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A finiteness theorem for Riemannian submersions

by PAWEL G. WALczAK (14d3)

Abstract. Given some geometric bounds for the base space and the fibres, there is a
finite number of conjugacy classes of Riemannian submersions between compact Rieman-
nian manifolds.

Introduction. Last years brought a number of finiteness theorems for
compact Riemannian manifolds satisfying some geometric bounds ([C], [GP],
[GPW], [P], [A], [AC] and others). On the other hand, in the theory of
foliations ([M], [R2], etc.) one can find a number of results establishing
some rigidity of Riemannian foliations under different circumstances. These
facts led the author to the following

PROBLEM (x). Given some bounds on the geometry of the foliated man-
ifolds and geometry of leaves prove that there exist finitely many conjugacy
classes of Riemannian foliations of compact manifolds with bundle-like Rie-
mannian metrics satisfying the bounds and some extra topological condi-
tions if necessary. (Two foliations F; and F2 of M; and M, are conjugate if
there exists a diffecomorphism ¥ : M; — M, which maps the leaves of F; to
the leaves of F3.)

In this paper, we get a finiteness theorem for Riemannian foliations of
the simplest type, i.e. for those given by global Riemannian submersions.
For any non-negative constants D, V, k and 7, and any integers p and n > 1
denote by R(D,V, &, 7,p,n) the collection of all Riemannian submersions

(1) f:M—-B
satisfying the following conditions:

(a) dimM = n and dimB = n — p.
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(b) B and the fibres F' are compact and their sectional curvatures Kp
and K satisfy |[Kp|,|Kr| < k2.

(c) vol B > V,diam B < D and there exists a fibre F such that vol F > V
and diam F < D.

(d) The norms of the second fundamental tensors of the fibres are uni-
formly bounded by 7.

With this notation our result can be stated as follows.

THEOREM. For any D, V, k, 7, n and p the collection R(D,V,k,T,p,n)
contains finitely many conjugacy classes.

The proof of the Theorem is given in Section 2. The line of the proof is
similar to that of [C], [P] and [GP]. In particular, the notion of centre of mass
[BK] plays an essential role. In Section 1, we prove some technical lemmas
and show how to adapt this notion to our situation. Section 3 contains a
more detailed motivation for Problem (x) and some discussion of the general
case. Also, we provide the reader with an example which shows that the
assumption (d) on the second fundamental tensor of the fibres cannot be
dropped.

Lemma 1 of Section 1 implies that the volumes and diameters of all the
fibres of any submersion of class R(D,V, &, 7,p,n) are uniformly bounded
by the constants V exp(7D(n — p)) and D exp(rD), respectively. It follows
that our assumptions (a)-(d) imply the analogous bounds for the geometry
of M. Therefore, in the collection R(D, V, &, 7, p, n) one can find only finitely
many diffeomorphism classes of the total spaces M. The significance of our
result consists in constructing a diffeomorphism which maps the fibres of a
Riemannian submersion to the fibres of another one.

The paper was written during the author’s visit to the Washington Uni-
versity in St. Louis, where he enjoyed the hospitality of the faculty and the
staff. Some aspects of Problem () were discussed with Steven Hurder during
the author’s short visit to the University of Illinois in Chicago.

1. Technical lemmas

1.1. Geodesic projection. For a Riemannian submersion (1), TM decom-
poses into the direct sum V@H of the vertical subbundle V of vectors tangent
to the fibres of f and of the horizontal subbundle H of vectors orthogonal
to them. The second fundamental tensor T of f ([N], see also [E]) is defined
by

(2) T(X,Y) = hV,xvY + vV, xhY,

where v: TM — V and h: TM — H are the canonical projections. Recall
also that any A/-geodesic horizontal at a point remains horizontal all the
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time and projects to a geodesic on B. The horizontal lifts of a B-geodesic
are geodesics on M. Assuming that the fibres of f are compact and taking a
geodesic ¢ : [0,1] — B we can define the map g of the fibre Fy = f~1(c(0))
to Fy = f71(c(1)) as follows: g.(z) = c-(1), where ¢, is the horizontal
lift of c¢ satisfying ¢;(0) = z. The maps of this form map fibres to fibres
diffeomorphically and they are isometric if and only if the fibres are totally
geodesic, i.e. iff T' =0 [E].

