On the Łojasiewicz exponent at infinity for polynomial mappings of \mathbb{C}^2 into \mathbb{C}^2 and components of polynomial automorphisms of \mathbb{C}^2

by JACEK CHĄDZYŃSKI and TADEUSZ KRASIŃSKI (Łódź)

Abstract. A complete characterization of the Łojasiewicz exponent at infinity for polynomial mappings of \mathbb{C}^2 into \mathbb{C}^2 is given. Moreover, a characterization of a component of a polynomial automorphism of \mathbb{C}^2 (in terms of the Łojasiewicz exponent at infinity) is given.

1. Introduction. Let $H=(f,g):\mathbb{C}^2\to\mathbb{C}^2$ be a polynomial mapping and $N(H)=\{\nu\in\mathbb{R}:\exists A>0,\ \exists B>0,\ \forall |z|>B,\ A|z|^\nu\leq |H(z)|\}$. By the *Lojasiewicz exponent at infinity* of H we shall mean $\sup N(H)$ when $N(H)\neq\emptyset$, and $-\infty$ when $N(H)=\emptyset$. We shall denote it by $\mathcal{L}_\infty(H)$. In [CK] the exponent $\mathcal{L}_\infty(H)$, called there the exponent of growth of H, was defined only for $N(H)\neq\emptyset$.

In the case $\mathcal{L}_{\infty}(H) > 0$, an exact formula for $\mathcal{L}_{\infty}(H)$ in the *n*-dimensional case was given by Płoski [P₂]. In the case $\mathcal{L}_{\infty}(H) < 0$ where H is the gradient of a polynomial function $h: \mathbb{C}^2 \to \mathbb{C}$, an exact formula for $\mathcal{L}_{\infty}(H)$ was given by Ha [H].

The main results of our paper are: a characterization of $\mathcal{L}_{\infty}(H)$ in the general case (Theorems 3.1–3.3) and a characterization of a component of a polynomial automorphism of \mathbb{C}^2 (Theorem 3.4), which we obtain as a corollary from the first result.

Moreover, some properties of $\mathcal{L}_{\infty}(H)$ in the case $H=(h'_x,h'_y)$ where $h:\mathbb{C}^2\to\mathbb{C}$ is a polynomial function (Sec. 9) and other characterizations of a component of a polynomial automorphism of \mathbb{C}^2 (Theorems 10.1, 10.2) are given.

¹⁹⁹¹ Mathematics Subject Classification: Primary 14E35; Secondary 14E09.

Key words and phrases: Lojasiewicz exponent at infinity, polynomial mappings, polynomial automorphism.

This research was realized within the project No. 2 1096 91 01 financed in 1991-1994 by KBN.

In the remarks at the end of the paper we indicate some possible weakenings of the assumptions in the main results and show all possible values of $\mathcal{L}_{\infty}(H)$ for polynomial mappings and the gradients of polynomial functions.

- 2. Notations and definitions. We shall use notations and definitions as in [CK], except the ones mentioned in the introduction (concerning the name and the notation of $\mathcal{L}_{\infty}(H)$).
- 3. The main results. Let $\mathbb{C}^2 \ni z = (x,y) \mapsto H(z) = (f(z),g(z)) \in \mathbb{C}^2$ be a polynomial mapping. In the sequel, we shall assume that H satisfies the condition

(*)
$$0 < \deg f = \deg_y f, \quad 0 < \deg g = \deg_y g.$$

The above assumptions do not restrict our considerations. This follows, on the one hand, from the fact that, for f = const. or g = const., we evaluate $\mathcal{L}_{\infty}(H)$ directly and, on the other hand, that $\mathcal{L}_{\infty}(H)$ is invariant with respect to linear automorphisms of the domain of H.

Let $w = (u, v) \in \mathbb{C}^2$ be arbitrary and let $Q(w, x) = \text{Res}_y(f - u, g - v)$ be the resultant of f - u and g - v with respect to y. From the properties of the resultant it follows that Q does not vanish identically. Put

(1)
$$Q(w,x) = Q_0(w)x^N + \ldots + Q_N(w), \quad Q_0 \neq 0.$$

- 3.1. Theorem. If a polynomial mapping $H: \mathbb{C}^2 \to \mathbb{C}^2$ satisfies (*), then
 - (i) $Q_0 = \text{const.}$ if and only if $\mathcal{L}_{\infty}(H) > 0$,
- (ii) $Q_0 \neq \text{const.}$ and $Q_0(0) \neq 0$ if and only if $\mathcal{L}_{\infty}(H) = 0$,
- (iii) there exists r such that $Q_0(0) = \ldots = Q_r(0) = 0$ and $Q_{r+1}(0) \neq 0$ if and only if $-\infty < \mathcal{L}_{\infty}(H) < 0$,

(iv)
$$Q_0(0) = \ldots = Q_N(0) = 0$$
 if and only if $\mathcal{L}_{\infty}(H) = -\infty$.

The above theorem gives an effective formula for $\mathcal{L}_{\infty}(H)$ only in cases (ii), (iv). In the theorems below we shall also give effective formulae for $\mathcal{L}_{\infty}(H)$ in the remaining cases.

