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In this paper, I propose to describe some results obtained in the last few years
concerning nonlinear elliptic equations, giving rise to variational problems with
lack of compactness. By lack of compactness, we mean that the functionals that
we consider do not satisfy the Palais–Smale condition, i.e. there exist sequences
along which the functional remains bounded, its gradient goes to zero, and which
do not converge. In fact, the Palais–Smale condition (PS) is not an ideal tool
in variational theory. If we consider two level sets of a functional and if we try
to deform one of them onto the other by using the gradient flow, two types of
obstruction may occur: a stop at a critical point:

Ja = {u : J(u) ≤ a}

Jb = {u : J(u) ≤ b}

or a critical point at infinity:

Ja

Jb

i.e. an orbit of the gradient along which the functional remains bounded, the
gradient goes to zero, and the orbit does not converge. This second case is

[383]
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excluded by the Palais–Smale condition which, however, also forbids the situation

Ja

Jb

which does not present any danger from the variational viewpoint. Thus it appears
that the important fact is whether or not the Palais–Smale condition is satisfied
along the flow lines, i.e. whether critical points at infinity exist or not. Answering
this question may be far more difficult than to determine the failure of the Palais–
Smale condition. Nevertheless, if one looks for solutions to the variational problem
by studying the difference of topology between the level sets of the functional, one
has to identify the critical points at infinity in order to compute their contribution
to the topological changes [4].

In the following, we consider more precisely nonlinear elliptic equations of the
form

(1)

{
− ∆u = up + a(x)u, u > 0 on Ω ,

u = 0 on ∂Ω ,

where Ω is a smooth and bounded domain in RN , N ≥ 3, a(x) is a given function
and p = (N + 2)/(N − 2). The interest in this type of equations comes from the
Yamabe problem (see [33], [18] for example), which corresponds to the special
case a(x) = − N−2

4(N−1)R(x), where R(x) is the scalar curvature of a Riemaniann

manifold M of dimension N , without boundary:

(2) −∆u = up −
N − 2

4(N − 1)
R(x)u , u > 0 on M .

However, Problem (1) came to an autonomous life which did not cease with the so-
lution of the Yamabe conjecture by T. Aubin [2], N. Trudinger [32] and R. Schoen
[28]. Despite its inoffensive aspect, the equation provides a whole world of ideas
and questions, some of them already solved, some others remaining open. The
special nature of the problem appears when we consider it from the variational
viewpoint. Let us denote by

J1(u) =
1

2

∫

Ω

|∇u|2 −
1

p + 1

∫

Ω

|u|p+1 −
1

2

∫

Ω

a(x)u2 , ∀u ∈ H1
0 (Ω) ,

or

J2(u) =

∫
Ω
|∇u|2 −

∫
Ω

a(x)u2

(
∫

Ω
|u|p+1)2/(p+1)

, ∀u ∈ H1
0 (Ω) − {0} ,

functionals whose (positive) critical points are solutions to (1) (up to a multi-
plicative constant for J2).
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As the embedding of Lp+1(Ω) into H1
0 (Ω) is not compact, the Palais–Smale

condition does not hold. Nevertheless, as we are exactly in the limit case, we
will dispose of a very precise description of the sequences responsible for such a
failure, or equivalently of the potential critical points at infinity.

Brézis and Nirenberg [9] have shown how one can take advantage of the linear
term a(x)u to prove the existence of a solution to (1). They use this linear term
to make J2 smaller than a certain level under which the Palais–Smale condition
holds, so that a minimization procedure is available. The blowing-up phenomenon
which occurs if a(x) vanishes has been analyzed in numerous papers (see [9], [10],
[17], [24], [26]).

In this paper we will focus our attention on the case a(x) ≡ 0, which appears
to be the more difficult one.

The first section will be essentially concerned with the existence results of
Bahri and Coron [5], [6] related to the topology of the domain, and of Ding [14]
for a contractible domain.

The second section will be devoted to a careful analysis of the subcritical ap-
proximation of (1) in order to describe and understand precisely the phenomenon
of critical points at infinity which occurs in the limit case.

