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A theorem of the Hahn—-Banach type
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Abstract. Let Y be a subgroup of an abelian group X and let F be a given collection
of subsets of a linear space E over the rationals. Moreover, suppose that F is a subadditive
set-valued function defined on X with values in F. We establish some conditions under
which every additive selection of the restriction of F to Y can be extended to an additive
selection of F. We also present some applications of results of this type to the stability of
functional equations.

1. Introduction. Throughout this paper, R, Q and Z stand for the sets
of all reals, rationals and integers, respectively. Our main goal is to give a
generalization of the following well-known Hahn-Banach theorem:

THEOREM A. Let Y be a linear subspace of a real linear space X. Assume
that p: X — R is a functional such that

(i) p(z +y) < p(z) + p(y) for all z,y € X;
(ii) p(az) = ap(z) for alla >0 and z € X.

If f: Y — R is a linear functional satisfying

(1) f(z) <p(z) forzeY,
then f can be extended to a linear functional g : X — R with
(2) g(z) < p(z) forzeX.

First we are going to rephrase this theorem in terms of a set-valued
function (abbreviated to “s.v. function” in the sequel) with values in the
family cc(R) of all non-empty, compact, convex subsets of R. Clearly, the
elements of cc(R) are just the non-empty compact intervals in R.
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An s.v. function F mapping X into cc(R) is said to be subadditive iff

(3) Flz+y)CF(z)+ F(y) forallz,ye X,
and it is called positively homogeneous iff
(4) F(az) =aF(z) foralla>0andze€ X.

Addition of sets and multiplication of sets by scalars are here understood in
the Minkowski sense, i.e.

A+B:={a+b:ac A be B}, oaA:={aa:ac€ A}
for any A,B C R and a € R.

One can easily check that inequalities (1) and (2) of Theorem A are
equivalent to

(1) —p(-1) < f(z) <p(z) forzeY,
(2" —p(—z) < g(z) <p(z) forzeX,
respectively. Moreover, by (i) and (ii) we have p(0) = 0 and
—p(—z) <p(z) forze X.

Therefore, we may correctly define an s.v. function F : X — cc(R) by
(5) F(z) = [-p(~2),p(z)] forz e X.
It is evident that F is subadditive, positively homogeneous and odd, i.e.
F(—z) = —F(x) for z € X. Conversely, each s.v. function F : X — cc(R)
which is subadditive, positively homogeneous and odd must be of the form
(5) with a functional p : X — R satisfying (i) and (ii).

Now Theorem A may be interpreted as a result on extending partial
additive selections of an s.v. function F : X — cc(R), as follows:

THEOREM B. Let Y be a linear subspace of a real linear space X. Assume
that F' : X — cc(R) is a subadditive, positively homogeneous and odd s.v.
Sfunction. If f: Y — R s a linear functional such that

f(z)e F(z) forallzeY,

then f eztends to a linear functional g defined on the whole of X and such
that

glzye F(z) forallze X.

In the next section we generalize Theorem B to the following abstract
setting. Instead of the linear space X we consider an arbitrary abelian group
(X, +), and the family cc(R) is replaced by an axiomatically given collection
F of subsets of a linear space E over Q. Among the assumptions imposed on
F the crucial role is played by the so-called binary intersection property. It
means that every subfamily of F, any two members of which intersect, has
a non-empty intersection. This property was first introduced and studied
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by L. Nachbin in [5]. It is well known that the collection of all non-empty
compact intervals in R has the binary intersection property (see [5]).

2. Generalizations of the Hahn-Banach theorem. Since we now
assume that X is a group (not a linear space), it is natural to discuss additive
(instead of linear) selections of an s.v. function F' : X — F, i.e. functions
g : X — F such that

g(z+y)=g(z)+9(y) forzyeX,
g(z) e F(z) forallze X.

THEOREM 1. Let Y be a subgroup of an abelian group (X,+) and let E be
a linear space over Q. Furthermore, let F be a family of non-empty subsets
of E having the binary intersection property and satisfying the following
conditions:

(6) AcF, veE=>A+veF;

(7) Ae]—',neZ*:=Z\{0}=>%A€}'.
Assume that F : X — F is a subadditive s.v. function such that
(8) F(nz)CnF(z) forallze X andneZ”.

If f: Y — FE is an additive selection of the restriction of F to Y (denoted
by Fly), then f can be extended to an additive selection of F.

