ASYMPTOTIC EXPANSION OF THE HEAT KERNEL FOR A CLASS OF HYPOELLIPTIC OPERATORS

ALEXANDER LOPATNIKOV

Space Research Institute, Russian Academy of Sciences
Profsoyuznaya 84/32, Moscow, 117810 Russia

Introduction. Let M be a smooth compact manifold without boundary, let $d x$ be a fixed positive smooth density on M, and let X_{1}, \ldots, X_{l} be smooth real vector fields on M, i.e. in a local coordinate system, $X_{j}=\sum_{i=1}^{n} a_{j}^{i} \partial_{x_{i}}$. We will consider operators A of the form (m is even)

$$
\begin{equation*}
(-1)^{m / 2} \sum_{j=1}^{l} X_{j}^{m}+\sum_{|\alpha|<m} a_{\alpha}(x) X^{\alpha} \tag{1}
\end{equation*}
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right), X^{\alpha}=X_{\alpha_{1}} \ldots X_{\alpha_{k}},|\alpha|=k$ and the a_{α} are smooth functions. The well-known example is the sum of the squares of vector fields,

$$
\begin{equation*}
-\sum_{j=1}^{l} X_{j}^{2}+X_{0}+c(x) \tag{2}
\end{equation*}
$$

A result of Hörmander [7,14] states that this operator is hypoelliptic if the vector fields X_{1}, \ldots, X_{l} and all their commutators $\left[X_{i_{1}},\left[X_{i_{2}} \ldots\left[X_{i_{s-1}}, X_{i_{s}}\right] \ldots\right], s \leq r\right.$, up to length r span the tangent space to M at each point. We recall that an operator A is said to be hypoelliptic on M if for any open set $U \subset M$ and distributions u, f on U satisfying $A u=f, f \in C^{\infty}(U)$ implies $u \in C^{\infty}(U)$. In [17] for the operator (2) it was shown (with $m=2$) that

$$
\|u\|_{m / r} \leq C\left(\|A u\|_{0}+\|u\|_{0}\right)
$$

for all $u \in C^{\infty}(M)$, where $\|\cdot\|_{s}$ denotes the norm in the usual Sobolev space $H_{s}(M)$. For the operator (1) this estimate and hypoellipticity were proved in [6, 16].

We assume that the operator (1) is formally selfadjoint and positive, that is, $(A u, v)=(u, A v)$ and $(A u, u) \geq 0$ for all $u, v \in C^{\infty}(M)$. It is easy to show that
under our assumption A is an unbounded selfadjoint operator on the domain $D_{A}=\left\{u \in H_{m / r}(M): A u \in L_{2}(M)\right\}$ and has discrete spectrum $\lambda_{j} \rightarrow \infty$. Let $U(x, y, t)$ be the kernel of the operator $\exp (-t A)$,

$$
U(x, y, t)=\sum_{j=1}^{\infty} e^{-\lambda_{j} t} \varphi_{j}(x) \varphi_{j}(y)
$$

Here $\varphi_{j}(x)$ is a complete orthonormal set of eigenfunctions of A with eigenvalues $\left\{\lambda_{j}\right\} . U(x, y, t)$ is a fundamental solution for the operator $L=\partial_{t}+A$ and so it is called the heat kernel for L.

We denote by $V_{k}(x)$ the subspace of $T_{x}(M)$ spanned by X_{1}, \ldots, X_{l} and all their commutators of length $\leq k$ and let $\nu_{k}(x)=\operatorname{dim} V_{k}(x)\left(\nu_{0}=0\right)$. We say that Hörmander's condition (of order r) holds if

$$
\nu_{r}(x)=\operatorname{dim} M=n \quad \text { for all } x \in M
$$

We will also use the condition introduced by Métivier [13]:

$$
\nu_{k}(x)=\nu_{k}=\text { const }, \quad 1 \leq k \leq r, \text { for all } x \in M
$$

Our main results are the following.
Theorem 1. If Hörmander's condition holds then the heat kernel for the operator (1) has the following asymptotic expansion as $t \rightarrow+0$:

$$
\begin{equation*}
U(x, x, t)=\sum_{j=-q(x)}^{\infty} c_{j}(x) t^{j / m}+\sum_{j=0}^{\infty} d_{j}(x) t^{j / m} \ln (t) \tag{3}
\end{equation*}
$$

where $q(x)=\sum_{k=1}^{r}\left(\nu_{k}(x)-\nu_{k-1}(x)\right) k$, and $c_{j}(x), d_{j}(x)$ are some functions on M.
We remark that in general this expansion is not uniform in $x \in M$ and the functions c_{j}, d_{j} are not continuous.

