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An optimal control problem is considered where the state of the system is de-
scribed by a variational inequality for the operator w → ε∆2w−ϕ(‖∇w‖2)∆w. A
set of nonnegative functions ϕ is used as a control region. The problem is shown
to have a solution for every fixed ε > 0. Moreover, the solvability of the limit
optimal control problem corresponding to ε = 0 is proved. A compactness prop-
erty of the solutions of the optimal control problems for ε > 0 and their relation
with the limit problem are established. This type of operator arises in the theory
of nonlinear plates, and the choice of a most suitable function ϕ is of interest
for applications [2]. The problem of control of the function w has been studied
in [4] for the operator under consideration, and some statements of this work
will be used. Nonstationary problems with analogous operators were analyzed in
[6, 7]. Some general results on control of second-order variational inequalities can
be found in [1]. The first section of this paper deals with the control problem for
our fourth-order operator, the second considers a second-order operator, and the
third studies the relationship between the solutions of the two problems.

I. Fourth-order operator. Let Ω ⊂ R2 be a bounded domain with a
smooth boundary ∂Ω; let Hs(Ω) be the Sobolev space of functions having s
generalized derivatives square summable in Ω. The closure of the smooth com-
pactly supported functions in Ω in the Hs(Ω) norm is denoted by Hs

0(Ω). Let
ψ ∈ H2(Ω) be a given function, ψ|∂Ω < 0. We define a convex and closed set in
H2,0(Ω) ≡ H2(Ω) ∩H1

0 (Ω) as follows:

K2 = {w ∈ H2,0(Ω)|w(x) ≥ ψ(x), x ∈ Ω} .
Consider the variational inequality

(1) w ∈ K2, ε(∆w,∆w −∆w) + ϕ(‖∇w‖2)(∇w,∇w −∇w)
≥ (f, w − w) ∀w ∈ K2 .
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Here (·, ·) is the scalar product in L2(Ω). Assume that f ∈ L2(Ω). Let Φ be a
convex and closed subset of H1(0,∞) consisting of nonnegative functions. The
cost functional is

Eε(ϕ) = ‖w(ϕ)− w0‖+ ‖ϕ‖1, ϕ ∈ Φ .

Here w(ϕ) is the solution of the variational inequality (1) corresponding to ϕ
(some conditions on ϕ ensuring the existence and uniqueness of solutions to (1)
are given below); w0 ∈ L2(Ω) is a prescribed element; ‖ · ‖s is the norm in Hs(Ω)
or in Hs(0,∞), ‖ · ‖0 ≡ ‖ · ‖. The optimal control problem is to find ϕ ∈ Φ that

(2) Eε(ϕ) ≤ Eε(ϕ) ∀ϕ ∈ Φ .

At this stage ε > 0 is assumed to be fixed. The dependence of the solutions on ε
will be discussed later.

First, we present a well-known statement without proof.

Lemma 1. Let ϕ ∈ Φ and suppose
√
sϕ(s) is a nondecreasing function of s.

Then the operator w → −ϕ(‖∇w‖2)∆w is monotone from H1
0 (Ω) into its dual.

This lemma is a particular case of a statement proved in [3]. Note that
H1(0,∞) functions are continuous in [0,∞) (see [5]).

Assume that for each ϕ ∈ Φ, the function
√
sϕ(s) is nondecreasing. Set

Πϕ
ε (w) =

ε

2
‖∆w‖2 +

1
2

‖∇w‖2∫
0

ϕ(s) ds− (f, w) ,

which allows inequality (1) to be written as follows:

w ∈ K2, ∂Πϕ
ε (w)(w − w) ≥ 0 ∀w ∈ K2 .

Here ∂Πϕ
ε (w) is the derivative of the functional Πϕ

ε at the point w. Observe that,
according to Lemma 1, the operator w → ∂Πϕ

ε (w) is monotonous from H2,0(Ω)
into its dual, and therefore, the variational inequality (1) is equivalent to the
problem of minimization of Πϕ

ε (w) on K2. It follows that, for every ϕ∈Φ, (1) has
a unique solution. This is a consequence of the coercivity and lower semicontinuity
of Πϕ

ε on H2,0(Ω).