Proof. Denote by 2 the family of all additive maps ¢ : dom¢ — E
such that Y C dom¢ C X, dom¢ is a subgroup of X, ¢(z) € F(z) for
z € dom ¢ and ¢(z) = f(z) for £ € Y. The family {2 is partially ordered by
the relation < defined by

¢<¢y iff dom¢ C domy and ¢ = ¥|dom ¢ -

It is easy to see that every chain C C {2 has an upper bound in §2: it is the

map ¢¢ such that dom ¢¢ := | J{dom ¢ : ¢ € C} and ¢¢ldom ¢ = ¢ for each

¢ € C. By the Kuratowski-Zorn lemma, {2 contains at least one maximal

element g. To complete the proof it is enough to show that dom g = X.
Suppose that there exists a zg € X \ dom g and put

W:={z+nz:z € domg,n € Z}.

Obviously W is a subgroup of X properly containing dom g. We distinguish
two cases depending on whether the set

- A:={k€Z":kz € domg}

is empty or not.
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Casel: A#0.Ifk,l € A, then k-1 € A and lg(kzo) = 9(lkzp) = kg(lzo),

whence
9(kzo0)/k = g(lz0)/1.
Putting
up := g(kz9)/k for some k € A,

we define an element ug € F which does not depend on the choice of k € A.
Next we define g: W — FE by
(9) g(z +nzp) :=g(z)+nuy forz€domgandneZ.

If an element of W admits two representations: ¢ + nzg = y + mzg with
some z,y € domg and n,m € Z, then (m — n)zg = ¢ —y € domg. There
are two possibilities: either m = n or m — n € A. In the first case we have
z =y and g(z) + nug = g(y) + mug. If the second possibility holds, then

_ g((m —n)z)
m-n
which implies that
9(z) — 9(y) = g(z — y) = g((m — n)20) = (M — n)uo

and consequently, g(z) + nup = g(y) + mup. Thus the definition of 7 is
correct. It is also clear that g is additive and §lgomg = 9.
Now let z € domg, n € Z and k € A. Then

ng(kzo) _ g(k(z + n20))
k k
€ %F(k(z +n2zp)) C F(z + nzp).

9(z + nz) = g(z) + nuo = g(z) +

Thus g is an additive selection of F'|y/, contrary to the maximality of g in §2.

Case 2: A=10. Then kzg € X\dom g for every k € Z*. Fix z,y € domg
and n,m € Z*. By the subadditivity of F' and by (8) we have

mg(z) — ng(y) = g(mz — ny) € F(mz — ny)
= F(mz + nmzg — nm2o — ny)
C F(m(z + nz)) + F(—n(y + mzo))
C mF(z + nz) — nF(y+ mz) .

Consequently,
0 € m[F(z + nzy) — g(z)] — n[F(y + m2o) — 9(y)],

which means that

0 € ~[F(z +nz) - g(&)] ~ — [Py +mz0) - g)].
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We conclude that for any z,y € dom g and n,m € Z* the intersection

%[F(x +nz0) — g(a)] N %[F(y + mz0) — g(y)]

is non-void. From the hypotheses it now follows that

ﬂ{%[F(ano)—g(z)]:w € domg,n € Z*} #0.

Let ug be in this intersection; then g(z)+nug € F(z+nz) for all z € domg
and n € Z.

Similarly to Case 1 we define § : W — E by (9). This definition is
unambiguous, since now z+nzy = y+mzy (with z,y € dom g and n,m € Z)
only holds if z = y and n = m. Moreover, g is an additive selection of F|w,
which again contradicts the maximality of g in £2. The proof is finished.

If members of F are Q-convex, i.e. aA+(1—a)A C Aforalla € QN[0, 1]
and A € F, then assumption (8) on the s.v. function F : X — F can be
weakened:

THEOREM 2. Let Y be a subgroup of an abelian group (X, +) and let E be
a linear space over Q. Moreover, let F be a family of non-empty Q-convez
subsets of E having the binary intersection property and satisfying conditions
(8) and (7) of Theorem 1. If F : X — F is a subadditive s.v. function such
that

(8) F(-z)C —F(z) foralzeX,
then every additive selection of F|y has an eztension to an additive selection
of F.

Proof. It is sufficient to observe that in fact F' satisfies (8). Indeed,
ifr € X,n € Z and n > 0, then by the subadditivity of F' and by the
Q-convexity of F(z), we derive

F(n:z:)C\F(:z:)+...+F(1:4)CnF(J:).

“v”

n terms

If n € Z and n < 0, then on account of (8') we have
F(nz) C —F(-nz) C —(—n)F(z) = nF(z),
which completes the proof.
The next result is an immediate consequence of Theorems 1 and 2 with
Y := {0} and f(0) := 0.