3.2. THEOREM. For $\mathcal{L}_{\infty}(H) > 0$, we have

$$\mathcal{L}_{\infty}(H) = \left[\max_{1 \leq i \leq N} rac{\deg Q_i}{i}
ight]^{-1}$$

3.3. THEOREM. For $-\infty < \mathcal{L}_{\infty}(H) < 0$ when $Q_0(0) = \ldots = Q_r(0) = 0$ and $Q_{r+1}(0) \neq 0$, we have

$$\mathcal{L}_{\infty}(H) = \left[-\min_{0 \leq i \leq r} rac{\operatorname{ord}_0 Q_i}{r+1-i}
ight]^{-1}$$

Now, let $h: \mathbb{C}^2 \to \mathbb{C}$ be a polynomial function satisfying the condition (**) $0 < \deg h - 1 = \deg_u h'_x = \deg_u h'_u$.

Using a linear automorphism of the domain of h, we easily note that (**) does not restrict the considerations.

Put $Q(w, x) = \text{Res}_y(h'_x - u, h'_y - v)$. Let Q have the form (1), as above.

- 3.4. THEOREM. A necessary and sufficient condition for a polynomial function h to be a component of a polynomial automorphism of \mathbb{C}^2 is that $\operatorname{ord}_0 Q_N = 0$ and, provided N > 0, that $\operatorname{ord}_0 Q_i > N i$ for each $i \in \{0, \ldots, N-1\}$.
- 4. Properties of the resultant Q. In this section we use the same notations and assumptions as in Section 3.

First, we give a proposition (without proof) following from the elementary properties of the resultant.

4.1. PROPOSITION. Let $w_0 = (u_0, v_0) \in \mathbb{C}^2$. The polynomials $f - u_0$, $g - v_0$ have a common divisor in $\mathbb{C}[x, y]$ of positive degree if and only if $Q_0(w_0) = \ldots = Q_N(w_0) = 0$.

We now prove a simple criterion for H to be proper.

4.2. Proposition. The mapping H is proper if and only if $Q_0 = \text{const.}$

Proof. \Rightarrow Assume to the contrary that there exists w_0 such that $Q_0(w_0)=0$. Then either $Q_0(w_0)=\ldots=Q_N(w_0)=0$ or there exists r such that $Q_{r+1}(w_0)\neq 0$. In the first case, by Proposition 4.1, the fibre $H^{-1}(w_0)$ is not compact, which contradicts H being proper. In the second case, from the properties of the resultant it follows that there exists a sequence $\{z_n\}$ such that $|z_n|\to\infty$ and $H(z_n)\to w_0$, again contrary to H being proper.

 \Leftarrow If $Q_0 = \text{const.}$ and $K \subset \mathbb{C}^2$ is bounded, then so is $\{x \in \mathbb{C} : Q(w, x) = 0, w \in K\}$. Hence $\{z \in \mathbb{C}^2 : H(z) = w, w \in K\}$ is also bounded, which easily implies that H is proper.

- 5. Proof of Theorem 3.1. Before giving the proof we quote an easy corollary from Main Theorem of [CK] (taking into account that, for $\mathcal{L}_{\infty}(H) \neq -\infty$, the fibre $H^{-1}(0)$ is finite).
- 5.1. PROPOSITION. If a polynomial mapping $H=(f,g):\mathbb{C}^2\to\mathbb{C}^2$ satisfies the conditions $\deg f>0$, $\deg g>0$ and $\mathcal{L}_{\infty}(H)\neq -\infty$, then
 - (a) there exist positive constants A, B such that

$$A|z|^{\mathcal{L}_{\infty}(H)} \leq |H(z)| \quad \text{for } |z| > B$$
,

(b) there exists a branch Γ of the curve f=0 or g=0 in a neighbourhood of infinity such that

$$|x| \sim |z|, \quad |z|^{\mathcal{L}_{\infty}(H)} \sim |H(z)| \quad \text{as } |z| \to \infty, \ z \in \Gamma.$$

We now pass to the proof of Theorem 3.1.

- (i) \Leftrightarrow By Proposition 4.2, the condition $Q_0 = \text{const.}$ is equivalent to H being proper. On the other hand, by Corollary 3.3 of [CK], the latter is equivalent to the condition $\mathcal{L}_{\infty}(H) > 0$.
- (iv) \Rightarrow By Proposition 4.1, f and g have a common factor of positive degree. Hence there exists a sequence $\{z_n\}$ such that $|z_n| \to \infty$ and $H(z_n) = 0$. Then $N(H) = \emptyset$, which gives $\mathcal{L}_{\infty}(H) = -\infty$.
- \Leftarrow From $\mathcal{L}_{\infty}(H) = -\infty$ it follows that $N(H) = \emptyset$. Then, by Main Theorem (ii) of [CK], the fibre $H^{-1}(0)$ is infinite. This easily gives that Q(0,x) = 0 for an infinite number of x.
- (iii) \Rightarrow Analogously to the proof of Proposition 4.2, there exists a sequence $\{z_n\}$ such that $|z_n| \to \infty$ and $H(z_n) \to 0$. Hence, from (iv) and Proposition 5.1(a) we get $-\infty < \mathcal{L}_{\infty}(H) < 0$.