Theorem 1. Suppose Φ satisfies the above conditions. Then the optimal con-
trol problem (2) has a solution.

P r o o f. Choose a minimizing sequence ϕn ∈ Φ. Then {ϕn} is bounded in
H1(0,∞). Passing to a subsequence if necessary, we may assume that ϕn → ϕ
weakly in H1(0,∞). The problem

(3) wn ∈ K2, ∂Πϕn
ε (wn)(w − wn) ≥ 0 ∀w ∈ K2

has a solution for every n. By fixing w ∈ K2, we may deduce from (3) that

Πϕn
ε (wn) ≤ Πϕn

ε (w) ≤ c
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with a constant c independent of n. Since ϕn ≥ 0 we get

‖∆wn‖2 ≤ c .
Recall that so far ε is considered to be fixed. The obtained estimate means that
{wn} is bounded inH2,0(Ω). Passing to a subsequence if necessary, we can assume
that wn → w weakly inH2,0(Ω) and strongly inH1

0 (Ω). Let, moreover, ‖∇wn‖2≤
α. Then, in addition, we may assume that ϕn → ϕ uniformly in [0, α]. The latter
follows from the compactness of the imbedding of H1(0, α) in C[0, α]. Now we
can pass to the limit in (3) using the above-mentioned convergence. Indeed,

ϕn(‖∇wn‖2)→ ϕ(‖∇w‖2) , lim inf ‖∆wn‖2 ≥ ‖∆w‖2 .
Therefore, the limit function w satisfies

(4) w ∈ K2, ∂Πϕ
ε (w)(w − w) ≥ 0 ∀w ∈ K2 ,

and hence w = w(ϕ). The lower semicontinuity of the norm gives

inf
ϕ∈Φ

Eε(ϕ) = lim inf
n→∞

Eε(ϕn) ≥ Eε(ϕ) ≥ inf
ϕ∈Φ

Eε(ϕ) .

This means that ϕ minimizes Eε on Φ. The proof is complete.

2. Second-order operator. Let us introduce a convex and closed set in
H1

0 (Ω) by
K1 = {w ∈ H1

0 (Ω) | w(x) ≥ ψ(x), x ∈ Ω}
and consider the variational inequality

(5) w ∈ K1, ϕ(‖∇w‖2)(∇w,∇w −∇w) ≥ (f, w − w) ∀w ∈ K1 .

We assume that
√
sϕ(s) is strictly increasing for each ϕ∈Φ. Moreover, we assume√

sϕ(s) → ∞ as s → ∞, uniformly in ϕ ∈ Φ. Then for each fixed ϕ ∈ Φ there
exists a unique solution of (5) (see [4]). The problem of minimization of the
functional Πϕ

0 on K1 is equivalent to the variational inequality (5), analogously
to (1).

Now consider the optimal control problem with the same cost functional:

E0(ϕ) = ‖w(ϕ)− w0‖+ ‖ϕ‖1 ,
where w(ϕ) is the solution of (5). An element ϕ ∈ Φ is to be found so that

(6) E0(ϕ) ≤ E0(ϕ) ∀ϕ ∈ Φ .
Theorem 2. Under the above conditions on Φ, the optimal control problem

(6) has a solution.

P r o o f. Let ϕn ∈ Φ be a minimizing sequence. Without loss of generality, we
may assume that ϕn → ϕ weakly in H1(0,∞). The variational inequality

(7) wn ∈ K1, ϕn(‖∇wn‖2)(∇wn,∇w −∇wn) ≥ (f, w − wn) ∀w ∈ K1

has a solution for every n. An equivalent form of (7) is

(8) wn ∈ K1, Πϕn

0 (wn) ≤ Πϕn

0 (w) ∀w ∈ K1 .



228 A. M. KHLUDNEV

Let us show that Πϕn

0 (wn) is coercive uniformly in ϕ ∈ Φ. Indeed, we have

Πϕ
0 (w)−Πϕ

0 (0) =
1∫

0

∂Πϕ
0 (sw)(w) ds .

