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On the Lojasiewicz exponent at infinity for polynomial
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of polynomial automorphisms of C?
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Abstract. A complete characterization of the Lojasiewicz exponent at infinity for
polynomial mappings of C? into C? is given. Moreover, a characterization of a component
of a polynomial automorphism of C? (in terms of the Lojasiewicz exponent at infinity) is
given.

1. Introduction. Let H = (f,g) : C> — C? be a polynomial mapping
and N(H)={r € R:34 >0, 3B > 0, V|z2| > B, A|z|* < |H(2)|}. By
the Lojasiewicz ezponent at infinity of H we shall mean sup N(H) when
N(H) # 0, and —oo when N(H) = (. We shall denote it by Lo (H). In
[CK] the exponent L. (H), called there the exponent of growth of H, was
defined only for N(H) # 0.

In the case L (H) > 0, an exact formula for Lo(H) in the n-dimensio-
nal case was given by Ploski [P2]. In the case Lo(H) < 0 where H is the
gradient of a polynomial function A : C2 — C, an exact formula for £ (H)
was given by Ha [H].

The main results of our paper are: a characterization of L., (H) in the
general case (Theorems 3.1-3.3) and a characterization of a component of
a polynomial automorphism of C2 (Theorem 3.4), which we obtain as a
corollary from the first result.

Moreover, some properties of Lo (H) in the case H = (hy, h;,) where
h : C* — C is a polynomial function (Sec. 9) and other characterizations
of a component of a polynomial automorphism of C? (Theorems 10.1, 10.2)
are given.
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In the remarks at the end of the paper we indicate some possible weak-
enings of the assumptions in the main results and show all possible values of
L (H) for polynomial mappings and the gradients of polynomial functions.

2. Notations and definitions. We shall use notations and definitions
as in [CK], except the ones mentioned in the introduction (concerning the
name and the notation of Lo (H)).

3. The main results. Let C? 3 z = (z,y) — H(z) = (f(2),9(z)) € C?
be a polynomial mapping. In the sequel, we shall assume that H satisfies
the condition

(%) 0<degf=deg,f, 0<degg=deg,g.

The above assumptions do not restrict our considerations. This follows, on
the one hand, from the fact that, for f = const. or g = const., we evalu-
ate Lo (H) directly and, on the other hand, that Lo (H) is invariant with
respect to linear automorphisms of the domain of H.

Let w = (u,v) € C? be arbitrary and let Q(w, ) = Res,(f — u,g — v)
be the resultant of f — u and g — v with respect to y. From the properties
of the resultant it follows that ) does not vanish identically. Put

(1) Q(w,z) = Qo(w)z™ + ... +Qn(w), Qo #0.
3.1. THEOREM. If a polynomial mapping H : C? — C? satisfies (*), then

(i) Qo = const. if and only if Loo(H) > 0,
(ii) Qo # const. and Qo(0) # 0 if and only if Loo(H) =0,

(iii) there exists r such that Qo(0) = ... = Q.(0) =0 and Q,4+1(0) #0
if and only if —oo < Lo(H) <0,
(iv) Qo(0) = ... = QnN(0) =0 if and only if Loo(H) = —o00.

The above theorem gives an effective formula for £ (H) only in cases
(i1), (iv). In the theorems below we shall also give effective formulae for
Lo (H) in the remaining cases.

3.2. THEOREM. For L.(H) > 0, we have

-1
Lo(H)= [ max deg.Q,]
1<i<N 1
3.3. THEOREM. For —o0 < Loo(H) < 0 when Qo(0) =... =Q,(0) =0

and Qr4+1(0) # 0, we have

-1
Lo(H) = [— min Mi—]

o<i<rr+1-—1



Lojasiewicz ezponent at infinity 293

Now, let h: C?2 — C be a polynomial function satisfying the condition
(%x) 0 < degh — 1 = deg, h; = deg, h,,.

Using a linear automorphism of the domain of h, we easily note that (xx)
does not restrict the considerations.
Put Q(w, z) = Resy(h} — u, h!, — ). Let Q have the form (1), as above.

3.4. THEOREM. A necessary and sufficient condition for a polynomial
function h to be a component of a polynomial automorphism of C? is that
ordg Qv = 0 and, provided N > 0, that ordg@Q; > N — ¢ for each i €
{0,...,N —1}.

4. Properties of the resultant (. In this section we use the same
notations and assumptions as in Section 3.

First, we give a proposition (without proof) following from the elemen-
tary properties of the resultant.

