A theorem of the Hahn-Banach type and its applications

by ZBIGNIEW GAJDA (Katowice), ANDRZEJ SMAJDOR (Kraków) and WILHELMINA SMAJDOR (Katowice)

Abstract. Let Y be a subgroup of an abelian group X and let \mathcal{F} be a given collection of subsets of a linear space E over the rationals. Moreover, suppose that F is a subadditive set-valued function defined on X with values in \mathcal{F} . We establish some conditions under which every additive selection of the restriction of F to Y can be extended to an additive selection of F. We also present some applications of results of this type to the stability of functional equations.

1. Introduction. Throughout this paper, \mathbb{R} , \mathbb{Q} and \mathbb{Z} stand for the sets of all reals, rationals and integers, respectively. Our main goal is to give a generalization of the following well-known Hahn-Banach theorem:

THEOREM A. Let Y be a linear subspace of a real linear space X. Assume that $p: X \to \mathbb{R}$ is a functional such that

- (i) $p(x+y) \leq p(x) + p(y)$ for all $x, y \in X$;
- (ii) $p(\alpha x) = \alpha p(x)$ for all $\alpha \geq 0$ and $x \in X$.

If $f: Y \to \mathbb{R}$ is a linear functional satisfying

(1)
$$f(x) \le p(x) \quad \text{for } x \in Y,$$

then f can be extended to a linear functional $g: X \to \mathbb{R}$ with

(2)
$$q(x) < p(x) \quad \text{for } x \in X.$$

First we are going to rephrase this theorem in terms of a set-valued function (abbreviated to "s.v. function" in the sequel) with values in the family $cc(\mathbb{R})$ of all non-empty, compact, convex subsets of \mathbb{R} . Clearly, the elements of $cc(\mathbb{R})$ are just the non-empty compact intervals in \mathbb{R} .

¹⁹⁹¹ Mathematics Subject Classification: 46A22, 26E25, 39B99.

Key words and phrases: Hahn-Banach theorem, additive selection, subadditive setvalued function, binary intersection property, stability of functional equations.

An s.v. function F mapping X into $cc(\mathbb{R})$ is said to be *subadditive* iff

(3)
$$F(x+y) \subset F(x) + F(y) \quad \text{ for all } x,y \in X,$$

and it is called positively homogeneous iff

(4)
$$F(\alpha x) = \alpha F(x)$$
 for all $\alpha \ge 0$ and $x \in X$.

Addition of sets and multiplication of sets by scalars are here understood in the Minkowski sense, i.e.

$$A+B:=\{a+b:a\in A,b\in B\}, \quad \alpha A:=\{\alpha a:a\in A\}$$

for any $A, B \subset \mathbb{R}$ and $\alpha \in \mathbb{R}$.

One can easily check that inequalities (1) and (2) of Theorem A are equivalent to

$$(1') -p(-x) \le f(x) \le p(x) \text{for } x \in Y,$$

$$(2') -p(-x) \le g(x) \le p(x) \text{for } x \in X,$$

respectively. Moreover, by (i) and (ii) we have p(0) = 0 and

$$-p(-x) \le p(x)$$
 for $x \in X$.

Therefore, we may correctly define an s.v. function $F: X \to cc(\mathbb{R})$ by

(5)
$$F(x) := [-p(-x), p(x)] \quad \text{for } x \in X.$$

It is evident that F is subadditive, positively homogeneous and odd, i.e. F(-x) = -F(x) for $x \in X$. Conversely, each s.v. function $F: X \to cc(\mathbb{R})$ which is subadditive, positively homogeneous and odd must be of the form (5) with a functional $p: X \to \mathbb{R}$ satisfying (i) and (ii).

Now Theorem A may be interpreted as a result on extending partial additive selections of an s.v. function $F: X \to cc(\mathbb{R})$, as follows:

THEOREM B. Let Y be a linear subspace of a real linear space X. Assume that $F: X \to cc(\mathbb{R})$ is a subadditive, positively homogeneous and odd s.v. function. If $f: Y \to \mathbb{R}$ is a linear functional such that

$$f(x) \in F(x)$$
 for all $x \in Y$,

then f extends to a linear functional g defined on the whole of X and such that

$$g(x) \in F(x)$$
 for all $x \in X$.