1. The critical case. The first contribution to the problem

(P)

{
− ∆u = up , u > 0 on Ω ,

u = 0 on ∂Ω

is a negative result due to Pokhozhaev [23], which says:

Theorem 1. (P) has no solution under the assumption that Ω is starshaped.

Indeed, multiply the equation in (P) by u and
∑N

i=1 xi∂u/∂xi respectively,
and integrate by parts to obtain

∫

Ω

|∇u|2 =
∫

Ω

up+1

and (
1 −

N

2

) ∫

Ω

|∇u|2 −
1

2

∫

∂Ω

(x.n)

(
∂u

∂n

)2

=

(
1 −

N

2

) ∫

Ω

up+1

so that
∫

∂Ω

(x.n)

(
∂u

∂n

)2

= 0 .

Then the strong maximum principle implies that u = 0 on Ω.

More recently, Bahri and Coron proved in [6] a very important existence result,
related to the topology of the domain:
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Theorem 2. Assume that Ω has nontrivial topology , in the sense there is

l ∈ N∗ such that H2l−1(Ω; Q) 6= 0 or Hl(Ω; Z/2Z) 6= 0. Then (P) has a solution.

When N = 3, every domain which is not contractible has nontrivial topology,
in the sense stated above. This is not true any more for N ≥ 4, so that in this case
it remains an open question whether one can replace the assumption of Theorem
2 by Ω noncontractible. However, if Ω ⊂ RN has holes, HN−1(Ω; Z/2Z) 6= 0.

R e m a r k. When the holes are small , one can even get a result on multiplicity
of the solutions (see [25]).

Let us denote by G the Green function of the operator −∆ on Ω with Dirichlet
boundary conditions, and by H its regular part, i.e.

(3)
G(x, y) =

1

|x − y|N−2
− H(x, y) , (x, y) ∈ Ω × Ω ,

G = 0 on ∂(Ω × Ω) and H is harmonic with respect to each variable.

Let Ω be a smooth and bounded domain in RN , and a1, . . . , al l points in Ω.
For d > 0 we denote by Ωd the domain Ω with the l closed balls B(ai, d) deleted.

For k ∈ N∗ and x = (x1, . . . , xk) ∈ Ωk we set

(4) M(x) = M(x1, . . . , xk) = (mij)1≤i,j≤k ∈ Mk(R)

with

(5) mii = H(xi, xi) , mij = −G(xi, xj) , i 6= j ,

and we denote by

(6) ̺(x) = ̺(x1, . . . , xk)

the smallest eigenvalue of M(x).
Then we state the following result:

Theorem 3. Let k ∈ N∗, k ≤ l, and 1 ≤ i1 < . . . < ik ≤ l. Assume

that M(ai1 , . . . , aik
) is positive definite, i.e. ̺(ai1 , . . . , aik

) > 0. For d small

enough, there exists a solution of (P) on Ωd which concentrates around the k
holes B(aij

, d), 1 ≤ j ≤ k, as d goes to zero.

The assumption is always satisfied for k = 1, so that we get at least l solutions
for d small. If M(a1, . . . , al) > 0, the number of solutions is at least 2l − 1.

In contrast with Theorem 2, W. Y. Ding gave in [14] an example of a con-
tractible domain on which (P) has a solution (for such an example, see also
Dancer [12]). Such a domain is constructed as a perturbation of an annulus
As = {x ∈ RN : 0 < s < |x| < 1}, with a thin cylinder Cε = {x = (x1, x

′) ∈
R×RN−1 : 0 ≤ x1 ≤ 1, |x′| < ε} deleted. The method used follows essentially the
same idea as Coron in [11], where it was proved that (P) has a solution provided
that Ω has a small hole.

This example is interesting because it shows that just as the topology may
play a role in the existence of solutions to (P), so does the geometry of the domain.
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In fact, we believe that the good condition for existence of solutions to (P) should
be expressed as some properties of the Green function and its regular part on
Ω— such that some topological conditions as in Theorem 2 make them satisfied,
or some geometric conditions as in Theorem 1 make them fail. We will give some
results in this direction in the next section.