Theorem 2. In the Métivier case the asymptotics in Theorem 1 is uniform in $x \in M, c_{j}(x), d_{j}(x) \in C^{\infty}(M)$, and as $t \rightarrow+0$,

$$
\begin{equation*}
\operatorname{tr} \exp (-t A)=\sum_{j=-q}^{\infty} c_{j} t^{j / m}+\sum_{j=0}^{\infty} d_{j} t^{j / m} \ln (t) \tag{4}
\end{equation*}
$$

where $q=\sum_{k=1}^{r}\left(\nu_{k}-\nu_{k-1}\right) k$.
It is also possible to find the leading coefficient $c_{-q(x)}(x)$ explicitly (see below). For elliptic operators this result is well known; in this case $q=\operatorname{dim} M$ and in addition all $d_{j}=0$. For the operator (2) our results were obtained independently by G. Ben Arous [2, 3], who used probabilistic methods. Formula (4) was also proved in [19] for $r=2$, and related results were obtained in [1, 18]. D. Jerison and A. Sánchez-Calle $[8,9,15]$ estimated the kernel $U(x, y, t)$ in terms of the metric associated with the operator A. From the asymptotics of the heat kernel it is easy to find the first term of the asymptotics of the spectral function of A [10-12] (for second order operators in the Métivier case this was done by a different method
by G. Métivier [13]). To prove Theorems 1, 2 we use the method developed in [3, $7,8]$.

1. Dilations and homogeneity. In this section we recall some definitions and propositions connected with homogeneous structures (see [4, 5, 15, 17] for details). Let e_{1}, \ldots, e_{n} be a basis in \mathbb{R}^{n} and let $0=\nu_{0}<\nu_{1}<\ldots<\nu_{r}$ be integers. We write $[j]=k$ if $\nu_{k-1}<j \leq \nu_{k}$. We define a group of linear automorphisms δ_{s} of \mathbb{R}^{n} by

$$
\delta_{s}\left(e_{j}\right)=s^{[j]} e_{j}, \quad 1 \leq j \leq n
$$

We also consider a homogeneous norm $\|\cdot\|$ with respect to δ_{s} such that

$$
\|u\|=0 \Leftrightarrow u=0, \quad\left\|\delta_{s}(u)\right\|=s\|u\|
$$

For example we can take $\|u\|=\left(\sum_{j=1}^{n}\left|u_{j}\right|^{2 /[j]}\right)^{1 / 2}$. This norm satisfies the following inequalities:

$$
\|u+v\| \leq C(\|u\|+\|v\|), \quad C_{1}|u| \leq\|u\| \leq C_{2}|u| \quad \text { for }|u| \leq C
$$

where $|\cdot|$ is the usual euclidean norm in \mathbb{R}^{n}. The number $q=\sum_{k=1}^{r}\left(\nu_{k}-\nu_{k-1}\right) k$ is called the homogeneous dimension of the space. It is easy to see that $\mathbb{R}^{n}=$ $\bigoplus_{k=1}^{r} V_{k}, V_{k}$ is spanned by the vectors e_{j} for $[j]=k$, and $q=\sum_{k=1}^{r} k \operatorname{dim} V_{k}$.

A function f is homogeneous of degree λ if $f \circ \delta_{s}=s^{\lambda} f$ for all $s>0$. A distribution v is homogeneous of degree λ if $\left\langle v, \varphi \circ \delta_{s}\right\rangle=s^{Q-\lambda}\langle v, \varphi\rangle$. A function $k(u)$ is said to be a kernel of type λ if it is smooth away from the origin and homogeneous of degree $-Q+\lambda$. A differential operator T is homogeneous of degree λ if $T\left(f \circ \delta_{s}\right)=s^{\lambda}(T f) \circ \delta_{s}$ for all $s>0$. For example, the function $u^{\alpha}=$ $u_{1}^{\alpha_{1}} \ldots u_{n}^{\alpha_{n}}$ is homogeneous of degree $[\alpha]=\sum_{j=1}^{n} \alpha_{j}[j]$, the operator $u^{\alpha} \partial / \partial u_{j}$ is homogeneous of degree $[j]-[\alpha]$. Let U be a neighborhood of the origin in \mathbb{R}^{n}. We define the function space

$$
C_{m}^{\infty}(U)=\left\{f(u) \in C^{\infty}(U):|f(u)|=O\left(\|u\|^{m}\right), u \rightarrow 0\right\}
$$