In the next section we generalize Theorem B to the following abstract setting. Instead of the linear space X we consider an arbitrary abelian group (X, +), and the family $\operatorname{cc}(\mathbb{R})$ is replaced by an axiomatically given collection $\mathcal F$ of subsets of a linear space E over $\mathbb Q$. Among the assumptions imposed on $\mathcal F$ the crucial role is played by the so-called binary intersection property. It means that every subfamily of $\mathcal F$, any two members of which intersect, has a non-empty intersection. This property was first introduced and studied

by L. Nachbin in [5]. It is well known that the collection of all non-empty compact intervals in \mathbb{R} has the binary intersection property (see [5]).

2. Generalizations of the Hahn-Banach theorem. Since we now assume that X is a group (not a linear space), it is natural to discuss additive (instead of linear) selections of an s.v. function $F: X \to \mathcal{F}$, i.e. functions $g: X \to E$ such that

$$g(x+y) = g(x) + g(y) \quad \text{ for } x,y \in X \,,$$

$$g(x) \in F(x) \quad \text{ for all } x \in X \,.$$

THEOREM 1. Let Y be a subgroup of an abelian group (X, +) and let E be a linear space over \mathbb{Q} . Furthermore, let \mathcal{F} be a family of non-empty subsets of E having the binary intersection property and satisfying the following conditions:

$$(6) A \in \mathcal{F}, \ v \in E \Rightarrow A + v \in \mathcal{F};$$

(7)
$$A \in \mathcal{F}, \ n \in \mathbb{Z}^* := \mathbb{Z} \setminus \{0\} \Rightarrow \frac{1}{n} A \in \mathcal{F}.$$

Assume that $F: X \to \mathcal{F}$ is a subadditive s.v. function such that

(8)
$$F(nx) \subset nF(x)$$
 for all $x \in X$ and $n \in \mathbb{Z}^*$.

If $f: Y \to E$ is an additive selection of the restriction of F to Y (denoted by $F|_{Y}$), then f can be extended to an additive selection of F.

Proof. Denote by Ω the family of all additive maps $\phi: \text{dom } \phi \to E$ such that $Y \subset \text{dom } \phi \subset X$, $\text{dom } \phi$ is a subgroup of X, $\phi(x) \in F(x)$ for $x \in \text{dom } \phi$ and $\phi(x) = f(x)$ for $x \in Y$. The family Ω is partially ordered by the relation \prec defined by

$$\phi \prec \psi \quad \text{iff} \quad \text{dom} \, \phi \subset \text{dom} \, \psi \text{ and } \phi = \psi|_{\text{dom} \, \phi} \, .$$

It is easy to see that every chain $\mathcal{C} \subset \Omega$ has an upper bound in Ω : it is the map $\phi_{\mathcal{C}}$ such that $\operatorname{dom} \phi_{\mathcal{C}} := \bigcup \{\operatorname{dom} \phi : \phi \in \mathcal{C}\}$ and $\phi_{\mathcal{C}}|_{\operatorname{dom} \phi} = \phi$ for each $\phi \in \mathcal{C}$. By the Kuratowski-Zorn lemma, Ω contains at least one maximal element g. To complete the proof it is enough to show that $\operatorname{dom} g = X$.

Suppose that there exists a $z_0 \in X \setminus \text{dom } g$ and put

$$W:=\left\{x+nz_0:x\in\operatorname{dom}g,n\in\mathbb{Z}\right\}.$$

Obviously W is a subgroup of X properly containing dom g. We distinguish two cases depending on whether the set

$$A:=\{k\in\mathbb{Z}^*:kz_0\in\mathrm{dom}\,g\}$$

is empty or not.

Case 1: $A \neq \emptyset$. If $k, l \in A$, then $k \cdot l \in A$ and $lg(kz_0) = g(lkz_0) = kg(lz_0)$, whence

$$g(kz_0)/k = g(lz_0)/l.$$

Putting

$$u_0 := g(kz_0)/k$$
 for some $k \in A$,

we define an element $u_0 \in E$ which does not depend on the choice of $k \in A$. Next we define $\tilde{g}: W \to E$ by

(9)
$$\widetilde{g}(x + nz_0) := g(x) + nu_0$$
 for $x \in \text{dom } g \text{ and } n \in \mathbb{Z}$.

If an element of W admits two representations: $x + nz_0 = y + mz_0$ with some $x, y \in \text{dom } g$ and $n, m \in \mathbb{Z}$, then $(m - n)z_0 = x - y \in \text{dom } g$. There are two possibilities: either m = n or $m - n \in A$. In the first case we have x = y and $g(x) + nu_0 = g(y) + mu_0$. If the second possibility holds, then

$$u_0=\frac{g((m-n)z_0)}{m-n}\,,$$

which implies that

$$g(x) - g(y) = g(x - y) = g((m - n)z_0) = (m - n)u_0$$

and consequently, $g(x) + nu_0 = g(y) + mu_0$. Thus the definition of \tilde{g} is correct. It is also clear that \tilde{g} is additive and $\tilde{g}|_{\text{dom }g} = g$.