LEMMA 1. If | is the length of a B-geodesic c, then the map g = g.
satisfies

(3) ds(9(z), 9(y)) < e™ds(z,y)
for all z and y, where dy is the distance function for the fibres of f and
T =sup||T||.

Proof. Define the map H : [0,1] x [0,1} — M by H(s,t) = cy()(2),
where v : [0,1] — Fp is a minimal fibre geodesic joining z to y. Let V =
O0H/0s and X = dH/8t. Denote by L(t) the length of the curve H(,t).
Then

1
L= [ IV(st)llds
0
and

L (VxV, V) fl (X, VvV)

@)= [YX0Y 50 _
®= 1 = J T

because the fields V and X commute. Moreover, V is vertical and X hori-
zontal, so (X,VyV) = (X,T(V,V)) and L'(t) < 7L(t), which implies (3).

If r is less than the injectivity radius of B, y, z € B and d(y, 2) < r, then
there exists a unique B-geodesic ¢ of length | < r joining y to z. Hereafter,
the corresponding map g. is referred to as the geodesic projection of the fibre
F, = f~1(y) onto F,.

1.2. Centre of mass. Recall the notion of centre of mass as defined in
[BK].

Let N be any Riemannian manifold of dimension 7, and z € N. Assume
that

(4) r < 1z = min{r(z), ;7/k},

where 7(z) is the injectivity radius of N at z and x2 bounds from above the
sectional curvature of N on B(z,r). For any points z1,...,&m of B(z,r)
and any non-negative numbers Ay, ..., A, satisfying >_ A; = 1 the function

k : B(z,r) — R defined by p(z) = Y \id(z,z;)? is convex and admits
4 unique minimum point C. C is called the centre of mass of z;’s w.r.t.
the mass distribution (Xi). It depends smoothly on z;’s and A;’s: If X is a
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manifold equipped with a smooth partition of unity (A4, ..., An,) subordi-

nate to an open covering (Uy,...,Un) and smooth maps f; : U; — B(z,r),
i=1,...,m, then the map
(5) z ~ C(z) = the centre of mass of (f;(z)) w.r.t. (A\;(z))

is smooth. Note that C(z) € B(z,r) so d(C(z), fi(z)) < 2r for any 3.
The following result can be extracted from the proof of the Lemma in [P].

LEMMA 2. If r < 627 "r,, 6 < %rm k, the partition (\;) is defined by
Xi = ni/ Y_n; for some functions n; : U; — [0,1], ||dn;|| < 2/diamU;, the
maps f; are immersions and ||dfi(y) — Podf;(y)|| < &%, where P : Ty, ;)N —
Ty,(yyM is the parallel transport along the unique geodesic joining f;(y) to
fi(y) in B(z,r), then the map (5) is an immersion.

2. Proof of the Theorem. Let

ro = min { — v ~ i i T
0~ 4k’ wp \ Dsinhk "wp_p \ Dsinhk ’

where w,,, denotes the volume of the unit sphere of dimension m. The results
of [HK] show that for any Riemannian submersion (1) of class R(D, V, &,
7,p,n) the injectivity radii of B and of the fibres F' are not less than 2ry
and the balls of radius rg in B and F are convex.

Fix 7 < 627"y such that 8r exp(8r7) < ro.