A differential operator $T=\sum_{|\alpha| \leq k} a_{\alpha}(u) \partial_{u}^{\alpha}$ from $C^{\infty}(U)$ to $C^{\infty}(U)$ is said to have degree at most p at 0 whenever $T\left(C_{m}^{\infty}(U)\right) \subset C_{m-p}^{\infty}(U)$ for all $m \in \mathbb{N}$. For such an operator it is possible to define an operator \widehat{T},

$$
\widehat{T}=\sum_{|\alpha| \leq k} \sum_{[\beta] \leq[\alpha]-p}\left(\partial_{u}^{\beta} a_{\alpha}(0) u^{\beta} / \beta!\right) \partial_{u}^{\alpha}
$$

which is homogeneous of degree p. The operator $T-\widehat{T}$ has degree at most $p-1$ at 0 .

Let \mathfrak{g} be a free nilpotent Lie algebra of step r with l generators, $\mathfrak{g}=\bigoplus_{k=1}^{r} \mathfrak{g}_{k}$, and $\left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right]=\mathfrak{g}_{i+j}$ if $i+j \leq r,\left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right]=0$ if $i+j>r$. Using the exponential mapping we can identify \mathfrak{g} and the corresponding Lie group G; the group multiplication in \mathfrak{g} will be given by the Campbell-Hausdorff formula

$$
u \cdot v=u+v+[u, v]+\ldots, \quad u, v \in \mathfrak{g}
$$

Following [15] we now define a function class $F_{\lambda}: k \in F_{\lambda}$ if
(i) $k \in C^{\infty}(\mathfrak{g} \backslash 0), k(u)=0$ for $\|u\|>1$,
(ii) $|P k(u)| \leq C_{s}\left(1+\|u\|^{\lambda-Q-s}\right)$, for all left-invariant differential operators P homogeneous of degree s.

We will also use another class $H F_{\lambda}$. A function k is in $H F_{\lambda}$ if $k \in F_{\lambda}$ and
(i) if $\lambda<Q$ then $k(u)=\widehat{k}(u)+g(u)$, where $\widehat{k}(u)$ is a kernel of type $\lambda, g(u) \in$ $C^{\infty}(\mathfrak{g})$,
(ii) if $\lambda \geq Q$ then (i) holds for the function $P k$ for all left-invariant differential operators P of degree $s, \lambda-s<Q$.

Lemma 1. 1) If k is a kernel of type $\lambda, \varphi \in C_{0}^{\infty}(\mathfrak{g})$ and $\varphi(u)=1$ for $\|u\| \leq 1 / 2$, then $\varphi k \in H F_{\lambda}$ and $P \varphi k \in H F_{\lambda-s}$ for P homogeneous of degree s.
2) If $k \in H F_{\alpha}, h$ is a kernel of type $\beta, 0<\beta<Q, \alpha>0$ and $\varphi \in C_{0}^{\infty}(\mathfrak{g})$ with $\varphi(u)=1$ for $\|u\| \leq 1 / 2$ then $\varphi(k * h) \in H F_{\alpha+\beta}$.

Proof. We have $\varphi k=\widehat{k}+g$ with $\widehat{k}=k$ and $g=(1-\varphi) k(u) \in C^{\infty}(\mathfrak{g})$ since $k(u)$ is a kernel of type λ, so $\varphi k \in H F_{\lambda}$. For $P \varphi k$ we observe that since $\varphi=1$ in a neighborhood of the origin, $P \varphi k-\varphi P k \in C_{0}^{\infty}$; since $P k$ is a kernel of type $\lambda-s$, we have $P \varphi k \in H F_{\lambda}$ and 1) is proved.

