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1. Introduction. To every (unrestricted or unequal) partition τ of n:

n = n1 + . . .+ nt

we assign the multiset N = {n1, . . . , nt}.
Two partitions τ1, τ2 of the same number n are said to be additively

independent if for N ′
1 ⊂ N1, N ′

2 ⊂ N2 the sum of the elements of N ′
1 can be

equal to the sum of the elements of N ′
2 only in the two cases N ′

1 = N ′
2 = ∅

(so that both sums are 0) and N ′
1 = N1, N ′

2 = N2 (so that both sums are n).
We denote by π(n) the set of unrestricted partitions of n, and by π′(n)

the set of unequal partitions of n, and as usual we set

p(n) = cardπ(n), q(n) = cardπ′(n) .

Let G(n) and H(n) denote the number of pairs of additively independent
unrestricted or unequal partitions of n, respectively. We shall prove

Theorem 1. For all integers k there are coefficients α1, . . . , αk such that

(1.1) G(n) = 2p(n)
(

1 +
α1√
n

+
α2

n
+ . . .+

αk

nk/2
+O

(
1

n(k+1)/2

))
with

α1 =
π√
6

= 1.28 . . . , α2 =
17
12
π2 − 1 = 12.98 . . .

The coefficients α3, . . . , α17 have been computed by the computer algebra
system MAPLE :

α3 =
1√
6

(
337
36

π3 − 1019
48

π +
3
2π

)
= 91.46 . . . ,

α4 =
7889
864

π4 − 12115
288

π2 +
509
24

+
3

4π2
= 495.53 . . . ,
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α5 = 10450.82 , α6 = 43427.98 , α7 = −848498.0 ,
α8 = 7.67 · 107 , α9 = −1.897 · 109 , α10 = 4.42 · 1010 ,

α11 = −7.28 · 1011 , α12 = 1.23 · 1013 , α13 = −4.04 · 1014 ,

α14 = 2.53 · 1016 , α15 = −1.42 · 1018 , α16 = 6.51 · 1019 ,

α17 = −2.53 · 1021 .

Theorem 2. There exists a real number c such that

(1.2) H(n) = cq(n)(1 +O(log2 n/
√
n)) .

The value of c satisfies 13.83 ≤ c ≤ 14.29.

To any set or multiset A of integers, we associate

S(A) =
∑
a∈A

a and |A| = cardA =
∑
a∈A

1 .

If τ is an unrestricted or unequal partition of n, and N is the set of its parts,
we associate to them P(τ) = P(N ), the set of non-zero subsums:

P(τ) = P(N ) = {S(N ′) : N ′ 6= ∅ , N ′ ⊂ N} .

We shall say that the partition τ represents a if a ∈ P(τ). We observe the
obvious symmetry:

0 < x < n and x ∈ P(τ) ⇒ n− x ∈ P(τ) ,

and it is convenient to introduce

P∗(τ) = P∗(N ) = {x ∈ P(τ) : x ≤ n/2} .

It is easy to see that two partitions τ1 and τ2 are additively independent if
and only if

P∗(τ1) ∩ P∗(τ2) = ∅ .

Let us denote the set of positive integers by N = {1, 2, . . .} and for N ∈ N
the set of positive integers up to N by NN = {1, . . . , N}.

We say that a partition τ of n is practical if P(τ) = Nn. It has been
proved that almost all unrestricted partitions of n are practical (cf. [10],
or [5]), that is, the number p̃(n) of practical unrestricted partitions of n
satisfies

p̃(n) ∼ p(n) .

This is no longer true for unequal partitions, because 1 /∈ P(τ) for about
half of the partitions.
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Let us calculate G(7). We have p(7) = 15, p̃(7) = 8.