Now let $x \in \text{dom } g, n \in \mathbb{Z}$ and $k \in A$. Then

$$\widetilde{g}(x + nz_0) = g(x) + nu_0 = g(x) + \frac{ng(kz_0)}{k} = \frac{g(k(x + nz_0))}{k} \in \frac{1}{k} F(k(x + nz_0)) \subset F(x + nz_0).$$

Thus \widetilde{g} is an additive selection of $F|_W$, contrary to the maximality of g in Ω .

Case 2: $A = \emptyset$. Then $kz_0 \in X \setminus \text{dom } g$ for every $k \in \mathbb{Z}^*$. Fix $x, y \in \text{dom } g$ and $n, m \in \mathbb{Z}^*$. By the subadditivity of F and by (8) we have

$$egin{aligned} mg(x) - ng(y) &= g(mx - ny) \in F(mx - ny) \ &= F(mx + nmz_0 - nmz_0 - ny) \ &\subset F(m(x + nz_0)) + F(-n(y + mz_0)) \ &\subset mF(x + nz_0) - nF(y + mz_0) \,. \end{aligned}$$

Consequently,

$$0 \in m[F(x+nz_0)-g(x)]-n[F(y+mz_0)-g(y)]$$
 ,

which means that

$$0 \in rac{1}{n} [F(x+nz_0) - g(x)] - rac{1}{m} [F(y+mz_0) - g(y)]$$
 .

We conclude that for any $x, y \in \text{dom } g$ and $n, m \in \mathbb{Z}^*$ the intersection

$$\frac{1}{n}[F(x+nz_0) - g(x)] \cap \frac{1}{m}[F(y+mz_0) - g(y)]$$

is non-void. From the hypotheses it now follows that

$$\bigcap \left\{ \frac{1}{n} [F(x + nz_0) - g(x)] : x \in \text{dom } g, n \in \mathbb{Z}^* \right\} \neq \emptyset.$$

Let u_0 be in this intersection; then $g(x) + nu_0 \in F(x + nz_0)$ for all $x \in \text{dom } g$ and $n \in \mathbb{Z}$.

Similarly to Case 1 we define $\tilde{g}: W \to E$ by (9). This definition is unambiguous, since now $x + nz_0 = y + mz_0$ (with $x, y \in \text{dom } g$ and $n, m \in \mathbb{Z}$) only holds if x = y and n = m. Moreover, \tilde{g} is an additive selection of $F|_W$, which again contradicts the maximality of g in Ω . The proof is finished.

If members of \mathcal{F} are \mathbb{Q} -convex, i.e. $\alpha A + (1-\alpha)A \subset A$ for all $\alpha \in \mathbb{Q} \cap [0,1]$ and $A \in \mathcal{F}$, then assumption (8) on the s.v. function $F: X \to \mathcal{F}$ can be weakened:

THEOREM 2. Let Y be a subgroup of an abelian group (X,+) and let E be a linear space over \mathbb{Q} . Moreover, let \mathcal{F} be a family of non-empty \mathbb{Q} -convex subsets of E having the binary intersection property and satisfying conditions (6) and (7) of Theorem 1. If $F: X \to \mathcal{F}$ is a subadditive s.v. function such that

(8')
$$F(-x) \subset -F(x) \quad \text{for all } x \in X,$$

then every additive selection of $F|_Y$ has an extension to an additive selection of F.

Proof. It is sufficient to observe that in fact F satisfies (8). Indeed, if $x \in X$, $n \in \mathbb{Z}$ and n > 0, then by the subadditivity of F and by the \mathbb{Q} -convexity of F(x), we derive

$$F(nx) \subset \underbrace{F(x) + \ldots + F(x)}_{n \text{ terms}} \subset nF(x)$$
.

If $n \in \mathbb{Z}$ and n < 0, then on account of (8') we have

$$F(nx) \subset -F(-nx) \subset -(-n)F(x) = nF(x)$$
,

which completes the proof.

The next result is an immediate consequence of Theorems 1 and 2 with $Y := \{0\}$ and f(0) := 0.