4.1. PROPOSITION. Let wo = (ug, vo) € C2. The polynomials f — uo,
g — vo have a common divisor in Clz,y] of positive degree if and only if

Qo(’wo) =...= QN(wo) = 0.
We now prove a simple criterion for H to be proper.
4.2. PROPOSITION. The mapping H is proper if and only if Qo = const.

Proof. = Assume to the contrary that there exists wg such that
Qo(wo) = 0. Then either Qg(wp) = ... = @n(wp) = 0 or there exists r
such that @Q,41(wo) # 0. In the first case, by Proposition 4.1, the fibre
H~Y(wp) is not compact, which contradicts H being proper. In the second
case, from the properties of the resultant it follows that there exists a se-
quence {z,} such that |z,| — oo and H(z,) — wo, again contrary to H
being proper.

< If Qo = const. and K C C? is bounded, then so is {z € C: Q(w,z) =
0, w € K}. Hence {z € C? : H(z) = w, w € K} is also bounded, which
easily implies that H is proper.

5. Proof of Theorem 3.1. Before giving the proof we quote an easy
corollary from Main Theorem of [CK] (taking into account that, for £ (H)
# —oo, the fibre H~1(0) is finite).

5.1. PROPOSITION. If a polynomial mapping H = (f,g) : C?2 — C?
satisfies the conditions deg f > 0, degg > 0 and Lo (H) # —o0, then

(a) there erist positive constants A, B such that
Al2|*=) < |H(z)|  for |2| > B,
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(b) there ezists a branch I' of the curve f = 0 or g = 0 in a neighbourhood
of infinity such that

2] ~ |2l, |2*= ~|H(2)| as|z] > 00, z€T.

We now pass to the proof of Theorem 3.1.

(i) & By Proposition 4.2, the condition Q9 = const. is equivalent to
H being proper. On the other hand, by Corollary 3.3 of [CK], the latter is
equivalent to the condition L. (H) > 0.

(iv) = By Proposition 4.1, f and g have a common factor of positive
degree. Hence there exists a sequence {z,} such that |z,| — oo and H(z,) =
0. Then N(H) = 0, which gives Lo(H) = —oc.

< From Lo (H) = —oo it follows that N(H) = 0. Then, by Main
Theorem (ii) of [CK], the fibre H~!(0) is infinite. This easily gives that
Q(0,z) = 0 for an infinite number of z.

(iii) = Analogously to the proof of Proposition 4.2, there exists a se-
quence {z,} such that |z,| — oo and H(z,) — 0. Hence, from (iv) and
Proposition 5.1(a) we get —oo < Loo(H) < 0.

<= By Proposition 5.1(b), there exists I" such that

(2) |z| > 00 and |H(z)] -0 as|z|—>o00, z€T.
On the other hand, from an elementary property of the resultant we have,
for x # 0,

Qu(H:)+Qi(H(z)z  +...+Qn(H(2)z™ N =0.

Hence and from (2) we get Qo(0) = 0. The existence of r follows from (iv).
(ii) < It is a direct consequence of (i), (iii), (iv). This ends the proof.

- 6. The exponent L. (H,z). As above, we assume that H = (f,g) :
C? — C? satisfies condition (). Let us introduce one more notion. Let
N(H,z) ={v e R:34 >0, 3B > 0, V|z| > B, Alz|¥ < |H(2)|}. Put
Lo(H,z) = supN(H,z) when N(H,z) # 0, and L (H,z) = —oo when
N(H,z) = 0.

6.1. PROPOSITION. If a polynomial mapping H = (f,g9) : C* — C?
satisfies (*), then
(3) Loo(H,z) = Loo(H).

Proof. First, we show that Lo (H) < Loo(H, ) for Log(H) > 0. In fact,
from the inequality |z| < |z| we then have
(4) leﬂm(H) < lz|Cm(H)_
Hence and from Proposition 5.1(a) we get A|z|¢~(*) < |H(z)| for |z| > B.
Then L (H) € N(H,z) and, in consequence, Lo(H) < L (H,z) in this
case.
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We now show that Lo (H) < Loo(H,z) for —00 < Loo(H) < 0. Let

flz,y) =ao(@)y™ +ar(z)y™  + ... + an(z), ap#0.

