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Introduction. Let M be a smooth compact manifold without boundary, let
dx be a fixed positive smooth density on M , and let X1, . . . , Xl be smooth real
vector fields on M , i.e. in a local coordinate system, Xj =

∑n
i=1 a

i
j∂xi

. We will
consider operators A of the form (m is even)

(1) (−1)m/2
l∑

j=1

Xm
j +

∑
|α|<m

aα(x)Xα

where α = (α1, . . . , αk), Xα = Xα1 . . . Xαk
, |α| = k and the aα are smooth

functions. The well-known example is the sum of the squares of vector fields,

(2) −
l∑

j=1

X2
j +X0 + c(x) .

A result of Hörmander [7, 14] states that this operator is hypoelliptic if the vector
fields X1, . . . , Xl and all their commutators [Xi1 , [Xi2 . . . [Xis−1 , Xis ] . . .], s≤r, up
to length r span the tangent space to M at each point. We recall that an operator
A is said to be hypoelliptic on M if for any open set U ⊂M and distributions u, f
on U satisfying Au = f , f ∈ C∞(U) implies u ∈ C∞(U). In [17] for the operator
(2) it was shown (with m = 2) that

‖u‖m/r ≤ C(‖Au‖0 + ‖u‖0) ,

for all u ∈ C∞(M), where ‖ · ‖s denotes the norm in the usual Sobolev space
Hs(M). For the operator (1) this estimate and hypoellipticity were proved in [6,
16].

We assume that the operator (1) is formally selfadjoint and positive, that is,
(Au, v) = (u,Av) and (Au, u) ≥ 0 for all u, v ∈ C∞(M). It is easy to show that

[309]
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under our assumption A is an unbounded selfadjoint operator on the domain
DA = {u ∈ Hm/r(M) : Au ∈ L2(M)} and has discrete spectrum λj → ∞. Let
U(x, y, t) be the kernel of the operator exp(−tA),

U(x, y, t) =
∞∑
j=1

e−λjtϕj(x)ϕj(y) .

Here ϕj(x) is a complete orthonormal set of eigenfunctions of A with eigenvalues
{λj}. U(x, y, t) is a fundamental solution for the operator L = ∂t +A and so it is
called the heat kernel for L.

We denote by Vk(x) the subspace of Tx(M) spanned by X1, . . . , Xl and all
their commutators of length ≤ k and let νk(x)=dimVk(x) (ν0 = 0). We say that
Hörmander’s condition (of order r) holds if

νr(x) = dimM = n for all x ∈M .

We will also use the condition introduced by Métivier [13]:

νk(x) = νk = const , 1 ≤ k ≤ r, for all x ∈M .

Our main results are the following.

Theorem 1. If Hörmander’s condition holds then the heat kernel for the op-
erator (1) has the following asymptotic expansion as t→ +0 :

(3) U(x, x, t) =
∞∑

j=−q(x)

cj(x)tj/m +
∞∑
j=0

dj(x)tj/m ln(t)

where q(x) =
∑r
k=1(νk(x)−νk−1(x))k, and cj(x), dj(x) are some functions on M .

We remark that in general this expansion is not uniform in x ∈ M and the
functions cj , dj are not continuous.

Theorem 2. In the Métivier case the asymptotics in Theorem 1 is uniform
in x ∈M , cj(x), dj(x) ∈ C∞(M), and as t→ +0,

(4) tr exp(−tA) =
∞∑

j=−q
cjt

j/m +
∞∑
j=0

djt
j/m ln(t)

where q =
∑r
k=1(νk − νk−1)k.

It is also possible to find the leading coefficient c−q(x)(x) explicitly (see below).
For elliptic operators this result is well known; in this case q = dimM and in
addition all dj = 0. For the operator (2) our results were obtained independently
by G. Ben Arous [2, 3], who used probabilistic methods. Formula (4) was also
proved in [19] for r = 2, and related results were obtained in [1, 18]. D. Jerison and
A. Sánchez-Calle [8, 9, 15] estimated the kernel U(x, y, t) in terms of the metric
associated with the operator A. From the asymptotics of the heat kernel it is easy
to find the first term of the asymptotics of the spectral function of A [10–12] (for
second order operators in the Métivier case this was done by a different method
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by G. Métivier [13]). To prove Theorems 1, 2 we use the method developed in [3,
7, 8].

1. Dilations and homogeneity. In this section we recall some definitions
and propositions connected with homogeneous structures (see [4, 5, 15, 17] for
details). Let e1, . . . , en be a basis in Rn and let 0 = ν0 < ν1 < . . . < νr be integers.
We write [j] = k if νk−1 < j ≤ νk. We define a group of linear automorphisms δs
of Rn by

δs(ej) = s[j]ej , 1 ≤ j ≤ n .
We also consider a homogeneous norm ‖ · ‖ with respect to δs such that

‖u‖ = 0 ⇔ u = 0, ‖δs(u)‖ = s‖u‖ .