The finiteness theorem of [P] implies that in any infinite sequence f; :
M; — B; of Riemannian submersions of class R(D, V, k, 7, p, n) oneé can find
two, say f: M — B and f : M — B, such that

(i) B and B are diffeomorphic and can be covered by the same number,
say m, of convex balls B(y;, ) and B(y;,r) which have the same intersection
pattern, i.e. B(y;,r) N B(y;,r) # 0 iff B(g;,r) N B(y,,r) # 0,

(ii) the fibres F; = f~!(y;) and F; = _—1(yj) are diffeomorphic and
there are diffeomorphisms h; : F; — F; satisfying
(6) max(dil(h;), dil(h; 1)) < 2,
(7) df(gji o hi 0 gij, hj) < € :=rexp(—9r7),

where g;; : F; — F; and gij Fj — F,; are the geodesic projections.

The existence of maps h; satisfying (6) and (7) follows from the geometry
bounds for the fibres, Ascoli’s Theorem and the estimates in the proof of
inequality (4.1) in [P)].

Define a map ¥ : M — M as follows.

Take any smooth partition of unity (A;) on M subordinate to the covering
(B(yi,r)) and satisfying the conditions of Lemma 2. For any y in B denote
by C(y) the centre of mass of the points (®;(y)) w.r.t. the mass distribution
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(Ai(y)). Here, ®;,¢ = 1,...,m, are suitably chosen diffeomorphisms between
the balls B(y;,r) and B(y;,7),

(8) b, = expsf op; © (exps’f op;) !
for some isometries p; : R*? — T, B and P, : R*? — Tj B, so that
C: M — M is a diffeomorphism [P].

Note that the maps (8) extend to maps between the corresponding balls
of radius rq.

For any i define a diffcomorphism ¥; : U; — U;, U; = f~Y(B(y;,7))
and U; = f~Y(B(g,,r)), in the following way: Given z, find its geodesic
projection 2 to the fibre F;, and denote by ¥;(x) the geodesic projection of
hi(z) to the fibre of f over &;(f(x)).

Finally, take € M and let y = f(z). Take all the points z; = ¥;(z) and
project them to the fibre F of f over 7 = C(y). Denote by %; the points of
F obtained in this way. If y € B(y;, ) N B(y;, 1), then d(®:(y), &;(y)) < 4r,
d(y,P;(y)) < 8r and d(¥;,7) < 9r. Lemma 1 and the estimates of (ii) imply
that d(%;,T;) < eexp(9r7) = 7, so the centre of mass ¥(z) of the points
(u;) w.r.t. to the mass distribution (\;(y)) is well defined.

Obviously, the map ¥ is smooth and fo¥ = C o f. Since C is a diffeo-
morphism, im ¥, is transverse to the fibre of f. Lemma 2 implies that ¥|F
has maximal rank for any fiber F and therefore the vertical subspace Vy ()
of TW(I)JVI is contained in im W, ;. Therefore, ¥ : M — M has maximal rank
and, because of compactness of M, defines a covering map.

A similar construction provides us with a smooth fibred map =
M- M.

The corresponding map C : B — B satisfies d(C(C(y)),y) < 8r for
all y € B. In fact, C(y), § = C(y), is defined as the centre of mass of
the points & '(7) w.r.t. the mass distribution (X;(7;)), As = A; o &;, and

d(g, $:(y)) < 2r, so d(y, ®; (7)) < 4r and d(C(y),y) < 8r.

Lemma 1 and the dllatatlon estimates (6) imply that

d(z,E o ¥(z)) < 8rexp(8r7) < 1¢.

This implies that = o ¥ is homotopic to the identity. In the same way
¥ o 5 ~ idy;. Consequently, ¥ is a diffeomorphism.

3. Final comments. (A) Definitely, the assumptions on the intrin-
sic geometry of B and F are necessary. Dropping some of them one could
construct infinitely many Riemannian submersions with non-diffeomorphic
fibres and/or base spaces. The example below shows that the bound for the
norm of the second fundamental tensors of the fibres is also essential.