For 2) we observe that if $\alpha+\beta<Q$ then by definition $k(u)=\widehat{k}(u)+g(u)$, so $k * h(u)=\int k(v) h\left(v^{-1} u\right) d v=\int \widehat{k}(v) h\left(v^{-1} u\right) d v+\int g(v) h\left(v^{-1} u\right) d v=I_{1}+I_{2}$. I_{1} is a kernel of type $\alpha+\beta$ by the result of Folland [4], $I_{2}(u)$ is a smooth function, and using the same arguments as in Lemma 3 of [15] one can see that $g=I_{2}$ satisfies the required estimate. In the case $\alpha+\beta \geq Q$ we have $P(k * h)=(P k) * h$, $P k$ is a kernel of type $\lambda-s$, and $\lambda-s+\beta<Q$, so as was shown before $\varphi P(k * h) \in$ $H F_{\alpha+\beta-s}$ and by definition $k * h \in H F_{\alpha+\beta}$.

We say that a function k is in $S F_{\lambda}$ if for any $s \in \mathbb{N}$ with $s>\lambda$,

$$
k(u)=\sum_{j=0}^{s} k_{j}(u)+q_{s}(u),
$$

where $k_{j} \in H F_{\lambda+j}$ and $q_{s} \in F_{s}(\mathfrak{g})$.
2. Lifting of vector fields. Let $L(M)$ be the Lie algebra of smooth real vector fields on M. There exists a partial homomorphism $\mu: \mathfrak{g} \rightarrow L(M)$, that is, μ is linear and for all $a \in \mathfrak{g}_{i}, b \in \mathfrak{g}_{j}$ we have $\mu([a, b])=[\mu(a), \mu(b)]$ if $i+j \leq r$. Write $\mu_{x}(a)=\left.\mu(a)\right|_{x}, x \in M$.

We now define

$$
H_{k}(x)=\left\{a \in \mathfrak{g}_{k}: \mu_{x}(a) \in V_{k-1}(x)\right\}, \quad 1 \leq k \leq r, \quad H(x)=\bigoplus_{k=1}^{r} H_{k}(x) .
$$

We select $S_{k}(x)$ such that $\mathfrak{g}_{k}=H_{k}(x) \oplus S_{k}(x)$, and set $S(x)=\bigoplus_{k=1}^{r} S_{k}(x)$. As was shown in [5], $H(x)$ is a subalgebra in $\mathfrak{g}, \operatorname{dim} S_{k}(x)=\nu_{k}(x)-\nu_{k-1}(x)$ and
$\operatorname{dim} S(x)=\operatorname{dim} M$. Obviously $q(x)$ is the homogeneous dimension of $S(x)$, and $q(x)+\beta(x)=Q$, where $\beta(x)$ is the homogeneous dimension of $H(x)$.

We now change the local coordinate system in a neighborhood of $x \in M$ so that in the new coordinates the vector fields X_{1}, \ldots, X_{l} have degree at most one. It is easy to see that $S(x)=\mathfrak{g} / H(x)$; let γ be a projection from \mathfrak{g} to $S(x)$. The essential result in this situation is

Theorem 3 (Helffer-Nourrigat [5]). For any $x \in M$ there exists a diffeomorphism $\Theta_{x}: U \rightarrow \omega$, where U is a neighborhood of 0 in $S(x)$ and ω is a neighborhood of x in M, so that if $\mu(a)=X$ then

1) $\quad\left(\widehat{\Theta_{x}^{-1}}\right)_{*} X=\widehat{X}, \quad \widehat{X} f(u)=\left.\frac{d}{d t}\right|_{t=0} f(\gamma(u \cdot t a))$;
2) $\left(\Theta_{x}(0)\right)_{*}(0)=\left.\mu_{x}\right|_{S(x)}$.

In the Métivier case Θ_{x} is smooth in $x \in M$.
We introduce coordinates (u, v) in \mathfrak{g} so that $u \in S(x), v \in H(x)$. If $\mu(a)=$ $X_{i}(1 \leq i \leq l)$ we define a left-invariant vector field Y_{i} on \mathfrak{g} by $Y_{i} f(u, v)=$ $\left.(d / d t)\right|_{t=0} f((u, v) \cdot t a)$. Consequently,

$$
Y_{i}(f \cdot \gamma)=\left.\frac{d}{d t}\right|_{t=0} f(\gamma((u, v)) \circ t a)=\left(\widehat{X}_{i} f\right) \circ \gamma
$$