Let us now sketch the proof of Theorem 2.

All this proof is carried out under the assumption that (P) has no solution,
until we get a contradiction.

We consider on H1
0 (Ω) the functional

(7) J(u) =
1

2

∫

Ω

|∇u|2 −
1

p + 1

∫

Ω

(u+)p+1

whose nonzero critical points are solutions to (P). First, we show that the Palais–
Smale condition is satisfied for J except at the levels ck = kSN/2/N , k ∈ N∗,
where S denotes the Sobolev constant,

(8) S = inf
u∈H1

0
(Ω)−{0}

∫
Ω
|∇u|2

(
∫

Ω
|u|p+1)2/(p+1)

.

S is independent of Ω ⊂ RN , and is never achieved for Ω bounded, whereas it is
on RN for all the functions

(9) δλ,x(y) =
λ(N−2)/2

(1 + λ2|y − x|2)(N−2)/2
, λ ∈ R∗

+ , x ∈ RN ,

which are the only minimizers ([1], [31], [19]), up to a multiplicative constant.
The δλ,x’s are solutions on RN of the equation

(10) −∆δ = N(N − 2)δp .

Moreover, these functions are the only positive solutions of (10) with ∇δ ∈
L2(RN ) and δ ∈ Lp+1(RN ) (see [22], [16], [15]; this does not hold without the
assumption of positivity for solutions to −∆U = N(N − 2)|U |p−1U on RN , see
[13]).

It is easy to see that (PS) fails at level ck. Indeed, consider any sequence (xn
i )

in Ω, (λn
i ) in R∗

+, (αn
i ) in R, 1 ≤ i ≤ k, such that

αn
i → αN = (N(N − 2))(N−2)/4 ,(11)

λn
i d(xn

i , ∂Ω) → +∞ ,(12)

λn
i

λn
j

+
λn

j

λn
i

+ λn
i λn

j |x
n
i − xn

j |
2 → +∞ , i 6= j ,(13)

as n → +∞.
Let us denote by Pδλ,x the projection of δλ,x onto H1

0 (Ω), defined by

(14)

{
∆Pδλ,x = ∆δλ,x on Ω ,

Pδλ,x = 0 on ∂Ω .
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Then any sequence of functions

un =

k∑

i=1

αn
i Pδλn

i
,xn

i
,

where αn
i , λn

i , xn
i are chosen as stated above, satisfies

(15) J(un) → ck , J ′(un) → 0 .

As (un) is not relatively compact in H1
0 (Ω) (since for example |∇un|

2 ⇀

SN/2
∑k

i=1 δxi
in the sense of measures, with δxi

the Dirac mass at xi = lim xn
i

∈ Ω), (PS) fails at level ck.
Condition (12) means that the “boundary effect” is negligible compared to the

“concentration effect”, i.e. at the first order Pδλn
i

,xn
i

behaves as δλn
i

,xn
i
. Condition

(13) means that the “interaction effect” between the Pδλn
i

,xn
i

is also negligible.
Condition (12) is related to the fact that

−∆(αNδ) = (αNδ)p on RN .

Then (11)–(13) imply that un is “almost” a solution of (3), so that J ′(un) → 0,
and

J(un) ∼ k

(
1

2

∫

R
N

|∇δ|2 −
1

p + 1

∫

R
N

δp+1

)
= k

SN/2

N
.

(For extensive computations of J(un) and J ′(un), see [3], [23].)

If u0 were a solution to (P), the sequence u0 +
∑k

i=1 αn
i Pδλn

i
,xn

i
would show

that (PS) fails at the level J(u0) + ck. In fact, (PS) fails exactly at the levels
σ + kSN/2/N , k ∈ N∗, where σ is any critical value of J . Under our assumption
that (P) has no solution, it remains to prove that (PS) holds for every level c 6= ck,
k ∈ N∗.