σi P∗(σi) {j : P∗(σi) ∩ P∗(σj) = ∅} number of j’s

σ1 = 7 ∅ 1,...,15 15

σ2 = 6 + 1 1 1,3,5,9 4

σ3 = 5 + 2 2 1,2,5,8 4

σ4 = 5 + 1 + 1 1,2 1,5 2

σ5 = 4 + 3 3 1,2,3,4 4

σ6 = 4 + 2 + 1 1,2,3 1 1

σ7 = 4 + 1 + 1 + 1 1,2,3 1 1

σ8 = 3 + 3 + 1 1,3 1,3 2

σ9 = 3 + 2 + 2 2,3 1,2 2

σ10 = 3 + 2 + 1 + 1 1,2,3 1 1

σ11 = 3 + 1 + 1 + 1 + 1 1,2,3 1 1

σ12 = 2 + 2 + 2 + 1 1,2,3 1 1

σ13 = 2 + 2 + 1 + 1 + 1 1,2,3 1 1

σ14 = 2 + 1 + 1 + 1 + 1 + 1 1,2,3 1 1

σ15 = 1 + 1 + 1 + 1 + 1 + 1 + 1 1,2,3 1 1

Total: 41

We see that G(7) = 41. It is clear that G(n) is always an odd number.
From the above table it can be guessed that the main contribution to

G(n) is given by the pairs (τ ′, τ ′′) such that either τ ′ or τ ′′ is the partition
with only one part. The number of such couples is 2p(n) − 1, and this
explains the first term of (1.1).

A table of G(n) for n ≤ 70 is given at the end of the paper. As the other
tables appearing in this paper, it has been calculated by M. Deléglise, and
we are pleased to thank him very much. The method used to compute G(n)
is a double back-tracking. It is not clear from this table that G(n)/p(n)
tends to 2, but this phenomenon can be explained by the large size of the
coefficients αi in (1.1).

One of the main tools in the proof of both Theorems 1 and 2 is Lemma 3
below. It is a result in additive number theory which has already been used
in [8] and [4] (cf. also [12] and [13]).

Let P be a non-empty subset of N, and a = maxP . We define R(n, P )
as the set of unrestricted partitions τ of n such that P(τ) ∩ P = ∅ and
we set R(n, P ) = |R(n, P )|. This quantity has been extensively studied by
J. Dixmier, and we shall use the following results:

There exist three integers d(P ), ϕ(P ) and u(P ), and a polynomial

(1.3) f(P ;X) =
d(P )∑
i=0

aiX
i ∈ Z[X]
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such that ([1], 4.2)

(1.4) R(n, P ) =
d(P )∑
i=0

aip(n− i).

For P fixed and n→∞ we have (cf. [1], 4.8)

(1.5) R(n, P ) ∼ p(n)(π/
√

6n)ϕ(P )u(P ) ,
(1.6) [a/2] + 1 ≤ ϕ(P ) ≤ a

where [x] denotes the integral part of x.
In [1], 4.10, an algorithm to calculate f(P ;X) is given, and at the end

of [1] a table of f(P ;X) is given for all P ⊂ N5. Some more information
about f(P ;X) can be found in [2].

We denote R(n, {a}) by R(n, a). For a fixed and n→∞ we have (cf. [1],
4.22)

(1.7) R(n, a) ∼ p(n)(π/
√

6n)ϕ(a)u(a) ,
(1.8) ϕ(a) = [a/2] + 1 .

Various estimates for u(a) can be found in [1] and [3], but we shall not use
them here.

Clearly, as a = maxP ∈ P , we have

(1.9) R(n, P ) ≤ R(n, a).

The number of unequal partitions of n which do not represent any ele-
ment of P will be denoted by Q(n, P ), and we shall write Q(n, a) instead of
Q(n, {a}). Obviously, as in (1.9) we have

(1.10) Q(n, P ) ≤ Q(n, a) for a = maxP .

We shall need the following results, valid if a goes to infinity with n:
there exists ε0 > 0 such that uniformly for 1 ≤ a ≤ ε0

√
n we have (cf. [7],

Theorem 1)

(1.11) log
R(n, a)
p(n)

≤ ϕ(a) log
πa√
6n

+O(1/
√
n) ,

(1.12) Q(n, a) ≤ q(n) exp
(
− a log

2√
3

+ π
a2

8
√

3n
+O(1)

)
.