Let $R_{i}=X_{i}-\widehat{X}_{i}, 1 \leq i \leq l$. By Theorem 3 the vector fields R_{i} have degree at most 0 at 0 . If we now define $\widetilde{X}_{i}=Y_{i}+R_{i}$ then we obtain

Lemma 2. $\widetilde{X}_{i}(f \circ \gamma)=\left(X_{i} f\right) \circ \gamma$ for $1 \leq i \leq l$.
3. Construction of the fundamental solution. We will consider two differential operators connected with L :

$$
\widetilde{L}=(-1)^{m / 2} \sum_{j=1}^{l} \widetilde{X}_{j}^{m}+\sum_{|\alpha|<m} a_{\alpha}(x) \widetilde{X}^{\alpha}+\frac{\partial}{\partial t}, \quad \widehat{L}=(-1)^{m / 2} \sum_{j=1}^{l} Y_{j}^{m}+\frac{\partial}{\partial t}
$$

Lemma 3. The operator \widehat{L} is hypoelliptic.
Proof. For $m=2$ this follows directly from Hörmander's theorem. In the case $m>2$ it can be shown by using a criterion of hypoellipticity by Helffer-Nourrigat [6] (see also [12]).

On $\mathfrak{g}^{\prime}=\mathfrak{g} \times \mathbb{R}^{1}$ we define dilations by $\delta_{s}(\xi, t)=\left(\delta_{s}(\xi), s^{m} t\right), \xi \in \mathfrak{g}^{\prime}, t \in \mathbb{R}^{1}$. Then $Q^{\prime}=Q+m$ is the homogeneous dimension of \mathfrak{g}^{\prime}. For \mathfrak{g}^{\prime} we can define the spaces $F_{\lambda}, H F_{\lambda}, S F_{\lambda}$ as in the previous section. It is clear that Lemma 1 is true in this situation. The operator \widehat{L} is homogeneous on \mathfrak{g}^{\prime} of degree m. By a result of G. B. Folland [4] we can find a kernel $k(\xi, t)$ of type m which is a fundamental
solution for \widehat{L}, that is,

$$
\begin{equation*}
\widehat{L} k=\delta(\xi, t) \tag{5}
\end{equation*}
$$

in the sense of distributions, where δ is the delta distribution on \mathfrak{g}^{\prime}.
We denote by U, U_{1} neighborhoods of the origin in $S(x)$, and by V, V_{1} neighborhoods of the origin in $H(x)$ which are sufficiently small and satisfy $U \Subset U_{1}$, $V \Subset V_{1}$. Let $\varphi \in C_{0}^{\infty}\left(U_{1}\right), \varphi=1$ on $U, \psi \in C_{0}^{\infty}\left(V_{1}\right), \psi=1$ on V, and $\varrho(t) \in C_{0}^{\infty}(-2,2), \varrho(t)=1$ for $|t|<1$. We now define

$$
k_{0}(\xi, t)=\varphi \psi \varrho k(\xi, t)
$$

From the definitions of the operators \widehat{L} and \widetilde{L} we see that

$$
\widetilde{L}=\widehat{L}+R
$$

where R has degree at most $m-1$. Consequently, for any $s \in \mathbb{N}$, the operator \widetilde{L} can be written in the form

$$
\widetilde{L}=\widehat{L}+\sum_{i=1}^{s} R_{i}+Q_{s}
$$

where the R_{i} are homogeneous operators of degree $m-i$ and Q_{s} has degree at most $m-s-1$ at 0 . Using (5) and Lemma 1 we obtain

$$
\begin{equation*}
\widetilde{L} k_{0}(\xi, t)=\varphi \psi \varrho \cdot \delta+\sum_{i=1}^{s} \varphi \psi \varrho k r_{i}+q_{s} \tag{6}
\end{equation*}
$$

for $\xi \in U_{1} \times V_{1}, t \in(-2,2)$, where $r_{i} \in H F_{i}, q_{s} \in F_{s+1}$.
Lemma 4. Given $s \in \mathbb{N}$ there exists a function $K_{s}(\xi, t) \in S F_{m}$ such that

$$
\widetilde{L} K_{s}=\varphi \psi \varrho \cdot \delta+H_{s}, \quad H_{s} \in S F_{s}
$$