Assume first that c < c1 = SN/2/N , and let (un) be a sequence such that
J(un) → c, J ′(un) → 0 as n → +∞. This means

1

2

∫

Ω

|∇un|
2 −

1

p + 1

∫

Ω

(u+
n )p+1 = c + o(1) ,(16)

−∆un = (u+
n )p + fn with fn → 0 in H−1 .(17)

Multiplying (17) by un and integrating on Ω, we get
∫

Ω

|∇un|
2 =
∫

Ω

(u+
n )p+1 + o(|un|H1

0
) .

Therefore we deduce from (16) that

(18)
∫

Ω

|∇un|
2 = Nc + o(1) ,

∫

Ω

(u+
n )p+1 = Nc + o(1) .

Then Sobolev’s inequality yields

Nc ≥ S(Nc)2/(p+1)
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so that either c = 0 or c ≥ SN/2/N, and the assumption c < SN/2/N implies
that un → 0 in H1

0 .
Suppose now that J ′(un) → 0 and J(un) → c ≥ SN/2/N . We are going to

show that there exist k ∈ N∗ and sequences (λn
i ) and (xn

i ) satisfying (12), (13)
such that

(19)
∣∣∣un −

k∑

i=1

αNPδλn
i

,xn
i

∣∣∣
H1

0

→ 0

and thus c = ck. As previously, we deduce from (16) and (17) that (un) is bounded
in H1

0 , so that un goes weakly to a limit which is zero by the assumption that (P)
has no solution. However, un does not converge strongly to zero. We consider as
in [21], [8] the concentration function

Qn(t) = sup
x∈Ω

∫

x+tB(0,1)

(u+
n )p+1 , t ∈ R+

(un is extended by 0 outside Ω). The Qn’s are increasing functions, and if we
assume that 0 ∈ Ω and Ω ⊂ B(0, R), we have

Qn(R) = |u+
n |

p+1
p+1 = Nc + o(1) .

If Qn(R) goes to zero, then (18) implies that un (or its subsequence) goes to zero
in H1

0 , a contradiction. Thus, there exists β > 0 such that Qn(R) ≥ β for all n.
We choose ν such that

(20) 0 < ν < min(β, SN/2) .

There exist εn, 0 < εn < R, and an ∈ Ω such that

(21) Qn(εn) =
∫

an+εnB(0,1)

(u+
n )p+1 = ν .

Then we set

(22) vn : RN → R , x 7→

{
ε
(N−2)/2
n un(εnx + an) if x ∈ Ωn =

Ω − an

εn
,

0 if x 6∈ Ωn.

We have ∫

R
N

|∇vn|
2 =
∫

Ω

|∇un|
2 ,
∫

R
N

|vn|
p+1 =

∫

Ω

|un|
p+1

so we may assume that ∇vn ⇀ ∇w in L2(RN ), vn ⇀ w in Lp+1(RN ), vn → w
a.e., Ωn → U and w satisfies

(23) −∆w = wp , w ≥ 0 on U ; w = 0 on ∂U .

We are in one of the three cases:

1) εn → l > 0,
2) εn → 0 and (1/εn)d(an, ∂Ω) → l < +∞,
3) εn → 0 and (1/εn)d(an, ∂Ω) → +∞.
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Cases 1) and 2) cannot occur. Indeed, assume that εn → l > 0. We show that∫
RN (v+

n )p+1 → 0, a contradiction to (21), since

(24)
∫

B(0,1)

(v+
n )p+1 =

∫

an+εnB(0,1)

(u+
n )p+1 = ν > 0 .

It suffices to show that, for any a ∈ RN and ζ ∈ C∞(RN , R), ζ ≥ 0, supp ζ ⊂
a + B(0, 1),

∫

R
N

(ζv+
n )p+1 → 0 .

Note that, as un ⇀ 0 in H1
0 (Ω), one can assume that un → 0 in L2(Ω), and then∫

RN v2
n = (1/ε2

n)
∫

Ω
u2

n → 0. J ′(un) → 0 gives us, through the rescaling (22),

−∆vn = (v+
n )p + gn on Ωn , with gn → 0 in H−1(Ωn) .