 \Leftarrow By Proposition 5.1(b), there exists Γ such that

(2)
$$|x| \to \infty$$
 and $|H(z)| \to 0$ as $|z| \to \infty$, $z \in \Gamma$.

On the other hand, from an elementary property of the resultant we have, for $x \neq 0$,

$$Q_0(H(z)) + Q_1(H(z)) x^{-1} + \ldots + Q_N(H(z)) x^{-N} = 0.$$

Hence and from (2) we get $Q_0(0) = 0$. The existence of r follows from (iv). (ii) \Leftrightarrow It is a direct consequence of (i), (iii), (iv). This ends the proof.

- 6. The exponent $\mathcal{L}_{\infty}(H,x)$. As above, we assume that $H=(f,g):\mathbb{C}^2\to\mathbb{C}^2$ satisfies condition (*). Let us introduce one more notion. Let $N(H,x)=\{\nu\in\mathbb{R}:\exists A>0,\ \exists B>0,\ \forall |x|>B,\ A|x|^{\nu}\leq |H(z)|\}$. Put $\mathcal{L}_{\infty}(H,x)=\sup N(H,x)$ when $N(H,x)\neq\emptyset$, and $\mathcal{L}_{\infty}(H,x)=-\infty$ when $N(H,x)=\emptyset$.
- 6.1. PROPOSITION. If a polynomial mapping $H=(f,g):\mathbb{C}^2\to\mathbb{C}^2$ satisfies (*), then

(3)
$$\mathcal{L}_{\infty}(H,x) = \mathcal{L}_{\infty}(H).$$

Proof. First, we show that $\mathcal{L}_{\infty}(H) \leq \mathcal{L}_{\infty}(H,x)$ for $\mathcal{L}_{\infty}(H) \geq 0$. In fact, from the inequality $|x| \leq |z|$ we then have

$$|x|^{\mathcal{L}_{\infty}(H)} \leq |z|^{\mathcal{L}_{\infty}(H)}.$$

Hence and from Proposition 5.1(a) we get $A|x|^{\mathcal{L}_{\infty}(H)} \leq |H(z)|$ for |x| > B. Then $\mathcal{L}_{\infty}(H) \in N(H,x)$ and, in consequence, $\mathcal{L}_{\infty}(H) \leq \mathcal{L}_{\infty}(H,x)$ in this case.

We now show that $\mathcal{L}_{\infty}(H) \leq \mathcal{L}_{\infty}(H,x)$ for $-\infty < \mathcal{L}_{\infty}(H) < 0$. Let

$$f(x,y) = a_0(x) y^m + a_1(x) y^{m-1} + \ldots + a_m(x), \quad a_0 \neq 0.$$

From (*) it follows that $\deg a_i \leq i$, $i = 0, 1, \ldots, m$. Hence, for each $i \in \{1, \ldots, m\}$, there exists a constant c_i such that, for any k, x, y with k > 1, $|x| \geq 1$, $|y| \geq k|x|$, we have $|a_i(x)/y^i| \leq c_i/k^i$. Fix a sufficiently large k such that, for any x, y with $|x| \geq 1$ and $|y| \geq k|x|$, the inequality

$$|a_0| - |(a_1(x)/y) + \ldots + (a_m(x)/y^m)| \ge A_1 > 0$$

holds. In consequence, for the above k, x, y, we have

(5)
$$|H(z)| \ge |f(z)| \ge A_1 |y|^m \ge A_1 k^m |x|^m.$$

Since $\mathcal{L}_{\infty}(H) < m$, from (5) we get

(6)
$$|H(z)| \ge A_1 k^{\mathcal{L}_{\infty}(H)} |x|^{\mathcal{L}_{\infty}(H)} \quad \text{for } |x| \ge 1, \ |y| \ge k|x|.$$

On the other hand, for the above k and $|y| \le k|x|$, we have $|z| \le k|x|$. Then, for $-\infty < \mathcal{L}_{\infty}(H) < 0$, we get

$$(7) (k|x|)^{\mathcal{L}_{\infty}(H)} \leq |z|^{\mathcal{L}_{\infty}(H)}.$$

From (7) and Proposition 5.1(a), there exist A, B > 0 such that for $|x| \ge B$, $|y| \le k|x|$, we get

$$A k^{\mathcal{L}_{\infty}(H)} |x|^{\mathcal{L}_{\infty}(H)} \leq |H(z)|.$$

Hence and from (6), for $A_2 = k^{\mathcal{L}_{\infty}(H)} \min(A, A_1)$ and $|x| \geq \max(1, B)$, we have

$$A_2|x|^{\mathcal{L}_{\infty}(H)} \leq |H(z)|.$$

Then $\mathcal{L}_{\infty}(H) \in N(H,x)$ and, in consequence, $\mathcal{L}_{\infty}(H) \leq \mathcal{L}_{\infty}(H,x)$.