Therefore,

Πϕ
0 (w) =

1/2∫
0

(∂Πϕ
0 (sw)− ∂Πϕ

0 (0))(w) ds

+
1
2
∂Πϕ

0 (0)(w) +
1∫

1/2

∂Πϕ
0 (sw)(w) ds .

According to Lemma 1, the first term of the right-hand side is non-negative; the
second is equal to − 1

2 (f, w), and the third is ∂Πϕ
0 (sw)(w), s ∈ [1/2, 1]. Conse-

quently,
Πϕ

0 (w) ≥ 1
2∂Π

ϕ
0 (sw)(w)− 1

2 (f, w)

≥ 1
2‖∇w‖(ϕ(‖∇w‖2s2)‖s∇w‖ − c)→∞

as ‖∇w‖ → ∞, uniformly in ϕ ∈ Φ. Fixing w in (8), we may assume that
Πϕn

0 (wn) ≤ c with a constant c independent of n. By the coercivity of Πϕ
0 ,

we conclude that there exists a constant c independent of n such that

‖∇wn‖2 ≤ c .
As previously, we can assume additionally that ϕn → ϕ strongly in C[0, α]. Let
also wn → w weakly in H1

0 (Ω). Note that w ∈ K1. Now we wish to pass to the
limit in (7). Inequality (8), equivalent to (7), takes the form

1
2

‖∇wn‖2∫
0

ϕn(s) ds− (f, wn) ≤ 1
2

‖∇wn‖2∫
0

ϕn(s) ds− (f, w) .

At the same time, by the above considerations,

lim inf
‖∇wn‖2∫

0

ϕn(s) ds ≥
‖∇w‖2∫

0

ϕ(s) ds .

Thus, after passing to the lower limit in both sides of (8), we obtain

Πϕ
0 (w) ≤ Πϕ

0 (w) ∀w ∈ K1 ,

which is equivalent to

w ∈ K1, ϕ(‖∇w‖2)(∇w,∇w −∇w) ≥ (f, w − w) ∀w ∈ K1 .

This means that w = w(ϕ). The proof is completed as in Theorem 1.

3. On the relationship between the solutions as ε → 0. We assume
the same conditions on ϕ ∈ Φ as in the previous section. We need the following
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statement on the approximation of a function satisfying a bound of the form
w ≥ ψ by a sequence of more smooth functions [4].

Lemma 2. For every w ∈ K1 there exists a sequence wn ∈ K2 strongly con-
verging to w in H1

0 (Ω).

Let ϕε be a solution of problem (2), and let w(ϕε) be the corresponding
solution of the variational inequality (1). The relation between the solutions of the
optimal control problems (2) and (6) is characterized by the following statement.

Theorem 3. Passing to subsequences if necessary , we have

ϕε → ϕ weakly in H1(0,∞) ,

w(ϕε)→ w weakly in H1
0 (Ω) ,

Eε(ϕε)→ E0(ϕ) .

Here ϕ is a solution of problem (6), and w is the solution of (5) corresponding
to ϕ.

P r o o f. Let ϕ ∈ Φ be any fixed element. Then for every ε

(9) Eε(ϕε) ≤ Eε(ϕ) .

Let us show that the solutions w(ϕ) ≡ wε(ϕ) of the variational inequality (1)
corresponding to ϕ have H1 norms bounded uniformly in ε. This means, in par-
ticular, the boundedness of the right-hand side of (9). The variational inequality

wε(ϕ) ∈ K2, ∂Πϕ
ε (wε(ϕ))(w − wε(ϕ)) ≥ 0 ∀w ∈ K2 ,

is equivalent to
Πϕ
ε (wε(ϕ)) ≤ Πϕ

ε (w) ∀w ∈ K2 .