COROLLARY 1. Let (X, +) be an abelian group and let E be a linear space over \mathbb{Q} . Under the hypotheses of either Theorem 1 or Theorem 2 concerning the family \mathcal{F} and the s.v. function $F: X \to \mathcal{F}$, if $0 \in F(0)$, then F has an additive selection.

The collection $cc(\mathbb{R})$ is a simple example of a family \mathcal{F} satisfying all the conditions in both Theorems 1 and 2. If X, Y and $F: X \to cc(\mathbb{R})$ satisfy all the assumptions of Theorem B, then by virtue of either Theorem 1 or 2 a given linear selection $f: Y \to \mathbb{R}$ of $F|_Y$ can be extended to an additive (a priori not necessarily linear) selection $g: X \to \mathbb{R}$ of F. With each $x \in X$ we associate a function $g_x: \mathbb{R} \to \mathbb{R}$ defined by

$$g_x(\alpha) := g(\alpha x) \quad \text{for } \alpha \in \mathbb{R}$$
,

which is additive and

$$g_x(\alpha) \le \sup F(\alpha x) = \alpha \sup F(x)$$
 for $\alpha \ge 0$.

In particular, g_x is upper bounded on a non-empty open interval and by a classical result (see e.g. [1], Sect. 2.1.1, Theorem 1 and the subsequent remarks) it has the form

$$g_x(\alpha) = \alpha g_x(1)$$
 for all $\alpha \in \mathbb{R}$.

This assures that g is homogeneous and shows that Theorem B may be easily deduced from both Theorems 1 and 2.

3. Applications. Using Theorem 2 we may prove the following result on extending additive maps which approximate a function with Cauchy differences in a given linear space K over \mathbb{Q} .

THEOREM 3. Let Y be a subgroup of an abelian group (X, +) and let K be a linear subspace of a linear space E over \mathbb{Q} . If $\phi: X \to E$ is such that

(10)
$$\phi(x+y) - \phi(x) - \phi(y) \in K \quad \text{for all } x, y \in X$$

and $f: Y \to E$ is an additive map satisfying

$$f(x) - \phi(x) \in K$$
 for $x \in Y$,

then f can be extended to an additive function $g: X \to E$ such that

$$g(x) - \phi(x) \in K$$
 for $x \in X$.

Proof. First we observe that the family

$$\mathcal{F} := \{ w + K : w \in E \}$$

has the binary intersection property (in fact, every subfamily of \mathcal{F} any two of whose members intersect consists of a single set). Clearly, all elements of \mathcal{F} are \mathbb{Q} -convex and \mathcal{F} satisfies (6) and (7). We consider an s.v. function $F: X \to \mathcal{F}$ given by

$$F(x) := \phi(x) + K$$
 for $x \in X$.

It is evidently subadditive and $f: Y \to E$ is an additive selection of $F|_Y$. To check that F satisfies (8') set x = y = 0 in (10), whence $\phi(0) \in K$.

Moreover, setting y = -x in (10) we get $\phi(0) - \phi(x) - \phi(-x) \in K$, which combined with the preceding relation implies that

$$F(-x) = \phi(-x) + K \subset -\phi(x) + K = -F(x) \quad \text{for } x \in X.$$

Now the conclusion follows directly from Theorem 2.

The subsequent corollary was first established in a different way by K. Baron (cf. [2]). It results from our Theorem 3 upon setting $Y := \{0\}$.

COROLLARY 2. Let (X, +) be an abelian group and let K be a linear subspace of a linear space E over \mathbb{Q} . If $\phi: X \to E$ satisfies (10), then there exists an additive function $g: X \to E$ such that

$$g(x) - \phi(x) \in K$$
 for all $x \in X$.

In the sequel we shall say that a normed space (E, || ||) has the binary intersection property iff the collection of all closed balls in E has the binary intersection property in the sense introduced before. We will be concerned with the following inequality:

(11)
$$\|\phi(x+y) - \phi(x) - \phi(y)\| \le r(x) + r(y) - r(x+y)$$

for $x, y \in X$, where (X, +) is an abelian group, ϕ maps X into E and r is a real-valued subadditive function on X. A study of this inequality with the "control function" $r := \| \|$ was first proposed by D. Yost (cf. [6] and [7]) and then it was undertaken by R. Ger in connection with some stability questions for functional equations (see [3] and [4]). Here, we prove the following extension theorem:

Theorem 4. Let Y be a subgroup of an abelian group (X,+) and let $(E, \| \ \|)$ be a normed space having the binary intersection property. Moreover, suppose that $r: X \to [0, \infty)$ is an even, subadditive function and $\phi: X \to E$ is an odd map satisfying (11). If $f: Y \to E$ is an additive function such that

(12)
$$||f(x) - \phi(x)|| \le r(x)$$
 for $x \in Y$,

then f has an extension to an additive function $g: X \to E$ such that

(13)
$$||g(x) - \phi(x)|| \le r(x)$$
 for $x \in X$.