We now show that $\mathcal{L}_{\infty}(H,x) \leq \mathcal{L}_{\infty}(H)$ for $\mathcal{L}_{\infty}(H) \neq -\infty$. It suffices to prove this for $\mathcal{L}_{\infty}(H,x) \neq -\infty$. Take $\nu \in N(H,x)$. Then there exist positive numbers A_3 , B_3 such that

(8)
$$A_3|x|^{\nu} \leq |H(z)| \quad \text{for } |x| > B_3$$
.

Considering H on the branch Γ from Proposition 5.1(b), we easily conclude, by (8), that $\nu \leq \mathcal{L}_{\infty}(H)$. Since ν was arbitrary, we get $\mathcal{L}_{\infty}(H,x) \leq \mathcal{L}_{\infty}(H)$.

From this and the above we deduce that (3) holds for $\mathcal{L}_{\infty}(H) \neq -\infty$.

From Theorem 3.1(iv) it follows that, for $\mathcal{L}_{\infty}(H) = -\infty$, there exists a sequence $\{z_n\}$, $z_n = (x_n, y_n)$, such that $|x_n| \to \infty$ and $H(z_n) = 0$. Hence $N(H, x) = \emptyset$, which gives $\mathcal{L}_{\infty}(H, x) = -\infty$. This ends the proof.

7. Proof of Theorem 3.2. This proof is taken, to a considerable extent, from $[P_2]$ by A. Płoski.

First note that N > 0. Indeed, this follows from the fact that $Q_0 = \text{const.}$ and $Q_N \neq \text{const.}$ Put $\Delta(Q) = [\max_{1 \leq i \leq N} (\deg Q_i)/i]^{-1}$. Since $Q_N \neq \text{const.}$, therefore, $\Delta(Q) > 0$.

We first show that $\Delta(Q) \leq \mathcal{L}_{\infty}(H)$. From Lemma 2.1 of [P₂] it follows that there exist A, B > 0 such that

$$\{(w,x): |w| > B, \ Q(w,x) = 0\} \subset \{(w,x): |w| > B, \ A|x|^{\Delta(Q)} \le |w|\}.$$

From the properties of the resultant we have $Q(H(z), x) \equiv 0$. Then, by the above, $A|x|^{\Delta(Q)} \leq |H(z)|$ for |H(z)| > B. Since H is proper (see Prop. 4.2), there exists a constant $B_1 > 0$ such that |H(z)| > B for $|x| > B_1$. Then $A|x|^{\Delta(Q)} \leq |H(z)|$ for $|x| > B_1$. This means that $\Delta(Q) \in N(H,x)$. In consequence, $\Delta(Q) \leq \mathcal{L}_{\infty}(H,x)$. Hence and from Proposition 6.1 we get $\Delta(Q) \leq \mathcal{L}_{\infty}(H)$.

We now show that $\mathcal{L}_{\infty}(H) \leq \Delta(Q)$. Take an arbitrary $\nu \in N(H)$. Then there exist positive C, D_1 such that $C|z|^{\nu} \leq |H(z)|$ for $|z| > D_1$. We may assume that $D_1 \geq 1$. Let $E \geq 1$ be a constant such that $|H(z)| \leq E|z|^{\deg H}$ for $|z| \geq 1$. Put $D = ED_1^{\deg H}(1 + \max_{|z| \leq 1} |H(z)|)$. Then, obviously, |H(z)| > D implies $|z| > D_1$. Take now w, x such that |w| > D and Q(w, x) = 0. By the properties of the resultant there exists z = (x, y) such that w = H(z). From the above we have $|z| > D_1$ and, in consequence, $C|z|^{\nu} \leq |w|$. Hence, $\nu \leq \Delta(Q)$ by Lemma 2.1 of $[P_2]$. Since ν was arbitrary, we get $\mathcal{L}_{\infty}(H) \leq \Delta(Q)$. This ends the proof.

8. Proof of Theorem 3.3. Let the resultant Q(w,x) have the form (1) and $Q_0(0) = \ldots = Q_r(0) = 0$, $Q_{r+1}(0) \neq 0$. Put

(9)
$$Q^*(w,t) = Q_0(w) + Q_1(w)t + \ldots + Q_{r+1}(w)t^{r+1} + \ldots + Q_N(w)t^N$$
.

By the Weierstrass preparation theorem, there exist $\varrho > 0$ and a distinguished pseudopolynomial $P^*(w,t)$ of the form

(10)
$$P^*(w,t) = t^{r+1} + a_r(w) t^r + \ldots + a_0(w),$$

such that, for $|w| < \varrho$, $|t| < \varrho$, we have

(11)
$$Q^*(w,t) = P^*(w,t) R^*(w,t),$$

where a_r, \ldots, a_0 are holomorphic functions for $|w| < \varrho$, $a_i(0) = 0$, and R^* is a pseudopolynomial with holomorphic coefficients in $\{w : |w| < \varrho\}$, and $R^*(w,t) \neq 0$ for $|w| < \varrho$, $|t| < \varrho$.

