ty) € U. An analogous result holds for a solution
noncontinuable to the left.

Proof. Assume that d < +00 and the conclusion of the theorem is false.
Then there is a closed bounded set U in D such that u(t) € U for t; <t < d,
where 0 < #; < d. Set

d d 9
£:=C(dz+S@y+ [ Sd-s)f(s)ds+ [ S(d—s) [ g(s,r,u(r))drds.
0 0 0

Then we have

lu(t) = Zlla < 18(t) ~ S(d)[la + (= 4)* (wu)(t) — (wu)(@)I,
where & is defined by (16) and w by (22). Let h := d — t. Arguing as in the
proof of Theorem 1, we have

lu(t) = Zlla < [|#(d) — &(d — h)lla + I(=A4)* 7" [(wu)(d) ~ (wu)(d - h)]|
< [|8(d) — &(d = h)lla

d s

+1{| — AS(h [ >t [ Cd-s) [ g, TU(T))deS]”
0 0
+||[C(h) - I](—A [ de (d—s) jg(s,r,u(’r))drds]”
0 0
+ (—A)"‘_l[(—A) fS(d—h—s) ig(s,r,u(r))drds]“.
0

d—h

Since g is bounded on [0,d] x [0,d] x U, (—A)*~! is compact and #: R — X,
is continuous, we get

Jim Jlu(t) ~ Zlla = 0.
Since
u'(t) = S(t)Az + C(t)y
+ [Ct-s) [ g(sru(r)drds+ [ C(t—s)f(s)ds
0 0 0

for0 <t < d, we see that
lim [[«'(t) = 9lla =0,
t—d—
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where
d s d
§:=S(d)Az+C(d)y+ [ C(d—s) [ g(s,r,u(r))drds+ [ C(d—s)f(s)ds.
0 0 0

By Lemma 2 we have (—A)*~15 € E.

Now arguing as in the proof of [4, Proposition 2.2], we may extend u to
[0,d + d1], where d; > 0, in such a way that u satisfies (15) for 0 < ¢t <
d + d;. But this contradicts the noncontinuability assumption and the proof
is complete.

COROLLARY 1 (cf. [4]). Let the hypotheses of Theorem 2 hold and, in
addition, let D = D((—A)%). If u is a solution of (15) noncontinuable to
the right on [0,d), then either d = +oo or limsup,_,4- ||[u(t)||a = +o00. An
analogous result holds for a solution noncontinuable to the left.

4. Existence of solutions of (1) in the Lipschitz case. In this
section we consider the problem (1) for t € (0,T], T > 0, i.e.

t
d?u

(23) el + Au + Of g(t,s,u(s),u'(s))ds+ f(t), te(0,T],
u(0)==z, v(0)=y,
where A is a linear operator defined in the introduction, satisfying assump-
tions (Z;) and (Zg) with ¢ : [0,T] x [0,T]x X x X —» X, f:[0,T] — X,
z,y € X.
DEFINITION 1. A function u: [0,7] — X is said to be a solution of the
problem (23) if it is of class C* in [0, 7], C? in (0, T] and satisfies (23).

We make the following assumptions on g and f:

(Z¢) ¢:[0,T] x [0,T] x X x X — X is continuous.

(Z7) f:[0,T) = X and g(-,s,u,v) : [0,T] — X satisfy the Lipschitz
condition for s € [0, T}, u,v € X.

Similarly to the case of differential equations we have the following the-
orem (cf. [1, Theorem 2]).

THEOREM 3. Let (Zg) hold and let f : [0,T] — X be continuous. If u is
a solution of the problem (23), then u is a solution of the integral equation
(24) u(t)=C(t)z+ S(t)y

t s

+ [S(t—s) [g(s,ru(r),w'(r))drds+ [ S(t—s)f(s)ds.
0

0 Q
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THEOREM 4. Suppose (Z,), (Z2), (Zs) and (Z7) hold and let z € D(A)
and y € E. Ifu € CY([0,T)], X) is a solution of (24), then u is a solution of
the problem (23).