For a = a(n) such that
√
n log n ≤ a ≤ n−

√
n log n we have uniformly

(this is a consequence of Theorems 1 and 2 of [8])

(1.13) R(n, a) = p([n/2])1+o(1) ,

(1.14) Q(n, a) = q([n/2])1+o(1) .
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For all ε > 0 there exists δ < 1 such that for all n ≥ 1 and a with
ε
√
n ≤ a ≤ n− ε

√
n we have (cf. [4], 2.1)

(1.15) R(n, a) ≤ p(n)δ ,

(1.16) Q(n, a) ≤ q(n)δ .

In fact, (1.16) is not proved in [4]; but, starting with (1.12), (1.16) can
be proved in the same way as (1.15).

From the famous result of Hardy and Ramanujan (cf. [11]) we know that

(1.17) p(n) ∼ 1
4
√

3n
exp(C

√
n)

where C = π
√

2/3 = 2.56 . . . (throughout the paper). As explained in [5],
it is also possible to deduce from the result of Hardy and Ramanujan an
asymptotic expansion for p(n− µ)/p(n), where µ is a fixed integer:

(1.18)
p(n− µ)
p(n)

= 1 +
k∑

i=1

βi n
−i/2 +O(n−(k+1)/2).

The first values of βi are

(1.19)
β1 = −Cµ

2
, β2 = µ+

C2µ2

8
,

β3 = −C
3µ3

48
− 5

8
Cµ2 − 1

96
(48 + C2)µ

C
.

From Hardy and Ramanujan we also know that

(1.20) q(n) ∼ 1
4(3n3)1/4

exp(π
√
n/3).

It is easy to deduce from (1.20) that for h = h(n) = o(n3/4) we have (cf. [9],
Lemma 3)

(1.21) q(n+ h) ∼ q(n) exp
(

πh

2
√

3n

)
.

We finally introduce ρ(n,m), which is the number of partitions of n into
unequal parts ≥ m. From ([9], Theorem 1) we know that for all n ≥ 1 and
1 ≤ m ≤ n,

(1.22)
1

2m−1
q(n) ≤ ρ(n,m) ≤ 1

2m−1
q

(
n+

m(m− 1)
2

)
.

Perhaps, in Theorem 2 it is possible to get an asymptotic expansion
of H(n) in the powers of 1/

√
n. In a letter to J.-L. Nicolas, M. Szalay ex-

plains how to obtain such an asymptotic expansion for ρ(n, 2) by an analytic
method. If this result can be extended to ρ(n,m) for m = O(log2 n), then
our proof yields an asymptotic expansion for H(n).
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As in [8], we have not tried to choose optimally the parameters in the
proofs of Theorems 1 and 2.

2. The lower bound

Proposition 1. For h0 < n/2 we have

(2.1) G(n) ≥ 2
h0∑

h=0

∑
σ∈π(h)

R(n,P(σ))− E(h0)

with

E(h0) ≤ ((1 + h0)p(h0))2 ,(2.2)
E(h0) ≤ G(2h0) .(2.3)

Similarly , for unequal partitions we have

(2.4) H(n) ≥ 2
h0∑

h=0

∑
σ∈π′(h)

Q(n,P(σ))− E′(h0)

with

E′(h0) ≤ ((1 + h0)q(h0))2 ,(2.5)
E′(h0) ≤ H(2h0 + 1) .(2.6)

P r o o f. We shall prove (2.1)–(2.3). The proof of (2.4)–(2.6) is the same,
just considering unequal partitions instead of unrestricted ones.

To each h with 0 ≤ h ≤ h0 and each partition σ ∈ π(h) we associate a
partition of n, say τ ∈ π(n), by adding to σ a large element n − h > n/2.
So, P∗(τ) = P(σ). Clearly, there are R(n,P(σ)) partitions of n which are
additively independent of τ .

Now, we may consider all the pairs (τ ′, τ ′′) in π(n) with either τ ′ = τ
and τ ′′ ∈ R(n,P(σ)), or τ ′′ = τ and τ ′ ∈ R(n,P(σ)). The number of such
pairs is the first term on the right hand side of (2.1).