Proof. For $v \in E$ and $\varrho \in [0, \infty)$ let $K(v, \varrho)$ denote the closed ball in E with centre v and radius ϱ . Then $\mathcal{F} := \{K(v, \varrho) : v \in E, \varrho \in [0, \infty)\}$ is a family of convex sets which, by hypothesis, has the binary intersection property and, evidently, satisfies (6) and (7).

Notice that for any $\varrho_1, \varrho_2 \in [0, \infty)$ we have

$$K(0, \varrho_1) + K(0, \varrho_2) = K(0, \varrho_1 + \varrho_2).$$

Indeed, the inclusion \subset is clear. Conversely, if $w \in K(0, \varrho_1 + \varrho_2)$, then w = u + v, where

$$u:=rac{arrho_1}{arrho_1+arrho_2}w, ~~v:=rac{arrho_2}{arrho_1+arrho_2}w$$

(without loss of generality one may assume that $\varrho_1 > 0$ and $\varrho_2 > 0$).

Inequality (11) may be written as

$$\phi(x+y) - \phi(x) - \phi(y) \in K(0, r(x) + r(y) - r(x+y)),$$

which yields

$$egin{aligned} \phi(x+y) - \phi(x) - \phi(y) + K(0, r(x+y)) \ &\subset K(0, r(x) + r(y) - r(x+y)) + K(0, r(x+y)) \ &= K(0, r(x) + r(y)) = K(0, r(x)) + K(0, r(y)) \,. \end{aligned}$$

Hence

$$\phi(x+y)+K(0,r(x+y))\subset \phi(x)+K(0,r(x))+\phi(y)+K(0,r(y))$$
 or equivalently,

$$K(\phi(x+y), r(x+y)) \subset K(\phi(x), r(x)) + K(\phi(y), r(y))$$
.

Now we define an s.v. function $F: X \to \mathcal{F}$ by

$$F(x) := K(\phi(x), r(x))$$
 for $x \in X$.

We have just shown that F is subadditive. It is also odd, because

$$F(-x) = K(\phi(-x), r(-x)) = K(-\phi(x), r(x))$$

= $-K(\phi(x), r(x)) = -F(x)$ for $x \in X$.

Moreover, on account of (12), f is a selection of $F|_{Y}$. Applying Theorem 2 we can extend f to an additive selection g of F. In particular, g satisfies (13) and the proof is finished.

COROLLARY 3. Under the assumptions of Theorem 4 on X, E, r and ϕ , there exists an additive function $g: X \to E$ such that condition (13) holds true.

Proof. We can use Theorem 4 with $Y := \{0\}$ and f(0) := 0, since (11) guarantees that

$$||f(0) - \phi(0)|| = ||\phi(0)|| \le r(0)$$
.

COROLLARY 4. Suppose that the hypotheses of Theorem 4 on X, E, r and ϕ are satisfied except that ϕ does not have to be odd. Then there exists an additive function $g: X \to E$ such that

$$\|g(x)-\phi(x)\|\leq 2r(x) \quad \text{ for } x\in X$$
 .

Proof. Let ϕ_e and ϕ_o stand for the even and odd part of ϕ , respectively, i.e.

$$\phi_{e}(x) = \frac{1}{2}(\phi(x) + \phi(-x)), \quad \phi_{o}(x) = \frac{1}{2}(\phi(x) - \phi(-x))$$

for $x \in X$. From (11) we infer that $\|\phi(0)\| \le r(0)$ and

$$\begin{split} \|\phi_{\mathbf{e}}(x)\| - \frac{1}{2} \|\phi(0)\| &\leq \|\phi_{\mathbf{e}}(x) - \frac{1}{2}\phi(0)\| \\ &= \frac{1}{2} \|\phi(x) + \phi(-x) - \phi(0)\| \\ &\leq \frac{1}{2} (r(x) + r(-x) - r(0)) \\ &= r(x) - \frac{1}{2} r(0) \quad \text{for } x \in X \,. \end{split}$$

Hence

$$\|\phi_{\mathbf{e}}(x)\| \le r(x) + \frac{1}{2}(\|\phi(0)\| - r(0)) \le r(x)$$
 for $x \in X$.