Proof. First we remark that the function v : [0,7] — X defined by
t
(25) v(t) = [ g(t,s,u(s),u'(s))ds, tel0,T],
0

satisfies the Lipschitz condition. Indeed, let ¢ and ¢ + h be any two points
in [0,7]. We have
t
U(t + h’) - U(t) = f [g(t + ha $, U(S), ’U,’(S)) - g(tv 8, ’LL(S), 'U.,(S))] ds
0
t+h
+ f g(t + h,s,u(s),u'(s))ds.
t

Hence
t

lo(¢ +h) — () < [ alhlds + K[| < (aT + K)|h| = LIA|,
0

where a > 0 is the Lipschitz constant for g, K := sup{||g(¢, s, u(s),u’(s))] :
s,t € [0,T]}, and L := oaT + K. This implies, by (Z-), that the mapping
[0,T] > t — v(t) + f(t) also satisfies the Lipschitz condition, where v is
defined by (25). Thus, by [1, Theorem 1], u is a solution of the equation

22 t
Z? = Az + 0fg(t,s,u(s),u'(s))ds+ f(t), te(0,T}],

with 2(0) = z, 2/(0) = y. This means that u is a solution of the problem (23).

THEOREM 5. Suppose (Z,), (Z2) and (Zg¢) hold. Let f : [0,T] — X be
continuous. Suppose that there exists L > Q such that
lg(t, s, z,9) — g(t, 5, u,v)|| < Ll ~ ull + lly — »|)
for t,s€[0,T), z,y,u,ve X.
Then for every ¢ € E and y € X there exists ezactly one solution of the
integral equation (24) belonging to C1([0,T), X).

The proof of this theorem is omitted, as it is a slight modification of the
proof of 1, Theorem 4].
As a consequence of Theorems 4 and 5 we get

THEOREM 6. If
(i) assumptions (Z,), (Z2) and (Zg) hold,
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(i) f : [0,T] —» X and g(-,8,-,*) : [0,T] x X x X — X satisfy the
Lipschitz condition for s € [0,T],
(iii) z € D(A) and y € E,

then the problem (23) has ezactly one solution which is a unique solution of
the integral equation (24).

5. Examples. We consider the following two integro-partial differential
equations (see [4]).

ExXAMPLE 1.

¢
wy(z,1) = wee(z,t) +f6tswzs ))ds+ h(z,t), O0<z <7 teR,

w(0,t) = w(m,t) =0, Ot ER,
w(z,0) = wo(z), w(z,0)= wl(z), O<z<m.

Assume that § : R x R x R — R is continuous, and satisfies the Lipschitz
condition with respect to its first variable. Let A : R x R — R be continuous
and let it satisfy the Lipschitz condition with respect to its second variable.
Suppose that wg and w, are continuous in [0, 7).

Analogously to [4] we take X := L?([0,7]) and let A: X — X be defined
by Az := 2", where D(A) := {z € X : 2,2’ are absolutely continuous,
2" € X, z2(0) = z(w) = 0}. Smce X = L?([0,7]) is a reflexive Banach space,
A satisfies assumption (Z3) (see [3, Theorem 5.29]). In [4] it is proved that
A also satistfies (Z,) and (Z3) with a = 1/2. Based on the considerations in
Example 4.1 of [4], we may demonstrate that (26) satisfies the hypotheses
of Theorems 1 and 2, and hence we get the local existence of solution to this
integro-partial differential equation under more general assumptions than in
[4, Example 4.1].

ExAMPLE 2. Consider

wi(3,1) = War (2, 8) + [ 8(t,5,w(z, ), we(x,5)) ds + h(z, 1),
w(0,t) = w(w,t) =0, °

w(z,0) = wo(z), wi(z,0)=w(x),
forz € (0,7) and t € (0,T), T > 0.
Let 6 : [0,T]x[0,T]xRxR — R and k : (0, 7) %[0, T] — R be continuous
and suppose there exists a constant L > 0 such that for s € [0,T], z € (0, ),
t17 t2 € [O)T] and P1,D02,41,92 S R

I‘S(tl,S,Ph ql) - ‘5(t2,3)P2, Q2)| < L(ltl - t2| + Ipl —p2| + lql - 412|),
lh(z)tl) - h(:l?,tg)' < thl - t2| .
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Let X and A be as in Example 1. Then it is readily verified that the hy-
potheses of Theorem 6 are satisfied. From this we get the existence and
uniqueness for the problem (27).

(1]

2]

(3]
4]

(5]
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