But some pairs are counted twice: for instance, the pair τ ′ = n, τ ′′ =
1 + (n − 1), if h0 ≥ 1. Denote the number of such pairs by E(h0). To be
counted twice, the pair (τ ′, τ ′′) must be of the following form: there exist
h′ and h′′ with 0 ≤ h′ ≤ h0 , 0 ≤ h′′ ≤ h0 and σ′ ∈ π(h′) , σ′′ ∈ π(h′′) such
that τ ′ = σ′ + (n− h′), τ ′′ = σ′′ + (n− h′′) and

(2.7) P(σ′) ∩ P(σ′′) = ∅.
If we neglect (2.7), the number of such exceptions is( h0∑

h=0

p(h)
)2

≤ ((h0 + 1)p(h0))2 ,

which proves (2.2).
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To prove (2.3), we associate with σ′ and σ′′ two partitions ξ′ and ξ′′ of
2h0, by adding a large element 2h0 − h′ or 2h0 − h′′. We have

(2.8) P∗(ξ′) = P(σ′)

and similarly, P∗(ξ′′) = P(σ′′). (2.8) can be easily seen when h′ < h0, and
it also holds when h′ = h0, because in this case h0 = h′ ∈ P(σ′).

From (2.7) and (2.8) we see that ξ′ and ξ′′ are two additively indepen-
dent partitions of 2h0. Observing that to distinct σ′ correspond distinct ξ′

completes the proof of (2.3).
To prove (2.6), it suffices to observe that ξ′ and ξ′′ belong to π′(2h0 +1),

because if h′ = h0 and σ′ = h0, then ξ′ must have unequal parts.

3. The upper bound

Lemma 1. Let s(m) denote the smallest integer which does not divide m.
If m is not a divisor of 12, we have

(3.1) s(m) ≤ 7
log 60

logm ≤ 1.71 logm.

P r o o f. This is an improvement of Lemma 1 of [8]. After Chebyshev,
we define

ψ(x) =
∑

pm≤x

log p ,

and it follows from Chebyshev’s results that ψ(x)/x ≥ (log 60)/7 for x ≥ 5.
Thus for s(m) ≥ 6 we have

logm ≥ ψ(s(m)− 1) = ψ(s(m)− c) ≥ log 60
7

(s(m)− c)

for any c such that 0 < c < 1. Letting c tend to 0 we obtain

(3.2) s(m) ≥ 6 ⇒ s(m) ≤ 7
log 60

logm.

It remains to prove the lemma for s(m) ≤ 5. But in this case (3.1) holds
for logm ≥ 5

7 log 60, i.e., for m ≥ 19. Calculating s(m) for 2 ≤ m ≤ 18
completes the proof.

Lemma 2. Let τ be a partition of n. Consider the following property :

(3.3) τ has at least
√
n

100
d i s t inc t parts not exceeding 100

√
n.

(i) The number of unrestricted partitions of n which do not satisfy (3.3)
is O(p(n)1/4).

(ii) The number of unequal partitions of n which do not satisfy (3.3) is
O(q(n)1/4).
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P r o o f. We shall use Lemma 4 of [8], which claims that if Z(n, t,m) de-
notes the number of unrestricted partitions of n such that at most t distinct
parts not exceeding m may occur, and t < m/2, then

Z(n, t,m) ≤ 6tn2

(
m

t

)
p(n, t)p(n, n/m).

Now, if m = [100
√
n] and t = [

√
n/100], then(

m

t

)
≤ mt

t!
≤ mt

tte−t
=

(
me

t

)t

≤ exp
(√

n

100
log(10000e)

)
≤ exp(0.11

√
n).

By Lemma 2 of [8], p(n,
√
n/100) ≤ exp(0.12

√
n), and therefore, for n large

enough,
Z(n,

√
n/100, 100

√
n) ≤ exp(0.4

√
n) ,

which together with (1.17) proves (i).
To prove (ii), we observe that a partition of n which does not satisfy (3.3)

has at most
√
n/100 parts smaller than 100

√
n, and also at most

√
n/100

parts bigger than 100
√
n. Such a partition has at most 2

√
n/100 parts, and

their number is bounded by p(n,
√
n/50) ≤ exp(0.21

√
n) by Lemma 2 of [8],

which, in view of (1.20), completes the proof of (ii).