8.1. LEMMA. With the above notations, we have

(12)
$$\min_{0 \le i \le r} \frac{\operatorname{ord}_0 Q_i}{r+1-i} = \min_{0 \le i \le r} \frac{\operatorname{ord}_0 a_i}{r+1-i}.$$

Proof. Let $R^*(w,t) = b_0(w) + ... + b_s(w) t^s$ where $s = \max(r, N - r - 1)$ and $b_j \equiv 0$ for j > N - r - 1. Obviously, $b_0(0) \neq 0$. From (10) and (11) we get $Q_l = a_0 b_l + ... + a_l b_0$ for $l \in \{0, ..., r\}$.

We show inductively that, for any $l \in \{0, ..., r\}$,

(13)
$$\min_{0 \le i \le l} \frac{\operatorname{ord}_0 Q_i}{r+1-i} = \min_{0 \le i \le l} \frac{\operatorname{ord}_0 a_i}{r+1-i}.$$

In fact, this is obvious for l = 0. Assume that (13) holds for l = k. Consider two cases:

$$1^{\circ} \operatorname{ord}_{0} a_{k+1} b_{0} < \min_{0 \le i \le k} \operatorname{ord}_{0} a_{i} b_{k+1-i}, 2^{\circ} \operatorname{ord}_{0} a_{k+1} b_{0} \ge \min_{0 < i < k} \operatorname{ord}_{0} a_{i} b_{k+1-i}.$$

In case 1°, we have $\operatorname{ord}_0 Q_{k+1} = \operatorname{ord}_0 a_{k+1}$, which, together with the induction hypothesis, gives (13) for l = k+1. In case 2°, after easy estimations we get $\operatorname{ord}_0 Q_{k+1}/(r-k) \geq \min_{0 \leq i \leq k} \operatorname{ord}_0 Q_i/(r+1-i)$ and

 $\operatorname{ord}_0 a_{k+1}/(r-k) \ge \min_{0 \le i \le k} \operatorname{ord}_0 a_i/(r+1-i)$, which, together with the induction hypothesis, gives (13) for l = k+1, too.

Putting l = r in (13), we get (12).

Put
$$\delta(Q) = [-\min_{0 \le i \le r} (\operatorname{ord}_0 Q_i)/(r+1-i)]^{-1}$$
. Obviously, $-\infty < \delta(Q) < 0$.

8.2. LEMMA. There exist positive constants A, B such that

$$(14) \ \{(w,x): |x|>B, \ Q(w,x)=0\} \subset \{(w,x): |x|>B, \ A|x|^{\delta(Q)}\leq |w|\}.$$

Proof. By Proposition 2.2 of $[P_1]$ and Lemma 8.1, it follows that there exist $A_1, B_1 > 0$ such that

$$\{(w,t): |w| < B_1, \ P^*(w,t) = 0\} \subset \{(w,t): |w| < B_1, \ A_1|t|^{-\delta(Q)} \le |w|\}.$$

Hence and from (11) we get, for $\varrho < B_1$,

$$\begin{aligned} \{(w,t): |w| < \varrho, \ |t| < \varrho, \ Q^*(w,t) = 0\} \\ &\subset \{(w,t): |w| < \varrho, \ |t| < \varrho, \ A_1 |t|^{-\delta(Q)} \le |w|\} \,. \end{aligned}$$

In consequence, we have

$$\begin{aligned} \{(w,x): |w| < \varrho, \ |x| > 1/\varrho, \ Q(w,x) = 0\} \\ &\subset \{(w,x): |w| < \varrho, \ |x| > 1/\varrho, \ A_1 |x|^{\delta(Q)} \le |w|\} \,. \end{aligned}$$

This implies that, for $A = \min(A_1, \varrho^{\delta(Q)+1})$ and $B = 1/\varrho$, inclusion (14) holds. This ends the proof.

8.3. LEMMA. If there exist C, D > 0 and $\nu < 0$ such that

(15)
$$\{(w,x): |x| > D, \ Q(w,x) = 0\} \subset \{(w,x): |x| > D, \ C|x|^{\nu} \le |w|\},$$

then $\nu \le \delta(Q)$.

Proof. From (15) we get

$$\{(w,t): |w| < 1/D, \ |t| < 1/D, \ Q^*(w,t) = 0\}$$

$$\subset \{(w,t): |w| < 1/D, \ |t| < 1/D, \ C|t|^{-\nu} \le |w|\}.$$

Hence and from (11), putting $\varrho < 1/D$, we get

(16)
$$\{(w,t): |w| < \varrho, |t| < \varrho, P^*(w,t) = 0\}$$

 $\subset \{(w,t): |w| < \varrho, |t| < \varrho, C|t|^{-\nu} \le |w|\}.$

Take a sufficiently small $\varepsilon > 0$ such that all the roots of the equations $P^*(w,t) = 0$ for $|w| < \varepsilon$ lie in the disc $\{t : |t| < \varrho\}$. Then from (16) we get

$$\{(w,t): |w| < \varepsilon, \ P^*(w,t) = 0\} \subset \{(w,t): |w| < \varepsilon, \ C|t|^{-\nu} \le |w|\}.$$

Hence, from Proposition 2.2 of [P₁] and Lemma 8.1 we get $\nu \leq \delta(Q)$. This ends the proof.

Let us pass to the proof of Theorem 3.3.