Multiplying this equation by ζ2vn and integrating on Ωn we obtain
∫

Ωn

|∇ζv+
n |2 + o(1) =

∫

Ωn

ζ2(v+
n )p+1 + o(1)

≤
( ∫

supp ζ

(v+
n )p+1

) p−1

p+1
( ∫

Ωn

(ζv+
n )p+1

) 2
p+1

+ o(1) .

Then the Sobolev inequality yields

S ≤ ν(p−1)/(p+1) + o(1) ,

a contradiction to (20). Concerning case 2) Pokhozhaev’s identity on U which is
here a half-plane implies that w ≡ 0. Therefore ∇vn ⇀ 0 in L2(RN ), vn ⇀ 0
in Lp+1(RN ), vn → 0 in L2(RN ), and the same argument as above shows that
vn → 0 in Lp+1

loc (RN ), contrary to (24). Hence we are in case 3), and w 6≡ 0
(otherwise we get a contradiction to the choice of ν, as previously). It follows
from (23) with U = RN that

w = αNδλ,x for some λ ∈ RN and x ∈ RN .

We define wn on Ω as

wn(x) =
1

ε
(N−2)/2
n

Pw

(
1

εn
(x − an)

)

and we set

u(1)
n = un − wn .

Then it follows from the characterization of wn that

(25)
∫

Ω

|∇u(1)
n |2 =

∫

Ω

|∇un|
2 −
∫

R
N

|∇w|2 + o(1) =
∫

Ω

|∇un|
2 − S

N/2
N + o(1) ,

(26) J(u(1)
n ) = J(un) − J(w) + o(1) = J(un) −

SN/2

N
+ o(1) ,
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(27) J ′(u(1)
n ) → 0 ,

and we can iterate the process until J(u
(l)
n ) < SN/2/N , and thus u

(l)
n → 0 in

H1
0 (Ω). According to (26), this happens for some l = k. Thus, we get

(28) un =
k∑

i=1

αNPδλn
i

,xn
i

+ vn

with vn → 0 in H1
0 (Ω), and λn

i d(xn
i , ∂Ω) → +∞. Moreover, according to (25) we

have
∫

Ω

|∇un|
2 =

k∑

i=1

α2
N

∫

Ω

|∇Pδλn
i

,xn
i
|2 + o(1)

and this implies (13).
As a consequence of the previous arguments, we obtain a characterization of

the potential critical points at infinity of J :
If (un) is a sequence in H1

0 satisfying

J(un) → ck = kSN/2/N , J ′(un) → 0 ,

there exist sequences (xn
i ) in Ω and (λn

i ) in R∗
+ such that (19) holds, together with

(12), (13). We may assume that, possibly for a subsequence, xn
i goes to xi ∈ Ω

as n goes to infinity. Then the set of potential critical points at infinity may be
in some sense parametrized by Ωk. Once we performed this representation, the
question is to compute the change of topology between the level sets across the
level ck. The result obtained in [5], [6], using a deformation method and a careful
analysis of J ′′ near the critical points at infinity (Morse theory at infinity), reads

(29) (Jck+ε, Jck−ε) ≃ (X × D1, (X × S0) ∪ (Y × D1))

where

X = Ωk ×
σk

Dk−1 , Y = (Ωk ×
σk

Sk−2) ∪ (Ik ×
σk

Dk−1) ,

σk denoting the group of permutations of {1, . . . , k}, and

Ik = {x ∈ Ωk : ̺(x) ≤ 0}

(see (5), (6) for the definition of ̺ on Ωk). For k = 1

(Jck+ε, Jck−ε) ≃ (Ω × D1, Ω × S0) .

From this computation we deduce the following lemma:

There is some k0 ∈ N∗, depending only on Ω, such that (Jck+ε, Jck−ε) ≃ 0 for

every k ≥ k0.