For example we can take ‖u‖ = (
∑n
j=1 |uj |2/[j])1/2. This norm satisfies the fol-

lowing inequalities:

‖u+ v‖ ≤ C(‖u‖+ ‖v‖), C1|u| ≤ ‖u‖ ≤ C2|u| for |u| ≤ C ,

where | · | is the usual euclidean norm in Rn. The number q =
∑r
k=1(νk − νk−1)k

is called the homogeneous dimension of the space. It is easy to see that Rn =⊕r
k=1 Vk, Vk is spanned by the vectors ej for [j] = k, and q =

∑r
k=1 k dimVk.

A function f is homogeneous of degree λ if f ◦ δs = sλf for all s > 0. A
distribution v is homogeneous of degree λ if 〈v, ϕ ◦ δs〉 = sQ−λ〈v, ϕ〉. A function
k(u) is said to be a kernel of type λ if it is smooth away from the origin and
homogeneous of degree −Q + λ. A differential operator T is homogeneous of
degree λ if T (f ◦ δs) = sλ(Tf) ◦ δs for all s > 0. For example, the function uα =
uα1

1 . . . uαn
n is homogeneous of degree [α] =

∑n
j=1 αj [j], the operator uα∂/∂uj is

homogeneous of degree [j]− [α]. Let U be a neighborhood of the origin in Rn. We
define the function space

C∞m (U) = {f(u) ∈ C∞(U) : |f(u)| = O(‖u‖m), u→ 0} .

A differential operator T =
∑
|α|≤k aα(u)∂αu from C∞(U) to C∞(U) is said to

have degree at most p at 0 whenever T (C∞m (U)) ⊂ C∞m−p(U) for all m ∈ N. For
such an operator it is possible to define an operator T̂ ,

T̂ =
∑
|α|≤k

∑
[β]≤[α]−p

(∂βuaα(0)uβ/β!)∂αu ,

which is homogeneous of degree p. The operator T − T̂ has degree at most p− 1
at 0.

Let g be a free nilpotent Lie algebra of step r with l generators, g =
⊕r

k=1 gk,
and [gi, gj ] = gi+j if i + j ≤ r, [gi, gj ] = 0 if i + j > r. Using the exponen-
tial mapping we can identify g and the corresponding Lie group G; the group
multiplication in g will be given by the Campbell–Hausdorff formula

u · v = u+ v + [u, v] + . . . , u, v ∈ g .
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Following [15] we now define a function class Fλ : k ∈ Fλ if

(i) k ∈ C∞(g \ 0), k(u) = 0 for ‖u‖ > 1,
(ii) |Pk(u)| ≤ Cs(1 +‖u‖λ−Q−s), for all left-invariant differential operators P

homogeneous of degree s.

We will also use another class HFλ. A function k is in HFλ if k ∈ Fλ and

(i) if λ < Q then k(u) = k̂(u) + g(u), where k̂(u) is a kernel of type λ, g(u) ∈
C∞(g),

(ii) if λ ≥ Q then (i) holds for the function Pk for all left-invariant differential
operators P of degree s, λ− s < Q.

Lemma 1. 1) If k is a kernel of type λ, ϕ ∈ C∞0 (g) and ϕ(u) = 1 for ‖u‖ ≤ 1/2,
then ϕk ∈ HFλ and Pϕk ∈ HFλ−s for P homogeneous of degree s.

2) If k ∈ HFα, h is a kernel of type β, 0 < β < Q,α > 0 and ϕ ∈ C∞0 (g) with
ϕ(u) = 1 for ‖u‖ ≤ 1/2 then ϕ(k ∗ h) ∈ HFα+β.

P r o o f. We have ϕk = k̂ + g with k̂ = k and g = (1− ϕ)k(u) ∈ C∞(g) since
k(u) is a kernel of type λ, so ϕk ∈ HFλ. For Pϕk we observe that since ϕ = 1
in a neighborhood of the origin, Pϕk − ϕPk ∈ C∞0 ; since Pk is a kernel of type
λ− s, we have Pϕk ∈ HFλ and 1) is proved.

For 2) we observe that if α+ β < Q then by definition k(u) = k̂(u) + g(u), so

k∗h(u) =
∫
k(v)h(v−1u) dv =

∫
k̂(v)h(v−1u) dv+

∫
g(v)h(v−1u) dv = I1+I2.

I1 is a kernel of type α+β by the result of Folland [4], I2(u) is a smooth function,
and using the same arguments as in Lemma 3 of [15] one can see that g = I2
satisfies the required estimate. In the case α+β ≥ Q we have P (k∗h) = (Pk)∗h,
Pk is a kernel of type λ−s, and λ−s+β < Q, so as was shown before ϕP (k∗h) ∈
HFα+β−s and by definition k ∗ h ∈ HFα+β .