Moreover, the odd part of ϕ also satisfies (11):

$$\begin{split} \|\phi_{o}(x+y) - \phi_{o}(x) - \phi_{o}(y)\| \\ &= \frac{1}{2} \|\phi(x+y) - \phi(-x-y) - \phi(x) + \phi(-x) - \phi(y) + \phi(-y)\| \\ &\leq \frac{1}{2} (\|\phi(x+y) - \phi(x) - \phi(y)\| + \|\phi(-x) + \phi(-y) - \phi(-x-y)\|) \\ &\leq \frac{1}{2} (r(x) + r(y) - r(x+y) + r(-x) + r(-y) - r(-x-y)) \\ &= r(x) + r(y) - r(x+y) \quad \text{for } x, y \in X. \end{split}$$

Therefore, by Corollary 3, one can find an additive function $g: X \to E$ such that

$$||g(x) - \phi_{o}(x)|| \le r(x)$$
 for $x \in X$.

Finally, we have

$$\begin{split} \|g(x) - \phi(x)\| &= \|g(x) - \phi_{\mathsf{o}}(x) - \phi_{\mathsf{e}}(x)\| \ &\leq \|g(x) - \phi_{\mathsf{o}}(x)\| + \|\phi_{\mathsf{e}}(x)\| \leq 2r(x) \quad \text{ for } x \in X \,, \end{split}$$

which was to be shown.

A result similar to our Corollary 4 was proved by R. Ger in [4], where X was assumed to be an amenable (not necessarily abelian) group and the technique of invariant means was used.

We close the paper with the following

COROLLARY 5. Let $(E, \| \|)$ be a normed space which may be equipped with a new norm $\| \|_0$ equivalent to $\| \|$ and such that $(E, \| \|_0)$ has the binary intersection property. Suppose that X, r and ϕ satisfy the same assumptions as in Corollary 4. Then there exists an additive function $g: X \to E$ such that

$$||g(x) - \phi(x)|| \le 2\alpha\beta r(x)$$
 for $x \in X$,

where α and β are positive constants with $||u||_0 \le \alpha ||u||$ and $||u|| \le \beta ||u||_0$ for all $u \in E$.

Proof. If we put $r_0(x) := \alpha r(x)$, then

$$\|\phi(x+y) - \phi(x) - \phi(y)\|_0 \le \alpha \|\phi(x+y) - \phi(x) - \phi(y)\|$$

 $\le \alpha (r(x) + r(y) - r(x+y)) = r_0(x) + r_0(y) - r_0(x+y)$

for $x, y \in X$. By virtue of Corollary 4 there exists an additive function $g: X \to E$ such that

$$||g(x) - \phi(x)||_0 \le 2r_0(x) = 2\alpha r(x)$$
 for $x \in X$.

Hence

$$||g(x) - \phi(x)|| \le \beta ||g(x) - \phi(x)||_0 \le 2\alpha \beta r(x)$$
 for $x \in X$,

which completes the proof.

References

- J. Aczél, Lectures on Functional Equations and their Applications, Academic Press, New York 1966.
- [2] K. Baron, Functions with differences in subspaces, in: Proceedings of the 18th International Symposium on Functional Equations, University of Waterloo, Faculty of Mathematics, Waterloo, Ont., 1980, 8-9.
- R. Ger, On functional inequalities stemming from stability questions, Internat. Ser. Numer. Math. 103 (1992), 227-240.
- [4] —, The singular case in the stability behaviour of linear mappings, submitted to the Proceedings of the Austrian-Polish Seminar on Functional Equations and Iterations, Graz, October 1991.
- [5] L. Nachbin, A theorem of the Hahn-Banach type for linear transformations, Trans. Amer. Math. Soc. 68 (1950), 28-46.
- [6] D. Yost, Talk at the 17th Winter School on Abstract Analysis (Section of Analysis), Šrni, January 1989.
- [7] —, Talk at the 18th Winter School on Abstract Analysis (Section of Analysis), Šrni, January 1990.

Zbigniew Gajda, Wilhelmina Smajdor INSTITUTE OF MATHEMATICS SILESIAN UNIVERSITY BANKOWA 14 40-007 KATOWICE, POLAND

INSTITUTE OF MATHEMATICS
PEDAGOGICAL UNIVERSITY
PODCHORĄŻYCH 2
30-084 KRAKÓW, POLAND

Andrzej Smajdor

Reçu par la Rédaction le 29.7.1991 Révisé le 10.2.1992