VOL. LXIII 1992 FASC. 1 ## LARGE FREE SET BY ## KANDASAMY MUTHUVEL (OSHKOSH, WISCONSIN) **Introduction.** A set $A \subseteq X$ is said to be *free* for a set mapping F from X into the power set P(X) of X provided $x \notin F(y)$ for any distinct x, y in A. Every set map F on the reals with F(x) nowhere dense for each x in R admits a countably infinite free set [3] and indeed an everywhere dense free set [2] (see also MR 88k:03101). The aim of this note is to generalize the above result to the generalized linear continuum (endowed with the lexicographic order topology), which generalizes well-known facts about the real line [4]. The existence of large free set in the generalized linear continuum has never been published, but the nonexistence of free set has been studied in [6]. DEFINITION. Throughout this paper α is an infinite cardinal. C_{α} is the lexicographically ordered set of all dyadic sequences $(x(\mu))_{\mu<\alpha}$ such that $x(\beta)=1,\ x(\delta)=0$ for some $\beta,\ \delta<\alpha$ and if $x(\eta)=0$ for some $\eta<\alpha$, then there exists $\eta<\sigma<\alpha$ with $x(\sigma)=0$. R_{α} is the set of all dyadic sequences $(x(\mu))_{\mu<\alpha}$ such that $x(\eta)=1$ for some $\eta<\alpha$, and $x(\mu)=0$ for all $\eta<\mu<\alpha$. A nowhere dense set map on C_{α} is a set map on C_{α} with F(x) nowhere dense for each x in C_{α} . Properties of C_{α} and R_{α} - 1. $|C_{\alpha}| = 2^{\alpha}$ and $|R_{\alpha}| = \sum_{\beta < \alpha} 2^{\beta}$. - 2. For regular α , C_{α} is not the union of α many nowhere dense subsets of C_{α} . - 3. For regular α , $|R_{\alpha}|$ is the least cardinal of an everywhere dense set in C_{α} [5]. A paper by Harzheim [4] contains an exhaustive examination of C_{α} and R_{α} . The following theorem generalizes a theorem of P. Erdős [3] to higher cardinals. Theorem 1. Suppose α is a regular infinite cardinal and C_{α} is not the union of $|R_{\alpha}|$ many nowhere dense subsets of C_{α} . Then every nowhere dense set mapping F on C_{α} admits a free set of size α . Proof. Let $|R_{\alpha}| = \Theta$. Then there exists a sequence $(x_{\eta})_{\eta \leq \Theta^{+}}$ of distinct elements of C_{α} such that $x_{\eta} \notin \bigcup_{\mu < \eta} F(x_{\mu})$ for all $1 \leq \eta < \Theta^+$, where $\overline{F(x_{\mu})}$ is the closure of $F(x_{\mu})$ in C_{α} . Let $E = \{x_{\eta} : \eta < \Theta^{+}\}$. We show first that if N is a subset of E containing no free pair, then $|N| \leq \Theta$. To prove this, suppose that $|N| = \Theta^+$. Then N can be written in the form $N = \{y_{\eta} : \eta < \Theta^+\}$ with $y_{\eta} \notin \bigcup_{\mu < \eta} \overline{F(y_{\mu})}$ for all $1 \le \eta < \Theta^+$. Let \mathcal{I} be the collection of all open intervals having endpoints in R_{α} . For each $\eta < \Theta^{+}$, $y_{\eta+1} \notin \overline{F(y_{\eta})}$, and consequently there exists an interval $I_{\eta} \in \mathcal{I}$ such that $y_{\eta+1} \in I_{\eta}$ and $I_{\eta} \cap F(y_{\eta}) = \emptyset$. Since $|\mathcal{I}| = \Theta$, there exist an $I \in \mathcal{I}$ and a set L of size Θ^+ such that $I = I_{\eta}$ for all $\eta \in L$. This implies that for all $\eta \in L$, $y_{\eta+1} \in I$ and $I \cap F(y_{\eta}) = \emptyset$. For a fixed element δ in $L, y_{\delta+1} \notin F(y_{\eta})$ for all $\eta \in L$, and because of $\{y_{\delta+1}, y_{\eta}\} \subset N$ we obtain $y_{\eta} \in F(y_{\delta+1})$ for all $\eta \in L$, which contradicts the choice of $\{y_{\eta} : \eta < \Theta^{+}\}$. Thus $|N| \leq \Theta$. Now, if A is the set of all free pairs of elements of E and $B = [E]^2 - A$, then $\{A,B\}$ is a partition of $[E]^2$ and consequently by the partition relation [7], " $\Theta^+ \to (\Theta^+, \tau)$, where $\tau = \min\{\mu : \Theta^\mu > \Theta\}$ " (this notation means that if the set $[E]^2$ of 2-element subsets of E of size Θ^+ is decomposed as $A \cup B$, then there is a set $P \subseteq E$ such that either $|P| = \Theta^+$ and $|P|^2 \subseteq A$, or else $|P| = \tau$ and $|P|^2 \subseteq B$, there is a free set of size τ . By [1, Satz 6], $\tau \ge \alpha$, which completes the proof. From Theorem 1 and the facts following the definition of C_{α} , we obtain the following results. COROLLARY 1. If $|R_{\alpha}| = \alpha$, then every nowhere dense set map on C_{α} admits a free set of size α . COROLLARY 2. If GCH holds, then every nowhere dense set map on C_{α} admits a free set of size α . COROLLARY 3. Every nowhere dense set map on the reals admits a countably infinite free set. (This is a theorem of P. Erdős [3, Th. 6].) Remark. Corollary 2 is best possible in the sense that there is a nowhere dense set map on C_{α} not admitting a free set of size α^{+} [6, Ths. 3.7, 3.8]. ## REFERENCES - [1] H. Bachmann, Transfinite Zahlen, 2. Aufl., Springer, Berlin 1967. - [2] F. Bagemihl, The existence of an everywhere dense independent set, Michigan Math. J. 20 (1973), 1-2. LARGE FREE SET 109 - $[3] \quad \text{P. Erd\"{o}s, Some remarks on set theory III, ibid. 2 (1953–1954), 51–57.}$ - [4] E. Harzheim, Beiträge zur Theorie der Ordnungstypen, insbesondere der η_{α} -Mengen, Math. Ann. 154 (1964), 116–134. - [5] F. Hausdorff, Grundzüge einer Theorie der geordneten Mengen, ibid. 65 (1908), 435–505. - [6] S. H. Hechler, Directed graphs over topological spaces: some set theoretical aspects, Israel J. Math. 11 (1972), 231–248. - [7] I. Juhász, Cardinal functions in topology, Math. Centre Tracts 34, Math. Centre, Amsterdam 1971. DEPARTAMENT OF MATHEMATICS UNIVERSITY OF WISCONSIN—OSHKOSH OSHKOSH, WISCONSIN 54901 U.S.A. Reçu par la Rédaction le 25.1.1991