COROLLARY 1. Let (X, +) be an abelian group and let E be a linear space
over Q. Under the hypotheses of either Theorem 1 or Theorem 2 concerning
the family F and the s.v. function F : X — F, if 0 € F(0), then F has an
additive selection.
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The collection cc(R) is a simple example of a family F satisfying all the
conditions in both Theorems 1 and 2. If X,Y and F : X — cc(R) satisfy all
the assumptions of Theorem B, then by virtue of either Theorem 1 or 2 a
given linear selection f : Y — R of F|y can be extended to an additive (a
priori not necessarily linear) selection g : X — R of F. With each z € X we
associate a function g, : R — R defined by

9z(a) := g(az) for a € R,
which is additive and
9z(a) < sup F(az) = asupF(z) fora>0.

In particular, g, is upper bounded on a non-empty open interval and by
a classical result (see e.g. [1], Sect. 2.1.1, Theorem 1 and the subsequent
remarks) it has the form

gz(a) = ag-(1) foralla eR.

This assures that g is homogeneous and shows that Theorem B may be
easily deduced from both Theorems 1 and 2.

3. Applications. Using Theorem 2 we may prove the following result
on extending additive maps which approximate a function with Cauchy
differences in a given line‘ar space K over Q.

THEOREM 3. Let Y be a subgroup of an abelian group (X, +) and let K
be a linear subspace of a linear space E over Q. If ¢ : X — FE is such that

(10) px+y)—o(z)-d(y) € K foralliz,ye X

and f :Y — E is an additive map satisfying
flz)—¢(z) e K forzeY,

then f can be extended to an additive function g : X — E such that
g(z)-¢(z) e K- forze X.

Proof. First we observe that the family
F={w+K:weE}

has the binary intersection property (in fact, every subfamily of F any two
of whose members intersect consists of a single set). Clearly, all elements of
F are Q-convex and F satisfies (6) and (7). We consider an s.v. function
F: X — F given by

F(z):=¢(z)+ K forzeX.

It is evidently subadditive and f : Y — FE is an additive selection of F|y.
To check that F satisfies (8’) set £ = y = 0 in (10), whence ¢(0) € K.
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Moreover, setting y = —z in (10) we get ¢(0) — ¢(z) — ¢(—z) € K, which
combined with the preceding relation implies that

F(-z)=¢(-z2)+ KC —-¢(z)+ K=—-F(z) forzeX.
Now the conclusion follows directly from Theorem 2.

The subsequent corollary was first established in a different way by
K. Baron (cf. [2]). It results from our Theorem 3 upon setting Y := {0}.

COROLLARY 2. Let (X,+) be an abelian group and let K be a linear
subspace of a linear space E over Q. If ¢ : X — E satisfies (10), then there
ezists an additive function g : X — E such that

g(z) —p(z) e K forallze X.

In the sequel we shall say that a normed space (E, | ||) has the binary
intersection property iff the collection of all closed balls in E has the binary
intersection property in the sense introduced before. We will be concerned
with the following inequality:

(11) l¢(z +y) — d(z) — s < rlz) +7(y) - r(z +y)

for z,y € X, where (X,+) is an abelian group, ¢ maps X into E and
T is a real-valued subadditive function on X. A study of this inequality
with the “control function” r := || || was first proposed by D. Yost (cf. [6]
and [7]) and then it was undertaken by R. Ger in connection with some
stability questions for functional equations (see [3] and [4]). Here, we prove
the following extension theorem:

THEOREM 4. Let Y be a subgroup of an abelian group (X,+) and let
(E, ||l II) be a normed space having the binary intersection property. More-
over, suppose that r : X — [0,00) is an even, subadditive function and
¢ : X — E is an odd map satisfying (11). If f : Y — E is an additive
function such that

(12) If(2) - $(@)| <r(z) forzeY,
then f has an extension to an additive function g : X — E such that
(13) lg(z) — o(z)|| < r(z) forzeX.

Proof. For v € E and g € [0,00) let K(v, o) denote the closed ball in
E with centre v and radius g. Then F := {K(v,0) : v € E,p € [0,00)}
is a family of convex sets which, by hypothesis, has the binary intersection
property and, evidently, satisfies (6) and (7).