For any matrix A € SL(2,Z) consider the manifold T3 = (T? x R)/A.
Then T3 fibres over the circle and it is easy to show that there exist infinitely
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many pairwise non-conjugate fibrations of this form. In fact, two fibrations
T3 — S! and T3 — S? are conjugate if and only if the matrices A and B
are conjugate in SL(2,Z).

Each of the manifolds Tj can be equipped with a Riemannian struc-
ture ga for which the natural projection T3 — S! becomes a Rieman-
nian submersion and all the fibres are flat tori of the same volume V. If
A = exp(B) for a matrix B with tr(B) = 0 and A; = exp(¢B), then the Rie-
mannian structure g4 on R3 given in the canonical frame (8/8z, 8/8y, 8/0t)
at (z,y,t) by the matrix

(A7)T -4 0
(04 3)

is A-invariant and projects to a metric on T'3. The metric obtained in this
way has the properties listed above and, moreover, T3 has a fibre of diameter
1/2.

An elementary calculation involving the structural equations for Rieman-
nian submersions shows that the norm of the second fundamental tensor of
the fibres of T3 is bounded from below by C||A|| for a universal constant
C, so for any 7 the class R(D,V,k,T,p,n) contains only a finite number of
Riemannian submersions of this form.

In the same way, suspending some homomorphisms m,(X) — SL(2,Z),
one could construct an infinite family of pairwise non-conjugate Riemannian
submersions onto a closed surface X’ equipped with a hyperbolic Riemannian
metric. Also in this case, the submersions would satisfy all the geometry
bounds except the one for the norm of the second fundamental tensor of the
fibres.

(B) Let us now recall some results on Riemannian foliations which could
motivate Problem (x).

A Riemannian foliation is called transversely hyperbolic, transversely el-
liptic or transversely Euclidean if its holonomy pseudogroup consists of local
isometries of a space form of curvature —1, 1 or 0, respectively.

David Epstein [Ep] proved that for any transversely hyperbolic flow (i.e.
transversely hyperbolic foliation of dimension 1) of a compact manifold M
one has the following dichotomy: Either all the orbits are closed and con-
stitute a Seifert fibration, or none of the orbit is closed, n = dim M = 3 or
4 and the flow is conjugate to the eigenspace-foliation of an eigenvalue of a
matrix A € SL(n,Z) acting on T7%.

Similar results for transversely Euclidean and transversely elliptic flows
were obtained by Yves Carriére in Appendix A of [M]. In both cases, the
orbits could constitute orbits of a Seifert fibration. If not, in the Euclidean
case, the foliation is conjugate to a flow on T* x P, P being a flat manifold,
such that its restriction to the first factor is linear. In the elliptic case, the
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flow is obtained by suspension of an isometry of a compact Riemannian
manifold of curvature 1.

Our problem is also related to the following conjecture formulated by
Etienne Ghys in Appendix E of [M]: The conjugacy classes of Riemannian
foliations close to a given Riemannian foliation only depend on finitely many
parameters. If some finiteness theorems for Riemannian foliations holded,
then—up to a finite number of possible classes—the conjugacy classes would
be determined by the geometric bounds.

Also, note that Molino’s First Structure Theorem ([M], Theorem 5.1
and Proposition 5.2) says that the closures of the leaves of a Riemannian
foliation F of a compact manifold M form a singular foliation F of M. If
all the leaves of F are of the same dimension, then the space M/F admits
the structure of a Satake manifold. Extending our results to the category of
Satake manifolds one could get a finiteness result for Riemannian foliations
with regular closures.

(C) As pointed out by M. T. Anderson [A], at the core of some finiteness
and convergence results for Riemannian manifolds there is the proof of the
existence of harmonic coordinates and some estimates of the metric tensor in
these coordinates. Therefore, the existence of f-related harmonic coordinates
should lead to a finiteness result for Riemannian submersions (1) under some
bounds for Ricci curvatures replacing our bounds for sectional curvatures.
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