From (x) it follows that dega; < 4, 7 = 0,1,...,m. Hence, for each i €
{1,...,m}, there exists a constant c; such that, for any k,z,y with k > 1,
|z| > 1, |y| > k|z|, we have |a;(z)/y}| < c;/k". Fix a sufficiently large k such
that, for any z,y with [z| > 1 and |y| > k|z|, the inequality

lao| — [(a1(z)/y) + ... + (am(z)/y™)] 2 AL >0
holds. In consequence, for the above k, z,y, we have

(5) [H(2)| = |f(2)| = Arly|™ 2 AL k™ ]z|™ .
Since L (H) < m, from (5) we get
(6) |H(2)| > Ay kE=Fz| =) for |z| > 1, |y| > klz|.

On the other hand, for the above k and |y| < k|z|, we have |z| < k|z|. Then,
for —oo < Lo(H) < 0, we get

™ (klal) =) < [2{E=tiD).

From (7) and Proposition 5.1(a), there exist A, B > 0 such that for |z| > B,
ly| < k|z], we get
AkF=E|z]f=) < |H(2)].
Hence and from (6), for Ay = k%) min(A, 4;) and |z] > max(1, B), we
have
AofolE=t) < |H(2)) .

Then Lo (H) € N(H,z) and, in consequence, Lo (H) < Loo(H, ).

We now show that £.,(H,z) < Lo (H) for Loo(H) # —oo. It suffices to
prove this for L, (H, ) # —oo. Take » € N(H, z). Then there exist positive
numbers Az, B3 such that

(8) As|z|¥ < |H(2)| for |z| > Bs.

Considering H on the branch I" from Proposition 5.1(b), we easily conclude,
by (8), that v < L, (H). Since v was arbitrary, we get Loo(H, ) < Loo(H).
From this and the above we deduce that (3) holds for Lo, (H) # —oo.
From Theorem 3.1(iv) it follows that, for Lo(H) = —oo0, there exists a
sequence {zn}, zn = (Tpn,Yn), such that |z,| — oo and H(z,) = 0. Hence
N(H,z) = §, which gives L (H,z) = —oo. This ends the proof.

7. Proof of Theorem 3.2. This proof is taken, to a considerable extent,
from [P,] by A. Ploski.

First note that N > 0. Indeed, this follows from the fact that Q¢ = const.
and Qn # const. Put A(Q) = [max;<i<n(deg Q;)/i] . Since Qn # const.,
therefore, A(Q) > 0.
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We first show that A(Q) < Lo(H). From Lemma 2.1 of [Ps] it follows
that there exist A, B > 0 such that

{(w,2) : [w| > B, Qw,z) =0} C {(w,2) : |w| > B, Ala|*@ < Jul}.

From the properties of the resultant we have Q(H(z), ) = 0. Then, by the
above, A|z|4(@) < |H(z)| for |H(z)| > B. Since H is proper (see Prop. 4.2),
there exists a constant B; > 0 such that |H(z)| > B for |z| > B;. Then
A|z|4@) < |H(z)| for |z| > B;. This means that A(Q) € N(H,z). In
consequence, A(Q) < L (H,z). Hence and from Proposition 6.1 we get
A(Q) < Loo(H).

We now show that L, (H) < A(Q). Take an arbitrary v € N(H). Then
there exist positive C, Dy such that C|z|¥ < |H(z)| for |z] > D;. We may as-
sume that D; > 1. Let E > 1 be a constant such that |H(z)| < E|z|9%¢ ¥ for
|z| > 1. Put D = ED{*8 ¥ (1+max|,|<; |H(z)|). Then, obviously, |H(z)| > D
implies |z| > D;. Take now w, z such that |[w| > D and Q(w, z) = 0. By the
properties of the resultant there exists z = (z,y) such that w = H(z).
From the above we have |z2| > D; and, in consequence, C|z|* < |w|.
Hence, v < A(Q) by Lemma 2.1 of [P2]. Since v was arbitrary, we get
Lo (H) < A(Q). This ends the proof.

8. Proof of Theorem 3.3. Let the resultant Q(w, z) have the form (1)
and Qo(0) =...=Q-(0) =0, Q-4+1(0) # 0. Put

9) Q"(w,t) = Qo(w) + Qr(w)t+ ...+ Qrur(w)t™ + ... + Qn(w)tV.

By the Weierstrass preparation theorem, there exist ¢ > 0 and a distin-
guished pseudopolynomial P*(w,t) of the form

(10) P*(w,t) = t™ ! +a, (w)t" + ... + ap(w),

such that, for |w| < g, |t| < o, we have.