Notice that for any o1, 02 € [0,00) we have

K(Oa 91) +K(0192) = K(0191 + 92)
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Indeed, the inclusion C is clear. Conversely, if w € K(0, 01 + g2), then
w = u + v, where

21 02
Y= —w, Vi=—
01+ 02 01+ 02
(without loss of generality one may assume that g; > 0 and g3 > 0).
Inequality (11) may be written as

¢z +y) — é(z) — ¢(y) € K(0,r(z) +r(y) —r(z +y)),
which yields
¢(z+y) — é(z) — ¢(y) + K(0,7(z + 1))

C K(0,r(z) +r(y) —r(z +y)) + K(0,7(z + y))
= K(0,r(z) + r(y)) = K(0,7(z)) + K(0,r(y)).

Hence

¢(z +y) + K(0,7(z +y)) C ¢(z) + K(0,7(z)) + (y) + K(0,7(y))
or equivalently,

K(¢(z +y),r(z +y)) C K(¢(z),7(x)) + K(8(y),7(y))-

Now we define an s.v. function F : X — F by
F(z) = K(¢(z),r(z)) forze X.
We have just shown that F' is subadditive. It is also odd, because
F(—z) = K(¢(—z),7(~-z)) = K(-¢(z), 7(z))
= -K(¢(z),r(z))=—-F(z) forzeX.
Moreover, on account of (12}, f is a selection of F|y. Applying Theorem 2

we can extend f to an additive selection g of F. In particular, g satisfies
(13) and the proof is finished.

COROLLARY 3. Under the assumptions of Theorem 4 on X, E, r and ¢,
there exists an additive function g : X — E such that condition (13) holds
true.

Proof. We can use Theorem 4 with Y := {0} and f(0) := 0, since (11)
guarantees that
17(0) — ¢(0)]| = l|#(0)|| < r(0).
COROLLARY 4. Suppose that the hypotheses of Theorem 4 on X, E, r

and ¢ are satisfied except that ¢ does not have to be odd. Then there ezists
an additive function g : X — E such that

lg(z) —d(z)|| £ 2r(z) forze X.
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Proof. Let ¢, and ¢, stand for the even and odd part of ¢, respectively,
ie.

pe(z) =

for z € X. From (1

(z

|¢e

31(6(@) +¢(=2)),  ¢o(z) = 3(b(z) — $(—2))
1) we infer that ||¢(0)}| < r(0) an
M = 3180 < llge(z) — 38(0)|

= zll6(z) + ¢(—z) - ¢(0)|

< 3(r(z) +r(=z) - r(0))

=r(z)—3r(0) forzeX.
Hence

lge(@)ll < r(z) + 3(I6(O)]| = r(0)) < r(z) forze X.

Moreover, the odd part of ¢ also satisfies (11):
o(z + 3) — do(z) — Bo(¥)l
llo(z +y) — d(—z —y) — d(z) + (—2) — ¢(y) + ¢(—y)||
ilo(z +y) — () — sl + l6(—2) + 8(—y) — d(—z — v)|))
3(r(@) +r(y) —r(z +y) +r(=2) +r(~y) — r(~z — y))
=r(z)+r(y) —r(r+y) forz,yeX.

Therefore, by Corollary 3, one can find an additive function g : X — F such
that

IA

IA

lg(z) — go(z)| < r(z) forze X.
Finally, we have

lg(z) — p(x)|| = llg(z) — do(z) — e(z)||
< llg(z) = do()l| + l¢e(z)| < 2r(z) forz € X,
which was to be shown.

A result similar to our Corollary 4 was proved by R. Ger in [4], where
X was assumed to be an amenable (not necessarily abelian) group and the
technique of invariant means was used.

We close the paper with the following

COROLLARY 5. Let (E,|| ||) be a normed space which may be equipped
with a new norm || ||o equivalent to || || and such that (E, || ||o) has the binary
intersection property. Suppose that X, r and ¢ satisfy the same assumptions

as in Corollary 4. Then there exists an additive function g : X — E such
that

) llg(z) — é(z)|| € 2aBr(z) forze X,
where o and B are positive constants with |[ullo < a|lu|| and |Ju|| < B]lullo
forallu e E.
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Proof. If we put ro(z) := ar(z), then

l¢(z +y) — ¢(z) — d()llo < alé(z +y) — d(z) — ¢yl
< a(r(z) +r(y) — r(z +y)) = ro(z) +ro(y) — ro(z +y)
for z,y € X. By virtue of Corollary 4 there exists an additive function
g : X — FE such that

lg(z) — d(z)llo < 2ro(z) = 20r(x) forze X.

Hence

lg(z) — o)l < Bllg(z) — d(z)llo < 2afr(z) forze X,

which completes the proof.
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