Hence, for all ε,

ε

2
‖∆wε(ϕ)‖2 +

1
2

‖∇wε(ϕ)‖2∫
0

ϕ(s) ds− (f, wε(ϕ)) ≤ c ,

and thus
‖∇wε(ϕ)‖2 ≤ α

with α independent of ε
Therefore, Eε(ϕ) is bounded uniformly in ε, and then from (9) it follows that

‖ϕε‖1 ≤ c .
Passing to a subsequence if necessary, we may assume that ϕε → ϕ weakly in
H1(0,∞). Then from the inequality

(10) wε(ϕε) ∈ K2 , ∂Πϕε
ε (wε(ϕε))(w − wε(ϕε)) ≥ 0 ∀w ∈ K2

we get an estimate for wε(ϕε). Indeed, (10) is equivalent to

(11) Πϕε
ε (wε(ϕε)) ≤ Πϕε

ε (w) ∀w ∈ K2 .
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So
ε‖∆wε(ϕε)‖2 + ‖∇wε(ϕε)‖ ≤

√
α

with some constant α independent of ε. Taking a subsequence if necessary we
may assume that, as ε→ 0,

wε(ϕε)→ w weakly in H1
0 (Ω), w ∈ K1 ,

εwε(ϕε)→ 0 weakly in H2,0(Ω) .

Assume additionally that ϕε → ϕ uniformly in [0, α]. From (11) it follows that

1
2

‖∇wε(ϕε)‖2∫
0

ϕε(s) ds− (f, wε(ϕε)) ≤ Πϕε
ε (w) .

Letting ε→ 0 with fixed w ∈ K2 we have

(12)
1
2

‖∇w‖2∫
0

ϕ(s) ds− (f, w) ≤ Πϕ
0 (w) .

By Lemma 2, we conclude that (12) is satisfied for every w ∈ K1. Therefore,

ϕ(‖∇w‖2)(∇w,∇w −∇w) ≥ (f, w − w) ∀w ∈ K1 .

This means that w = w(ϕ) and, consequently,

(13) lim inf Eε(ϕε) ≥ E0(ϕ) .

On the other hand, for any fixed ϕ ∈ Φ, and possibly for a subsequence, Eε(ϕ)→
E0(ϕ). Indeed, from the variational inequality

(14) wε(ϕ) ∈ K2, ∂Πϕ
ε (wε(ϕ))(w − wε(ϕ)) ≥ 0 ∀w ∈ K2

we get
ε‖∆wε(ϕ))‖2 + ‖∇wε(ϕ))‖ ≤ c

uniformly in ε. Taking a subsequence if necessary, we may assume

wε(ϕ)→ w̃ weakly in H1
0 (Ω), strongly in L2(Ω) ,

εwε(ϕ)→ 0 weakly in H2,0(Ω) .

Let ε→ 0 in (14), as in (10), to obtain

w̃ ∈ K1, ϕ(‖∇w̃‖2)(∇w̃,∇w −∇w̃) ≥ (f, w − w̃) ∀w ∈ K1 .

It follows that w̃ = w(ϕ), so that

Eε(ϕ) ≡ ‖wε(ϕ)− w0‖+ ‖ϕ‖1 → E0(ϕ) .

If now ϕ̃ is a solution of the optimal control problem (6), we have

Eε(ϕε) ≤ Eε(ϕ̃) .

Therefore
lim supEε(ϕε) ≤ E0(ϕ̃) .

Together with (13), this concludes the proof.



OPTIMAL CONTROL PROBLEM 231

References

[1] V. Barbu, Optimal Control of Variational Inequalities, Res. Notes in Math. 100, Pitman,
1984.

[2] E. I. Gr igo lyuk and G. M. Kul ikow, On a simplified method of solution of nonlinear
problems in elastic plate and shell theory , in: Some Applied Problems of Plate and Shell
Theory, Moscow University, 1981, 94–121 (in Russian).

[3] A. M. Khludnev, A boundary-value problem for a system of equations with a monotone
operator , Differentsial’nye Uravneniya 16 (10) (1980), 1843–1849 (in Russian).

[4] —, On limit passages in optimal control problems for a fourth-order operator , ibid. 25 (8)
(1989), 1427–1435 (in Russian).

[5] J.-L. L ions and E. Magenes, Non-homogeneous Boundary Value Problems and Applica-
tions, Springer, 1972.

[6] S. I. Pokhozhaev, On a class of quasilinear hyperbolic equations, Mat. Sb. 96 (1) (1975),
152–166 (in Russian).

[7] —, On a quasilinear hyperbolic Kirchhoff equation, Differentsial’nye Uravneniya 21 (1)
(1985), 101–108 (in Russian).