(11) Q" (w,t) = P*(w,t) R*(w,1),

where a.,...,ag are holomorphic functions for |w| < g, a;(0) = 0, and R*

is a pseudopolynomial with holomorphic coefficients in {w : |w| < g}, and
R*(w,t) # 0 for |w| < p, |t| < 0.

8.1. LEMMA. With the above notations, we have

(12) min —M—, = min M.
o<i<rr+1—1 o0<i<rr+1-—1
Proof. Let R*(w,t) = bo(w) +. ..+ bs(w) t* where s = max(r, N—r—1)
and b; =0 for j > N —r — 1. Obviously, bp(0) # 0. From (10) and (11) we
get @y =agby + ...+ ajbg for l € {0,...,r}.
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We show inductively that, for any [ € {0,...,7},
ordg Q; . ordga;
min ——— = min ————
o<i<tr4+1-—1 o<i<ir+1l-—1
In fact, this is obvious for I = 0. Assume that (13) holds for [ = k. Consider
two cases:

(13)

1° ordg ak+1b0 < minosisk ordg aibk+1_i,
2° ordg ax+1bp > ming<;<x ordg a;bg41-;.

In case 1°, we have ordg Qx+1 = ordg @r+1, which, together with the in-
duction hypothesis, gives (13) for | = k + 1. In case 2°, after easy es-
timations we get ordg Qx+1/(r — k) > ming<i<xordo Q;/(r + 1 — i) and
ordg ag4+1/(r — k) > ming<;<x ordg a;/(r + 1 — i), which, together with the
induction hypothesis, gives (13) for [ = k + 1, too.

Putting [ = r in (13), we get (12).

Put 6(Q) = [-ming<i<,(ordo @;)/(r+1—%)]~1. Obviously, —oo < §(Q) <
0.

8.2. LEMMA. There exist positive constants A, B such that
(14) {(w,z) : |z| > B, Q(w,z) =0} C {(w,z) : |z| > B, Alz|*@ < |wl|}.

Proof. By Proposition 2.2 of [P;] and Lemma 8.1, it follows that there
exist Ay, By > 0 such that

{(w,t) : lw| < By, P*(w,t) =0} C {(w,t): |w| < By, A1[t|™*@ < |w]}.
Hence and from (11) we get, for ¢ < B,
{(w,1): jul < o, |t] < 0, Q*(w,1) = 0)
C {(w,t): [w| <o, [t| <o, A1lt|™*? < Jw]}.
In consequence, we have
{(w,2) : lw| < ¢, |z| >1/0, Qw,z) =0}
c {(w,z): |w| <o lz| >1/0, A1|2|*@ < |uw|}.

This implies that, for A = min(4;, ¢’@*!) and B = 1/p, inclusion (14)
holds. This ends the proof.

8.3. LEMMA. If there exist C,D > 0 and v < 0 such that
(15) {(w,z):|z| > D, Q(w,z) =0} C {(w,z) : |z| > D, Clz|” < |w|},
then v < §(Q).
Proof. From (15) we get
{(w,t): |lw| <1/D, |¢t| < 1/D, Q*(w,t) =0}
C {(w,t) : |lw| < 1/D, |t| <1/D, CJt|™" < |wl|}.
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Hence and from (11), putting ¢ < 1/D, we get
(16) {(w,t):|w| < p, |t| <o, P*(w,t) =0}
C{(w,t):|lwl <o, [t| <o, CIt|™ < [wl}.

Take a sufficiently small € > 0 such that all the roots of the equations
P*(w,t) =0 for |w| < € lie in the disc {t: |t| < ¢}. Then from (16) we get

{(w,t) : Jw] < e, P*(w,t) =0} C {(w,t):|w] <e, Clt|™ < |w|}.

Hence, from Proposition 2.2 of [P;] and Lemma 8.1 we get v < §(Q). This
ends the proof.

Let us pass to the proof of Theorem 3.3.

From the properties of the resultant we have Q(H(z), z) = 0. Then, by
Lemma 8.2 we get §(Q) € N(H, z). Hence §(Q) < Loo(H,z).

Take now v € N(H, z). Then there exist C,D > 0 such that C|z|¥ <
|H(z)| for |z| > D. Take w,z such that || > D and Q(w,z) = 0. From
the properties of the resultant there exists z = (z,y) such that w = H(z).
Hence C|z|” < |w|. Then, by Lemma 8.3, v < §(Q). Since v was arbitrary,
we get Loo(H,z) < 6(Q).

Summing up, L (H,z) = 6(Q). Hence and from Proposition 6.1 we get
Lo (H) = §(Q), which completes the proof.