We say that a function k is in SFλ if for any s ∈ N with s > λ,

k(u) =
s∑
j=0

kj(u) + qs(u) ,

where kj ∈ HFλ+j and qs ∈ Fs(g).

2. Lifting of vector fields. Let L(M) be the Lie algebra of smooth real
vector fields on M . There exists a partial homomorphism µ : g→ L(M), that is,
µ is linear and for all a ∈ gi, b ∈ gj we have µ([a, b]) = [µ(a), µ(b)] if i + j ≤ r.
Write µx(a) = µ(a)|x, x ∈M .

We now define

Hk(x) = {a ∈ gk : µx(a) ∈ Vk−1(x)}, 1 ≤ k ≤ r , H(x) =
r⊕

k=1

Hk(x) .

We select Sk(x) such that gk = Hk(x)⊕ Sk(x), and set S(x) =
⊕r

k=1 Sk(x). As
was shown in [5], H(x) is a subalgebra in g, dimSk(x) = νk(x) − νk−1(x) and
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dimS(x) = dimM . Obviously q(x) is the homogeneous dimension of S(x), and
q(x) + β(x) = Q, where β(x) is the homogeneous dimension of H(x).

We now change the local coordinate system in a neighborhood of x ∈ M so
that in the new coordinates the vector fields X1, . . . , Xl have degree at most one.
It is easy to see that S(x) = g/H(x); let γ be a projection from g to S(x). The
essential result in this situation is

Theorem 3 (Helffer–Nourrigat [5]). For any x ∈ M there exists a diffeo-
morphism Θx : U → ω, where U is a neighborhood of 0 in S(x) and ω is a
neighborhood of x in M , so that if µ(a) = X then

1) (Θ̂−1
x )∗X = X̂, X̂f(u) =

d

dt

∣∣∣∣
t=0

f(γ(u · ta));

2) (Θx(0))∗(0) = µx|S(x).

In the Métivier case Θx is smooth in x ∈M .

We introduce coordinates (u, v) in g so that u ∈ S(x), v ∈ H(x). If µ(a) =
Xi (1 ≤ i ≤ l) we define a left-invariant vector field Yi on g by Yif(u, v) =
(d/dt)|t=0f((u, v) · ta). Consequently,

Yi(f · γ) =
d

dt

∣∣∣∣
t=0

f(γ((u, v)) ◦ ta) = (X̂if) ◦ γ .

Let Ri = Xi − X̂i, 1 ≤ i ≤ l. By Theorem 3 the vector fields Ri have degree at
most 0 at 0. If we now define X̃i = Yi +Ri then we obtain

Lemma 2. X̃i(f ◦ γ) = (Xif) ◦ γ for 1 ≤ i ≤ l.

3. Construction of the fundamental solution. We will consider two dif-
ferential operators connected with L:

L̃ = (−1)m/2
l∑

j=1

X̃m
j +

∑
|α|<m

aα(x)X̃α +
∂

∂t
, L̂ = (−1)m/2

l∑
j=1

Y mj +
∂

∂t
.

Lemma 3. The operator L̂ is hypoelliptic.

P r o o f. For m=2 this follows directly from Hörmander’s theorem. In the case
m > 2 it can be shown by using a criterion of hypoellipticity by Helffer–Nourrigat
[6] (see also [12]).

On g′ = g × R1 we define dilations by δs(ξ, t) = (δs(ξ), smt), ξ ∈ g′, t ∈ R1.
Then Q′ = Q+m is the homogeneous dimension of g′. For g′ we can define the
spaces Fλ, HFλ, SFλ as in the previous section. It is clear that Lemma 1 is true
in this situation. The operator L̂ is homogeneous on g′ of degree m. By a result
of G. B. Folland [4] we can find a kernel k(ξ, t) of type m which is a fundamental
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solution for L̂, that is,

(5) L̂k = δ(ξ, t)

in the sense of distributions, where δ is the delta distribution on g′.
We denote by U,U1 neighborhoods of the origin in S(x), and by V, V1 neigh-

borhoods of the origin in H(x) which are sufficiently small and satisfy U b U1,
V b V1. Let ϕ ∈ C∞0 (U1), ϕ = 1 on U , ψ ∈ C∞0 (V1), ψ = 1 on V , and
%(t) ∈ C∞0 (−2, 2), %(t) = 1 for |t| < 1. We now define

k0(ξ, t) = ϕψ%k(ξ, t) .