This lemma follows from the definition of ̺. If x = (x1, . . . , xk) ∈ Ωk and
k is large, some points xi and xj are very close to each other, G(xi, xj) goes to
−∞ and so ̺(x) ≤ 0. Thus, for k large enough, Ik = Ωk and (Jck+ε, Jck−ε) ≃ 0
from (29). Using the topological assumption on Ω, Bahri and Coron also show
the following lemma:
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If H2l−1(Ω; Q) 6= 0 or Hl(Ω; Z/2Z) 6= 0 for some l ∈ N∗, then

(Jck+ε, Jck−ε) 6≃ 0,∀k ∈ N∗.

This last result is proved by induction on k and requires refined arguments
from algebraic topology. The contradiction between the two lemmas gives the
result of Theorem 2.

2. The subcritical approximation. In this section, I would like to explain
some recent results concerning the problems

(Pε)

{
− ∆u = up−ε , u > 0 on Ω ,

u = 0 on ∂Ω

with ε > 0. The associated functional defined on H1
0 (Ω),

(30) Jε(u) =
1

2

∫

Ω

|∇u|2 −
1

p + 1 − ε

∫

Ω

|u|p+1−ε ,

satisfies the Palais–Smale condition and has strictly positive critical points which
are solutions to (Pε) (see for example [20]). As ε goes to zero, these solutions may
either converge in H1

0 (Ω) to a solution u0 of the limit problem (P) (possibly u0 ≡
0), or blow up at a finite number of points of Ω, under the assumption that these
solutions are uniformly bounded in H1

0 (Ω). More precisely, an argument similar to
the blow-up analysis carried out in the previous section shows that if (uε) is an H1

0 -
bounded sequence of solutions to (Pε), then, possibly for a subsequence, one has

(31) uε = u0 +
k∑

i=1

αε
i Pδλε

i
,xε

i
+ vε

where u0 is either a solution to (P), or u0 ≡ 0, and if k > 0 then

αε
i → αN , λε

i d(xε
i , ∂Ω) → +∞ ,

λε
i

λε
j

+
λε

j

λε
i

+ λε
i λ

ε
j |x

ε
i − xε

j |
2 → +∞ , i 6= j ,

as ε → 0. Moreover, we get the estimates ([30])

|uε|
2
H1

0

= |u0|
2
H1

0

+ kSN/2 + o(ε) ,

J(uε) = J(u0) + k
SN/2

N
(= ck) + o(ε) .

In fact, a new and important result of R. Schoen [29] implies that for uε a solution
to (Pε) we have the alternative: either u0≡0, or k=0. In the following, we are in-
terested of course in the case k 6=0 (and thus u0≡0 in (31)), i.e. in the solutions to
(Pε) which blow up at k points x1, . . . , xk of Ω as ε→0. In a first step, we will give
a precise description of the points of Ω at which such solutions concentrate. As at
the same time Jε(uε) → ck, we will then compute the difference of topology that
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they induce between the level sets of the functional across the level ck. Before stat-
ing the results, let us introduce some notations. For x∈Ωk, we define the function

(32) Fx : (R∗
+)k → R , Λ = (Λ1, . . . , Λk) 7→

1

2
tΛM(x)Λ − log Λ1 . . . Λk ,

where M(x) is the matrix defined in (4), (5). We recall that we denote by ̺(x) its
smallest eigenvalue. If ̺(x) > 0, then Fx is strictly convex on (R∗

+)k, infinite on
the boundary of this domain, and so has in it a unique critical point Λ(x) which is
a minimum. On the subset ̺+ = {x ∈ Ωk : ̺(x) > 0}, we then define the function

(33) F̃ (x) = Fx(Λ(x)) =
k

2
− log Λ1(x) . . . Λk(x)

whose differential is given by

(34) F̃ ′(x) =
1

2
tΛ(x)M ′(x)Λ(x) = −

k∑

i=1

Λ′
i(x)

Λi(x)
.

We are now able to state the first result ([7]):

Theorem 4. Assume that N ≥ 4, and that (uε) is a sequence of solutions to

(Pε) which blows up at k points x1, . . . , xk of Ω as ε → 0 (i.e. |∇uε|
2, up+1

ε ⇀

SN/2
∑k

i=1 δxi
as ε → 0 in the sense of measures). The conclusions are:

(i) x = (x1, . . . , xk) ∈ Ωk
d0

, where d0 is a strictly positive constant which

depends on Ω only and Ωd0
= {x ∈ Ω : d(x, ∂Ω) > d0}.