From the properties of the resultant we have $Q(H(z), x) \equiv 0$. Then, by Lemma 8.2 we get $\delta(Q) \in N(H, x)$. Hence $\delta(Q) \leq \mathcal{L}_{\infty}(H, x)$.

Take now $\nu \in N(H, x)$. Then there exist C, D > 0 such that $C|x|^{\nu} \le |H(z)|$ for |x| > D. Take w, x such that |x| > D and Q(w, x) = 0. From the properties of the resultant there exists z = (x, y) such that w = H(z). Hence $C|x|^{\nu} \le |w|$. Then, by Lemma 8.3, $\nu \le \delta(Q)$. Since ν was arbitrary, we get $\mathcal{L}_{\infty}(H, x) \le \delta(Q)$.

Summing up, $\mathcal{L}_{\infty}(H, x) = \delta(Q)$. Hence and from Proposition 6.1 we get $\mathcal{L}_{\infty}(H) = \delta(Q)$, which completes the proof.

- 9. The Łojasiewicz exponent at infinity for a polynomial. Let $h: \mathbb{C}^2 \to \mathbb{C}$ be a polynomial function. Put $H = (h'_x, h'_y)$. Then $\mathcal{L}_{\infty}(H)$ will be called the *Lojasiewicz exponent at infinity* of h and denoted by $\mathcal{L}_{\infty}(h)$. The following simple property holds.
- 9.1. PROPERTY. If L is a linear automorphism of \mathbb{C}^2 , then $\mathcal{L}_{\infty}(h \circ L) = \mathcal{L}_{\infty}(h)$.

Proof. Let $L(x,y)=(ax+by,\,cx+dy)$ and $L^*(x,y)=(ax+cy,\,bx+dy)$. From the invariance of $\mathcal{L}_{\infty}(H)$ with respect to linear automorphisms of the domain and the codomain of H we have $\mathcal{L}_{\infty}(h\circ L)=\mathcal{L}_{\infty}(L^*\circ H\circ L)=\mathcal{L}_{\infty}(H)=\mathcal{L}_{\infty}(h)$. This ends the proof.

We now give a theorem following from Theorems 3.1-3.3, which completes the result of Ha (see [H], Theorem 1.4.5).

Let h satisfy (**). Then $H=(h'_x,h'_y)$ satisfies (*). Let $Q(w,x)=\operatorname{Res}_y(h'_x-u,h'_y-v)$ where w=(u,v), and let $Q(w,x)=Q_0(w)x^N+\ldots+Q_N(w)$.

- 9.2. THEOREM. Under the above assumptions and notations, we have
- (i) $Q_0 = \text{const.}$ if and only if $\mathcal{L}_{\infty}(h) > 0$,
- (ii) $Q_0 \neq \text{const.}$ and $Q_0(0) \neq 0$ if and only if $\mathcal{L}_{\infty}(h) = 0$,

(iii) there exists r such that $Q_0(0) = \ldots = Q_r(0) = 0$ and $Q_{r+1}(0) \neq 0$ if and only if $-\infty < \mathcal{L}_{\infty}(h) < 0$,

(iv)
$$Q_0(0) = \ldots = Q_N(0) = 0$$
 if and only if $\mathcal{L}_{\infty}(h) = -\infty$.

Moreover,

$$\mathcal{L}_{\infty}(h) = \left[\max_{1 \leq i \leq N} rac{\deg Q_i}{i}
ight]^{-1} \qquad ext{in case (i)}\,,$$
 $\mathcal{L}_{\infty}(h) = \left[-\min_{0 \leq i \leq r} rac{\operatorname{ord}_0 Q_i}{r+1-i}
ight]^{-1} \qquad ext{in case (iii)}.$

Let now h satisfy the condition $0 < \deg h = \deg_y h$. Let $\operatorname{Res}_y(h-\lambda, h'_y) = c_0(\lambda)x^M + \ldots + c_M(\lambda), c_0 \neq 0$, and

$$\Lambda(h) = \{ \lambda \in \mathbb{C} : c_0(\lambda) = 0 \}.$$

The following proposition holds (see [K], Proposition 7.1).

9.3. PROPOSITION. If L is a linear automorphism of \mathbb{C}^2 such that $0 < \deg h \circ L = \deg_y h \circ L$, then $\Lambda(h \circ L) = \Lambda(h)$.

From this proposition it follows that we can define $\Lambda(h)$ for arbitrary h, $0 < \deg h$. Namely, we put $\Lambda(h) = \Lambda(h \circ L)$, where L is a linear automorphism of \mathbb{C}^2 such that $\deg h \circ L = \deg_v h \circ L$.

We now give a result due to Ha (cf. [H], Th. 1.5 and [HN], Th. 1.3.1 and Prop. 1.5.1(iii)). Since it was announced by Ha without proof and we shall apply it in the sequel, we give a simple proof of it.

- 9.4. THEOREM. If $h: \mathbb{C}^2 \to \mathbb{C}$ is a polynomial function and $0 < \deg h$, then
 - (a) $\Lambda(h) = \emptyset$ if and only if $\mathcal{L}_{\infty}(h) > -1$,
 - (b) $\Lambda(h) \neq \emptyset$ if and only if $\mathcal{L}_{\infty}(h) < -1$.