Proof. We use induction on s. For $s=0$ we set $K_{0}(\xi, t)=k_{0}(\xi, t)$, and the statement of the lemma follows from (6). Assume that it is true for $s-1$; then we have

$$
\widetilde{L} K_{s-1}=\varphi \psi \varrho \cdot \delta+H_{s-1}, \quad H_{s-1} \in S F_{s-1} .
$$

We now define $K_{s}(\xi, t)$ by $K_{s}=K_{s-1}-a(\xi, t) k_{0} * H_{s-1}$, where $a(\xi, t) \in C_{0}^{\infty}\left(\mathfrak{g}^{\prime}\right)$, $\operatorname{supp} a \subset U_{1} \times V_{1} \times(-2,2)$ and $a \equiv 1$ in $\operatorname{supp} H_{s-1}$. We have

$$
\widetilde{L} K_{s}=\varphi \psi \varrho \cdot \delta+H_{s-1}-a H_{s-1}+H_{s}
$$

where $H_{s}=a(\xi, t) \widehat{L} k_{0} * H_{s-1}-\widetilde{L}\left(a(\xi, t) k_{0} * H_{s-1}\right)$. By Lemma 1 it is clear that $K_{s}(\xi, t) \in S F_{m}, H_{s} \in S F_{s}$ and the proof is finished.

By Sobolev's embedding theorem for any $p \in \mathbb{N}$ there exists s so that $S F_{\lambda} \subset$ $C^{p}(\mathfrak{g})$. From this fact and the previous lemma

$$
\widetilde{L} K_{s}=\varphi \psi \varrho \cdot \delta+H_{s}, \quad H_{s} \in C^{s}(\mathfrak{g})
$$

We now want to construct a fundamental solution for the original operator L. Set

$$
p_{s}(u, t)=\int K_{s}(u, v, t) d v, \quad h_{s}(u, t)=\int H_{s}(u, v, t) d v .
$$

Lemma 5. $L p_{s}=\varphi \varrho \cdot \delta+h_{s}$.
Proof. Let $R=L-\widetilde{L}$. Then

$$
L p_{s}=\varphi \varrho \cdot \delta+h_{s}-\int R K_{s} d v+\int R H_{s} d v
$$

The operator R is selfadjoint and acts only in the v variables so it is easy to see that $\int R K_{s} d v=0$ and $\int R H_{s} d v=0$, and the lemma is proved.

Using the second property of the map Θ from Theorem 3 one can show that in the original coordinate system (y) in some small neighborhood ω of the point $x \in M$,

$$
L v(x) p_{s}=\delta+h_{s}
$$

where $v(x)=\left|\operatorname{det}\left(\left.\mu_{x}\right|_{S(x)}\right)\right|$. This formula and Lemma 5 imply that

$$
\begin{equation*}
U(x, x, t)=v(x) p_{s}(0, t)+g(t), \tag{7}
\end{equation*}
$$

where $g(t) \in C^{s}(\omega \times(-1,1))$. By construction,

$$
p_{s}(0, t)=\sum_{j=1}^{s} \int k_{j}(0, v, t) d v+\ldots
$$

If $k_{j} \in H F_{\lambda}$ for $\lambda<\beta(x)$ then by definition of this class

$$
\int k_{j}(0, v, t) d v=\int \widehat{k}_{j}(0, v, t) d v+\int g_{j}(0, v, t) d v
$$

Consequently, $p_{j}(0, t)=\widehat{p}_{s}(0, t)+g(t)$, where $\widehat{p}_{s}(0, t)$ is homogeneous of degree $\lambda-\beta(x)$ and $g \in C^{\infty}(-1,1)$.

If $\lambda>\beta(x)$ then we have

$$
\partial_{t}^{a} p_{j}(0, t)=\int \partial_{t}^{a} k_{j}(0, v, t) d v+\int \partial_{t}^{a} c(0, v, t) d v=\widehat{p}_{j}(0, t)+g(t)
$$

The function $\widehat{p}_{j}(0, t)$ is homogeneous of degree $(j-Q) / m-a$. If $(j-Q) / m-a \notin \mathbb{Z}$ then $\widehat{p}_{j}=c_{j} t^{(j-Q) / m-a}$, and after integrating over t we obtain

$$
\begin{equation*}
p_{j}(0, t)=c_{j} t^{(j-Q) / m}+g(t) \tag{8}
\end{equation*}
$$