(ii) ̺(x) ≥ 0.

(iii) Either ̺(x) > 0 and F̃ ′(x) = 0, or ̺(x) = 0 and ̺′(x) = 0.

The index of uε as a critical point of Jε is at least l+k (and at most (N + 1)k),

where l is the index of x as a critical point of F̃ (or ̺). If x ∈ ̺+ is a nondegen-

erate critical point of F̃ , the index of uε is exactly l + k.

Conversely , if x = (x1, . . . , xn) ∈ ̺+ is a nondegenerate critical point of

F̃ , there exists for ε small enough a sequence (uε) of solutions to (Pε) which

concentrate at x1, . . . , xk as ε → 0.
Under the assumption that 0 is not a critical level for ̺ (which is at least true

generically), (ii) and (iii) may be replaced by

(ii)′ ̺(x) ≥ ̺0, where ̺0 is a strictly positive constant which depends on Ω
only.

(iii)′ F̃ ′(x) = 0.

Morever , we have the estimates

(35)
1

(λε
i )

(N−2)/2
∼ γΛi(x)ε1/2

and

Jε(uε) = ck + kγ1ε|log ε| + kγ2ε + 2γ1εF̃ (x) + o(ε)

where γ > 0, γ1 > 0, γ2 are constants which depend on N only.
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R e m a r k s. 1. R. Schoen had already shown in [29] that all the concentrations
were simple, and that the speeds of concentration λε

i were of the same order. (i)–
(ii) also imply that the blow-up points x1, . . . , xk have to be far from each other:
∃d′0 > 0, ∀i, j, i 6= j, |xi − xj | > d′0. This condition cannot be satisfied if k is too
large.

2. In the case k = 1, M(x) = H(x, x) > 0 everywhere, Λ(x) = H(x, x)−1/2,

F̃ (x) = 1
2 + 1

2 log H(x, x).
3. In the case k = 2, x = (x1, x2),

M(x) =

(
H(x1, x1) G(x1, x2)
G(x1, x2) H(x2, x2)

)
,

Λ2
1(x) =

H(x2, x2)
1/2

H(x1, x2)1/2

1

φ(x)
, F̃ (x) = 1 + log φ(x) ,

with

φ(x) = H(x1, x1)
1/2H(x2, x2)

1/2 − G(x1, x2) .

As

̺(x) = 1
2
[H(x1, x1) + H(x2, x2) − ((H(x1, x1) − H(x2, x2))

2 + 4G(x1, x2)
2)1/2] ,

̺(x) > 0 is equivalent to φ(x) > 0 and one can replace (ii) and (iii) in the theorem
by φ(x) ≥ 0, φ′(x) = 0 (since for ̺ = 0 we also have ̺′=0 ⇔ φ′=0). This result
was proved in [27].

In order to prove Theorem 4, one proceeds as follows:

1. Consider the set

U =

{ k∑

i=1

αNPδλi,xi
: λid(xi, ∂Ω) > m0;

λi

λj
+

λj

λi
+λiλj |xi−xj |

2 > m0, i 6= j

}
,

where m0 is some large constant. For u ∈ H1
0 (Ω) close to U , the problem

Minimize
∣∣∣u −

k∑

i=1

αiPδλi,xi

∣∣∣
H1

0

with respect to αi, λi, xi has a unique solution up to permutations ([6]). Then
one establishes a diffeomorphism between a neighborhood of the possible singular
solutions of (Pε) we are interested in (which is also a neighborhood of the potential
critical points at infinity for (P)), and the manifold

M =

{
(α, λ,x, v) ∈ Rk ×

σk

(R∗
+)k ×

σk

Ωk × H1
0 (Ω) : |αi − αN | < ν0;

λid(xi, ∂Ω) > n0;
λi

λj
+

λj

λi
+ λiλj |xi − xj |

2 > n0, i 6= j;

|v|H1
0

< κ0, v ∈ Eλ,x

}
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where ν0, κ0 are small constants and n0 a large one, and

Eλ,x =

{
v ∈ H1

0 (Ω) : 〈v, Pδλi,xi
〉H1

0
=

〈
v,

∂Pδλi,xi

∂λi

〉

H1
0

=

〈
v,

∂Pδλi,xi

∂xi

〉

H1
0

= 0, ∀i

}
.