9. The Lojasiewicz exponent at infinity for a polynomial. Let
h : C? — C be a polynomial function. Put H = (h/, h}). Then Loo(H) will

be called the Lojasiewicz ezponent at infinity of h and denoted by L. (h).
The following simple property holds.

9.1. PROPERTY. If L is a linear automorphism of C2, then Lo (hoL) =
Loo(h).

Proof. Let L(z,y) = (az+by, czx+dy) and L*(z,y) = (az+cy, bz +dy).
From the invariance of £, (H) with respect to linear automorphisms of the
domain and the codomain of H we have Loo(ho L) = Loo(L* 0o Ho L) =
Loo(H) = Lo (h). This ends the proof.

We now give a theorem following from Theorems 3.1-3.3, which com-
pletes the result of Ha (see [H], Theorem 1.4.5).

Let h satisfy (xx). Then H = (hg, h;) satisfies (x). Let Q(w,z) =
Resy (b}, — u, h;, — v) where w = (u,v), and let Q(w, z) = Qo(w)z" + ... +

Q N (w)
9.2. THEOREM. Under the above assumptions and notations, we have

(i) Qo = const. if and only if Lo (h) > 0,
(ii) Qo # const. and Qo(0) # 0 if and only if Loo(h) =0,
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(iii) there exists r such that Qo(0) = ... = Q,(0) = 0 and Q,4+1(0) # 0
if and only if —0o < Loo(h) < 0,
(iv) Qo(0) = ... = Qn(0) = 0 if and only if Loo(h) = —0c0.
Moreover,
-1
Loo(h) = [ max desQl] in case (i),
1<i<N - 4

ordg Q;

-1
— min - in case (iii).
0<i<rr + 1 —1

Lt = |
Let now h satisfy the condition 0 < degh = deg, h. Let Res,(h—\, k) =
co(A)zM + ...+ epm(N), co #0, and
A(h) ={A € C:¢p(N) =0}.
The following proposition holds (see [K], Proposition 7.1).

9.3. PROPOSITION. If L is a linear automorphism of C? such that 0 <
degho L =deg, ho L, then A(ho L) = A(h).

From this proposition it follows that we can define A(h) for arbitrary h,
0 < deg h. Namely, we put A(h) = A(hoL), where L is a linear automorphism
of C? such that degh o L = deg, ho L.

We now give a result due to Ha (cf. [H], Th. 1.5 and [HN], Th.1.3.1 and
Prop. 1.5.1(iii)). Since it was announced by Ha without proof and we shall
apply it in the sequel, we give a simple proof of it.

9.4. THEOREM. If h : C%2 — C is a polynomial function and 0 < degh,
then

(a) A(h) =0 if and only if Loo(h) > -1,
(b) A(R) # 0 if and only if Lo(h) < —1.
Proof. It is easy to find a linear automorphism of C? such that degh o

L =deg,hoL = deg, h o L. Hence, from Property 9.1 and Proposition 9.3
it follows that we may assume without loss of generality that

(17) degh = deg, h = deg, h.

Let Res;(h — A, hL) = do(A\)z™ + ...+ dm(}), do #0, and A*(h) = {A €
C : dyo(A) = 0}. From (17) and Proposition 9.3 we easily get

(18) A(h) = A*(h).
From Proposition 6.2 of [CK] we easily get
(19) co(A) = const. < (deg(h — X) o ®; > 0 for any A, i),
where &;,...,®, are parametrizations of the branches at infinity of the

curve h, = 0. Moreover, from (17) it follows that deg®; = degy1; > 0,
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where &; = (¢1i,p2i), t = 1,...,r. Hence, differentiating (h — A) o &;, we
obtain

deg((h — A\) o ®;)’ = degh, o ®; + deg b; — 1.
So, if deg(h — A) o ®; > 0 or degh, o §; + deg P; > 0, then from the above
we get

(20) deg(h — A o ®; = degh, o ®; + deg P, .

Assume that A(h) = 0. Then ¢o(\) = const. Hence, by (19) and (20) we
get

(21) degh, o $;/deg®P; > -1 for eachi.