Proof. It is easy to find a linear automorphism of \mathbb{C}^2 such that $\deg h \circ L = \deg_x h \circ L = \deg_y h \circ L$. Hence, from Property 9.1 and Proposition 9.3 it follows that we may assume without loss of generality that

(17)
$$\deg h = \deg_x h = \deg_y h.$$

Let $\operatorname{Res}_x(h-\lambda, h'_x) = d_0(\lambda) x^M + \ldots + d_M(\lambda), d_0 \neq 0$, and $\Lambda^*(h) = \{\lambda \in \mathbb{C} : d_0(\lambda) = 0\}$. From (17) and Proposition 9.3 we easily get

(18)
$$\Lambda(h) = \Lambda^*(h).$$

From Proposition 6.2 of [CK] we easily get

(19)
$$c_0(\lambda) \equiv \text{const.} \Leftrightarrow (\deg(h-\lambda) \circ \Phi_i > 0 \text{ for any } \lambda, i),$$

where Φ_1, \ldots, Φ_r are parametrizations of the branches at infinity of the curve $h'_y = 0$. Moreover, from (17) it follows that $\deg \Phi_i = \deg \varphi_{1i} > 0$,

where $\Phi_i = (\varphi_{1i}, \varphi_{2i}), i = 1, ..., r$. Hence, differentiating $(h - \lambda) \circ \Phi_i$, we obtain

$$\deg((h-\lambda)\circ \Phi_i)'=\deg h_x'\circ \Phi_i+\deg \Phi_i-1.$$

So, if $\deg(h-\lambda)\circ\Phi_i>0$ or $\deg h'_x\circ\Phi_i+\deg\Phi_i>0$, then from the above we get

(20)
$$\deg(h-\lambda)\circ \Phi_i = \deg h'_x \circ \Phi_i + \deg \Phi_i.$$

Assume that $\Lambda(h) = \emptyset$. Then $c_0(\lambda) \equiv \text{const.}$ Hence, by (19) and (20) we get

(21)
$$\deg h'_{x} \circ \Phi_{i} / \deg \Phi_{i} > -1 \quad \text{for each } i.$$

On the other hand, from (18) we have $\Lambda^*(h) = \Lambda(h) = \emptyset$. Then, proceeding analogously we obtain

$$\deg h'_{u} \circ \Psi_{j} / \deg \Psi_{j} > -1 \quad \text{ for each } j$$
,

where Ψ_1, \ldots, Ψ_s are parametrizations of the branches at infinity of the curve $h'_x = 0$. Hence, from (21) and Main Theorem of [CK] we get $\mathcal{L}_{\infty}(h) > -1$.

Assume now that $\mathcal{L}_{\infty}(h) > -1$. Then again from Main Theorem of [CK] it follows that (21) holds. Hence and from (20) we get $\deg(h-\lambda) \circ \Phi_i > 0$ for any λ , i. But this, according to (19), implies $c_0(\lambda) \equiv \text{const. So}$, $\Lambda(h) = \emptyset$.

We have shown (a). To prove (b), it suffices to show that $\mathcal{L}_{\infty}(h) \neq -1$. Assume to the contrary that $\mathcal{L}_{\infty}(h) = -1$. Then, according to Main Theorem of [CK], there exists a parametrization of a branch at infinity of the curve $h'_x = 0$ or $h'_y = 0$, say Ψ_j , such that $\deg h'_y \circ \Psi_j = -\deg \Psi_j$. Hence

$$\deg(h \circ \Psi_i)' = \deg h_{i'}' \circ \Psi_i + \deg \Psi_i - 1 = -1,$$

which is impossible because the degree of the derivative of a Laurent series is different from -1.

10. Proof of Theorem 3.4. We precede the proof of the theorem with two equivalent characterizations of a component of a polynomial automorphism of \mathbb{C}^2 . The first was Theorem 19.1 of [K] and the second is a simple corollary from the first and from Theorem 9.4.

Let $h: \mathbb{C}^2 \to \mathbb{C}$ be a polynomial function, $0 < \deg h$.

- 10.1. THEOREM. The function h is a component of a polynomial automorphism of \mathbb{C}^2 if and only if grad $h = (h'_x, h'_y)$ vanishes nowhere in \mathbb{C}^2 , and $\Lambda(h) = \emptyset$.
- 10.2. THEOREM. The function h is a component of a polynomial automorphism of \mathbb{C}^2 if and only if grad h vanishes nowhere in \mathbb{C}^2 , and $\mathcal{L}_{\infty}(h) > -1$.

Let us pass to the proof of Theorem 3.4.

Assume first that h is a component of a polynomial automorphism of \mathbb{C}^2 . Then, by Theorem 10.2, grad h vanishes nowhere in \mathbb{C}^2 . Hence, from the properties of the resultant we easily get

$$Q_0(0) = 0, \dots, Q_{N-1}(0) = 0$$
 and $Q_N(0) \neq 0$.