Then u =
∑k

i=1 αiPδλi,xi
+ v is a critical point of Jε if and only if (α, λ,x, v) is

a critical point of the functional Kε(α, λ,x, v) = Jε(u) on M .

2. The vanishing of the partial derivatives of Kε on M provides us with equa-
tions whose resolution gives us the results of Theorem 4.The proof requires careful
estimates that we will not make explicit here.

• The equation relative to ∂Kε/∂v proves that v is very small in H1
0 -norm, so

that the v-part is negligible for all practical purposes (at the possible exception
of dimension 3 in which precisely we cannot conclude).

• The equation relative to ∂Kε/∂α proves that each αi is very close to αN ,
and may even be made equal to αN in all practical computations.

• The equation relative to ∂Kε/∂λ implies that ̺(x) ≥ 0 and the estimate
(35) in the case ̺(x) > 0.

• Lastly, the equation relative to ∂Kε/∂x shows that F̃ ′(x) = 0 in the case
̺(x) > 0, and ̺′(x) = 0 if ̺(x) = 0.

3. A critical point (α, λ,x, v) ∈ M of Kε may be obtained by successive
optimizations. v corresponds to a minimum (index 0), α to a maximum (index

k), λ to a minimum (index 0), x is a critical point of a perturbation of F̃ (or ̺),
hence a contribution to the global index of the solution which is between l and
Nk, where l is the index of x as a critical point of F̃ (or ̺), and which is exactly
l in case of nondegeneracy.

Once Theorem 4 is proved, we can take advantage of the precise characteri-
zation of the k-singular solutions of (Pε) to define a smallest neighborhood V (of
the corresponding critical points of Kε) than M , such that on the boundary of
V , either −K ′

ε is pointing inward V , or Kε is below the least critical value on M .
Our aim being now to compute the contribution of the k-singular solutions

of (Pε) to the relative topology (Jck+δ
ε , Jck−δ

ε ), we are reduced to study the rel-
ative topology (Kck+δ

ε ∩ V,Kck−δ
ε ∩ V ). Proceeding as previously by successive

optimizations, we get ([7])

Theorem 5. Assume that N ≥ 4 and 0 is not a critical value for ̺. The

contribution to the relative topology of the level set

Jck+δ
ε = {u ∈ H1

0 (Ω) : Jε(u) ≤ ck + δ}

with respect to the level set

Jck−δ
ε = {u ∈ H1

0 (Ω) : Jε(u) ≤ ck − δ}
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of the possible solutions of (Pε) which blow up at k points as ε goes to zero is

equal for ε small enough to the relative topology

(Ωk, ̺−) ×
σk

(Dk, Sk−1)

with ̺− = {x ∈ Ωk : ̺(x) ≤ 0}.

This result points out the importance of the behavior of the least eigenvalue
̺(x) of the matrix M(x) on Ωk, which was already noted in [3], [5], [6] (see also
Theorem 3).

Note that the difference of topology between the level sets of Jε may only come
from the existence of critical points, since the functionals satisfy the Palais–Smale
condition. Theorem 5 shows that if the relative topology (Ωk, ̺−) is nontrivial,
(Pε) has solutions which blow up at k points as ε goes to zero, without any
nondegeneracy assumption as in Theorem 4.

The stability with respect to ε of the result that we obtained implies, through
some arguments of algebraic topology, that the relative homology that we com-
puted is exactly the contribution of the critical points at infinity to the relative
homology between the level sets of the functional J across the level ck. Then, by
coming back to the arguments developed in Section 1, this result should enable
us to answer in the future the questions concerning existence and multiplicity of
solutions to (P) raised by R. Bott.
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