On the other hand, from (18) we have A*(h) = A(h) = 0. Then, proceeding
analogously we obtain

degh, o ¥;/deg¥; > —1 for each j,

where ¥4, ..., ¥, are parametrizations of the branches at infinity of the curve
h! = 0. Hence, from (21) and Main Theorem of [CK] we get Lo (h) > —1.
Assume now that L. (k) > —1. Then again from Main Theorem of [CK]
it follows that (21) holds. Hence and from (20) we get deg(h— A)o®; > 0 for
any A, i. But this, according to (19), implies co(\) = const. So, A(h) = 0.
We have shown (a). To prove (b), it suffices to show that Loo(h) #
—1. Assume to the contrary that L (h) = —1. Then, according to Main
Theorem of [CK], there exists a parametrization of a branch at infinity of
the curve h; = 0 or h; = 0, say ¥;, such that deg h; o¥; = — deg ¥;. Hence

deg(ho¥;) = degh; o ¥; + deg¥; — 1= -1,

which is impossible because the degree of the derivative of a Laurent series
is different from —1.

10. Proof of Theorem 3.4. We precede the proof of the theorem with
two equivalent characterizations of a component of a polynomial automor-
phism of C2. The first was Theorem 19.1 of [K] and the second is a simple
corollary from the first and from Theorem 9.4.

Let h : C2 — C be a polynomial function, 0 < deg h.

10.1. THEOREM. The function h is a component of a polynomial auto-
morphism of C? if and only if gradh = (AL, hy) vanishes nowhere in C?,
and A(h) = 0.

10.2. THEOREM. The function h is a component of a polynomial auto-
morphism of C? if and only if grad h vanishes nowhere in C2, and Loo(h)
> —1.

Let us pass to the proof of Theorem 3.4.
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Assume first that h is a component of a polynomial automorphism of
CZ. Then, by Theorem 10.2, grad h vanishes nowhere in C2. Hence, from the
properties of the resultant we easily get

Q0(0)=0,...,Qn-1(0)=0 and Qn(0)#0.

This gives the first part of the assertion. If, additionally, N > 0, then The-
orem 9.2 implies

Ol‘do Qi -t
(22) Loo(h) = [ - 02?<HN N — .
On the other hand, by Theorem 10.2, we have Lo,(h) > —1. Hence and from
(22) we get the second part of the assertion.

Assume now that ordg @y = 0 and, if N > 0, that ordg@; > N -4
for i € {0,..., N — 1}. Then Res,(h}, h;) = @n(0) # 0. This means that
grad h vanishes nowhere in C2. If N = 0, then from Theorem 9.2(ii) we get
Lo(h) =0> —1. If N > 0, then, by the second part of Theorem 9.2, we
obtain (22). So, from the assumption we easily get Lo, (h) > —1. Thus, by
Theorem 10.2, h is a component of a polynomial automorphism.

11. Concluding remarks

11.1. Remark. Assumption (%) in Theorems 3.1-3.3 can be weakened
at the cost of its symmetry. Namely, the theorems are still true if we replace

(*) by

(%) 0 <degf=deg, f, 0<degyg
or
(*)" 0<degf, O0<degg=deg,g.

The proofs are unchanged.

11.2. Remark. Assumption (**) in Theorems 3.4 and 9.2 can also be
weakened. Namely, the theorems remain true if we replace (*x) by

(xx)’ 0 < degh — 1 = deg, h;
or
(x)” 0 < degh —1=deg h,, 0<deg,h;.

The first condition in (*x)” is equivalent to 1 < deg h = deg, h. The proofs
are unchanged.

11.3. Remark. No further weakening of (x) and () is possible. This is
shown by the following example. Let h(x,y) = z2y® + z. Easy calculations
give Loo(h) = —3, while Res, (h], — u, by, —v) = 4(1 - u) zt + 2vir.
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11.4. Remark. From Theorem 9.2 it follows that £ (h) is a rational
number or —oo. Note that, for each rational number r different from —1,
there exists a polynomial function h : C2 — C such that L (k) = r. This
follows from the following examples:

(a) Loo(yP +(z+y9)P)=—-1+p/q forl<p, 0<yg,
(b) Loo(y + y't92P~9) = —p/q for 0 < g < p.

Indeed, from (a) we get any r > —1, whereas from (b) any r < —1. In both
cases, the Lojasiewicz exponent at infinity can easily be found by using
Main Theorem of [CK]. Obviously, Lo (k) # —1 for every h (Theorem 9.4).
Example (b) is due to Ha ([H], Remark 1.5.2(ii)).

11.5. Remark. From Theorems 3.1-3.3 it also follows that £.,(H), for
every polynomial mapping H, is a rational number or —oo. Note that, for
each rational number r, there exists H : C2 — C? such that L (H) = r.
This follows from Remark 11.4 and the fact that, for H(z,y) = (z, zy — 1),
we have Loo(H) = —1.
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