$g \in C^{\infty}(-1,1)$. If $(j-Q) / m-a \in \mathbb{Z}$ then $\widehat{p}_{j}=c_{j} t^{-1}$ and so in this case

$$
\begin{equation*}
p_{j}(0, t)=c_{j} t^{(j-Q) / m} \ln (t)+d_{j} t^{(j-Q) / m}+g(t) \tag{9}
\end{equation*}
$$

$g \in C^{\infty}(-1,1)$. From (7)-(9) it follows that for any $s \in \mathbb{N}$

$$
\left|U(x, x, t)-\sum_{j=-q(x)}^{s} c_{j}(x) t^{j / m}-\sum_{j=0}^{s} d_{j}(x) t^{j / m} \ln (t)\right|<C_{s} t^{(s+1) / m}
$$

and the proof of Theorem 1 is finished.
From the proof of Theorem 1 one can find the leading coefficient $c_{-q(x)}$ explicitly. It is clear that

$$
c_{-q(x)}=v(x) \cdot \int k(0, v, 1) d v
$$

where $v(x)=\left|\operatorname{det}\left(\left.\mu_{x}\right|_{S(x)}\right)\right|$ and $k(u, v, t)$ is a fundamental solution for the operator \widehat{L}.

For the proof of Theorem 2 we observe that in the Métivier case Θ_{x} is smooth in $x \in M$ and so the asymptotic formula of Theorem 1 is uniform in x. Consequently, to obtain the statement of Theorem 2 we just integrate this formula over the manifold M.

References

[1] R. Beals and N. Stanton, The heat equation for the $\bar{\partial}$-Neumann problem I, Comm. Partial Differential Equations 12 (4) (1987), 407-413.
[2] G. Ben Arous, Noyau de la chaleur hypoelliptique et géométrie sous-riemannienne, in: Lecture Notes in Math. 1322, Springer, 1988, 1-16.
[3] -, Développement asymptotique du noyau de la chaleur hypoelliptique sur la diagonale, Ann. Inst. Fourier (Grenoble) 39 (1) (1989), 73-99.
[4] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207.
[5] B. Helffer et J. Nourrigat, Approximation d'un système de champs de vecteurs et applications à l'hypoellipticité, ibid. 17 (2) (1979), 237-254.
[6] -, —, Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs, Progr. Math. 58, Birkhäuser, 1985.
[7] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171.
[8] D. Jerison and A. Sánchez-Calle, Estimates for the heat kernel for a sum of squares of vector fields, Indiana Univ. Math. J. 35 (4) (1986), 835-854.
[9] -, —, Subelliptic second order differential operators, in: Lecture Notes in Math. 1287, Springer, 1988, 46-77.
[10] A. M. Lopatnikov, Asymptotic behaviour of the spectral function for operators constructed from vector fields, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1987 (3), 76-78 (Moscow Univ. Math. Bull. 42 (3) (1987), 70-72).
[11] -, Asymptotic behaviour of the spectral function for a class of hypoelliptic operators, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1988 (1), 92-94.
[12] -, Spectral asymptotics for a class of hypoelliptic operators, manuscript, Moscow 1987, 94 pp., VINITI no. 2530 B87.
[13] G. Métivier, Fonction spéctrale et valeurs propres d'une classe d'opérateurs non elliptiques, Comm. Partial Differential Equations 1 (5) (1976), 467-519.
[14] O. Oleı̆nik and E. Radkevich, Second Order Equations with Nonnegative Characteristic Form, Amer. Math. Soc., Providence, R.I., 1973.
[15] A. Sánchez-Calle, Fundamental solutions and geometry of the sum of squares of vector fields, Invent. Math. 78 (1984), 143-160.
[16] L. P. Rothschild, A criterion for hypoellipticity of operators constructed from vector fields, Comm. Partial Differential Equations 4 (1989), 645-699.
[17] L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent Lie groups, Acta Math. 137 (3-4) (1976), 247-320.
[18] M. Taylor, Noncommutative microlocal analysis, Mem. Amer. Math. Soc. 313 (1984).
[19] T. Taylor, A parametrix for step two hypoelliptic diffusion equations, Trans. Amer. Math. Soc. 296 (1) (1986), 191-215.
[20] N. T. Varopoulos, Analysis on Lie groups, J. Funct. Anal. 76 (1988), 346-410.