From the definitions of the operators L̂ and L̃ we see that

L̃ = L̂+R ,

where R has degree at most m− 1. Consequently, for any s ∈ N, the operator L̃
can be written in the form

L̃ = L̂+
s∑
i=1

Ri +Qs ,

where the Ri are homogeneous operators of degree m − i and Qs has degree at
most m− s− 1 at 0. Using (5) and Lemma 1 we obtain

(6) L̃k0(ξ, t) = ϕψ% · δ +
s∑
i=1

ϕψ%kri + qs

for ξ ∈ U1 × V1, t ∈ (−2, 2), where ri ∈ HFi, qs ∈ Fs+1.

Lemma 4. Given s ∈ N there exists a function Ks(ξ, t) ∈ SFm such that

L̃Ks = ϕψ% · δ +Hs, Hs ∈ SFs .
P r o o f. We use induction on s. For s = 0 we set K0(ξ, t) = k0(ξ, t), and the

statement of the lemma follows from (6). Assume that it is true for s − 1; then
we have

L̃Ks−1 = ϕψ% · δ +Hs−1, Hs−1 ∈ SFs−1 .

We now define Ks(ξ, t) by Ks = Ks−1− a(ξ, t)k0 ∗Hs−1, where a(ξ, t) ∈ C∞0 (g′),
supp a ⊂ U1 × V1 × (−2, 2) and a ≡ 1 in suppHs−1. We have

L̃Ks = ϕψ% · δ +Hs−1 − aHs−1 +Hs ,

where Hs = a(ξ, t)L̂k0 ∗Hs−1 − L̃(a(ξ, t)k0 ∗Hs−1). By Lemma 1 it is clear that
Ks(ξ, t) ∈ SFm, Hs ∈ SFs and the proof is finished.

By Sobolev’s embedding theorem for any p ∈ N there exists s so that SFλ ⊂
Cp(g). From this fact and the previous lemma

L̃Ks = ϕψ% · δ +Hs, Hs ∈ Cs(g) .

We now want to construct a fundamental solution for the original operator L. Set

ps(u, t) =
∫
Ks(u, v, t) dv, hs(u, t) =

∫
Hs(u, v, t) dv .
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Lemma 5. Lps = ϕ% · δ + hs.

P r o o f. Let R = L− L̃. Then

Lps = ϕ% · δ + hs −
∫
RKs dv +

∫
RHs dv .

The operator R is selfadjoint and acts only in the v variables so it is easy to see
that

∫
RKs dv = 0 and

∫
RHs dv = 0, and the lemma is proved.

Using the second property of the map Θ from Theorem 3 one can show that
in the original coordinate system (y) in some small neighborhood ω of the point
x ∈M ,

Lv(x)ps = δ + hs ,

where v(x) = |det (µx|S(x))|. This formula and Lemma 5 imply that

(7) U(x, x, t) = v(x)ps(0, t) + g(t) ,

where g(t) ∈ Cs(ω × (−1, 1)). By construction,

ps(0, t) =
s∑
j=1

∫
kj(0, v, t) dv + . . .

If kj ∈ HFλ for λ < β(x) then by definition of this class∫
kj(0, v, t) dv =

∫
k̂j(0, v, t) dv +

∫
gj(0, v, t) dv .

Consequently, pj(0, t) = p̂s(0, t) + g(t), where p̂s(0, t) is homogeneous of degree
λ− β(x) and g ∈ C∞(−1, 1).

If λ > β(x) then we have

∂at pj(0, t) =
∫
∂at kj(0, v, t) dv +

∫
∂at c(0, v, t) dv = p̂j(0, t) + g(t) .

The function p̂j(0, t) is homogeneous of degree (j−Q)/m−a. If (j−Q)/m−a 6∈ Z
then p̂j = cjt

(j−Q)/m−a, and after integrating over t we obtain

(8) pj(0, t) = cjt
(j−Q)/m + g(t) ,

g ∈ C∞(−1, 1). If (j −Q)/m− a ∈ Z then p̂j = cjt
−1 and so in this case

(9) pj(0, t) = cjt
(j−Q)/m ln(t) + djt

(j−Q)/m + g(t) ,

g ∈ C∞(−1, 1). From (7)–(9) it follows that for any s ∈ N∣∣∣U(x, x, t)−
s∑

j=−q(x)

cj(x)tj/m −
s∑
j=0

dj(x)tj/m ln(t)
∣∣∣ < Cst

(s+1)/m

and the proof of Theorem 1 is finished.

From the proof of Theorem 1 one can find the leading coefficient c−q(x) ex-
plicitly. It is clear that

c−q(x) = v(x) ·
∫
k(0, v, 1) dv ,
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where v(x) = |det (µx|S(x))| and k(u, v, t) is a fundamental solution for the oper-
ator L̂.

For the proof of Theorem 2 we observe that in the Métivier case Θx is smooth
in x ∈ M and so the asymptotic formula of Theorem 1 is uniform in x. Conse-
quently, to obtain the statement of Theorem 2 we just integrate this formula over
the manifold M .
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