This gives the first part of the assertion. If, additionally, N > 0, then Theorem 9.2 implies

(22)
$$\mathcal{L}_{\infty}(h) = \left[-\min_{0 \le i < N} \frac{\operatorname{ord}_{0} Q_{i}}{N - i} \right]^{-1}.$$

On the other hand, by Theorem 10.2, we have $\mathcal{L}_{\infty}(h) > -1$. Hence and from (22) we get the second part of the assertion.

Assume now that $\operatorname{ord}_0 Q_N = 0$ and, if N > 0, that $\operatorname{ord}_0 Q_i > N - i$ for $i \in \{0, \ldots, N-1\}$. Then $\operatorname{Res}_y(h'_x, h'_y) = Q_N(0) \neq 0$. This means that grad h vanishes nowhere in \mathbb{C}^2 . If N = 0, then from Theorem 9.2(ii) we get $\mathcal{L}_{\infty}(h) = 0 > -1$. If N > 0, then, by the second part of Theorem 9.2, we obtain (22). So, from the assumption we easily get $\mathcal{L}_{\infty}(h) > -1$. Thus, by Theorem 10.2, h is a component of a polynomial automorphism.

11. Concluding remarks

11.1. Remark. Assumption (*) in Theorems 3.1-3.3 can be weakened at the cost of its symmetry. Namely, the theorems are still true if we replace (*) by

$$(*)' 0 < \deg f = \deg_y f, 0 < \deg g$$

or

$$(*)'' 0 < \deg f, 0 < \deg g = \deg_u g.$$

The proofs are unchanged.

11.2. Remark. Assumption (**) in Theorems 3.4 and 9.2 can also be weakened. Namely, the theorems remain true if we replace (**) by

$$(**)' 0 < \operatorname{deg} h - 1 = \operatorname{deg}_y h'_x$$

or

$$(**)''$$
 $0 < \deg h - 1 = \deg_y h'_y, \quad 0 < \deg_y h'_x.$

The first condition in (**)'' is equivalent to $1 < \deg h = \deg_y h$. The proofs are unchanged.

11.3. Remark. No further weakening of (*) and (**) is possible. This is shown by the following example. Let $h(x,y)=x^2y^2+x$. Easy calculations give $\mathcal{L}_{\infty}(h)=-3$, while $\mathrm{Res}_y(h'_x-u,h'_y-v)=4(1-u)x^4+2v^2x$.

- 11.4. Remark. From Theorem 9.2 it follows that $\mathcal{L}_{\infty}(h)$ is a rational number or $-\infty$. Note that, for each rational number r different from -1, there exists a polynomial function $h:\mathbb{C}^2\to\mathbb{C}$ such that $\mathcal{L}_{\infty}(h)=r$. This follows from the following examples:
 - (a) $\mathcal{L}_{\infty}(y^p + (x + y^q)^p) = -1 + p/q$ for $1 < p, \ 0 < q$, (b) $\mathcal{L}_{\infty}(y + y^{1+q}x^{p-q}) = -p/q$ for 0 < q < p.

Indeed, from (a) we get any r > -1, whereas from (b) any r < -1. In both cases, the Łojasiewicz exponent at infinity can easily be found by using Main Theorem of [CK]. Obviously, $\mathcal{L}_{\infty}(h) \neq -1$ for every h (Theorem 9.4). Example (b) is due to Ha ([H], Remark 1.5.2(ii)).

11.5. Remark. From Theorems 3.1-3.3 it also follows that $\mathcal{L}_{\infty}(H)$, for every polynomial mapping H, is a rational number or $-\infty$. Note that, for each rational number r, there exists $H:\mathbb{C}^2\to\mathbb{C}^2$ such that $\mathcal{L}_\infty(H)=r$. This follows from Remark 11.4 and the fact that, for H(x,y)=(x,xy-1), we have $\mathcal{L}_{\infty}(H) = -1$.

References

- J. Chadzyński and T. Krasiński, Exponent of growth of polynomial mappings [CK] of C2 into C2, in: Singularities, S. Lojasiewicz (ed.), Banach Center Publ. 20, PWN, Warszawa 1988, 147-160.
 - H. V. Ha, Nombres de Lojasiewicz et singularités à l'infini des polynômes de deux [H]variables complexes, C. R. Acad. Sci. Paris Sér. I 311 (1990), 429-432.
- [HN] H. V. Ha et L. A. Nguyen, Le comportement géométrique à l'infini des polynômes de deux variables complexes, C. R. Acad. Sci. Paris Sér. I 309 (1989), 183-186.
 - T. Krasiński, The level sets of polynomials in two variables and the jacobian [K]conjecture, Acta Univ. Lodziensis, Wyd. UŁ, Łódź 1991 (in Polish).
- $[P_1]$ A. Płoski, Une évaluation pour les sous-ensembles analytiques complexes, Bull. Polish Acad. Sci. Math. 31 (1983), 259-262.
- —, On the growth of proper polynomial mappings, Ann. Polon. Math. 45 (1985), $[P_2]$ 297-309.

INSTITUTE OF MATHEMATICS UNIVERSITY OF ŁÓDŹ S. BANACHA 22 90-238 ŁÓDŹ, POLAND

Reçu par la Rédaction le 11.6.1992