Lemma 3. Let N ∈ N, N ≥ 2500, and m ∈ N satisfy

(3.4) 7Ns(m) ≤ m ≤ 103N2s(m)−2 ,

and suppose that

(3.5) A ⊂ NN ,

(3.6) |A| ≥ 104N/s(m) .

Then m ∈ P(A).

P r o o f. This is Lemma 10 of [8].

Lemma 4. Let m and n be two positive integers, n ≥ 2, such that

(3.7) 1500
√
n log n ≤ m ≤ 2.106n(log n)−2 ,

(3.8) s(m) > 108 ,

and suppose that

(3.9) A ⊂ N[100
√

n] ,

(3.10) |A| ≥
√
n/100 .

Then m ∈ P(A).

P r o o f. We set N = [100
√
n ], so we have 99

√
n ≤ N ≤ 100

√
n. We

apply Lemma 3: (3.5) comes from (3.9), and (3.6) follows from (3.8) and
(3.10). Moreover, from (3.2) and (3.8) we have logm > 1

2 · 108, and (3.7)
implies n ≥ m.
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Further, by Lemma 1,

103N2

s(m)2
≥ 103(9801)n

(2 logm)2
≥ 2 · 106 n

(log n)2
≥ m

and
7Ns(m) ≤ 700

√
n(2 logm) < 1500

√
n log n ≤ m,

so that (3.4) holds, and Lemma 3 yields m ∈ P(A).

Lemma 5. If d ∈ N and n1, . . . , nd are integers, then there is a sum
of the form ni1 + . . . + nit (1 ≤ i1 < . . . < it ≤ d) such that d divides
ni1 + . . .+ nit .

P r o o f. Apply the pigeon-hole principle to the d+ 1 sums
∑k

i=0 ni, for
0 ≤ k ≤ d, modulo d.

Lemma 6. Let D = exp(ψ(108)) denote the least common multiple of the
numbers 1, 2, . . . , 108. Assume that τ1 and τ2 are two additively independent
partitions of n ≥ 3, and τ1 satisfies (3.3). To τ1 and τ2 assign the multisets
N1 and N2 of their parts. Then N2 can be written as

(3.11) N2 = N ′ ∪N ′′

where

(3.12) S(N ′) < 1500
√
n log n

(or N ′ = ∅) and

(3.13) |N ′′| < D(log n)2.

P r o o f. Let u denote the greatest integer such that

(3.14) D|u ,
(3.15) u ≤ 2 · 106n(log n)−2 ,

and there is a subset N ∗ ⊂ N2 with

(3.16) S(N ∗) = u;

if such an integer does not exist, then we write u = 0. We are going to
show that N ′ = N ∗ (if u = 0, then N ′ = ∅) and N ′′ = N2\N ′ satisfy
(3.11)–(3.13).

Here and everywhere the occurring subsets may also contain multiple
elements; e.g., the multiplicity of m in N\N ′ is the multiplicity in N minus
the multiplicity in N ′.

By (3.16), N2 represents u. This implies that

(3.17) S(N ′) < 1500
√
n log n

since otherwise, by Lemma 4 (with u in place ofm, and A being the subset of
N1 consisting of elements smaller than 100

√
n), it would follow from (3.14)



70 P. ERDŐS ET AL.

and (3.15) that also τ1 represents u, and this is impossible since τ1 and τ2
are additively independent.

(3.11) holds trivially, while (3.12) holds by (3.17). To show that also
(3.13) holds, assume indirectly that

(3.18) |N ′′| = |N2\N ′| ≥ D(log n)2 .

Write N ′′ = {n′′1 , . . . , n′′v} where n′′1 ≤ . . . ≤ n′′v and by (3.18), v = |N ′′| ≥
D(log n)2. Thus we have

(n′′1 + . . .+ n′′D)[log n]2 ≤
[log n]2−1∑

j=0

D∑
i=1

n′′jD+i(3.19)

≤ n′′1 + . . .+ n′′v = S(N ′′) ≤ S(N2) = n .

By Lemma 5, there is a (non-empty) subset N3 ⊂ {n′′1 , . . . , n′′D} such that

(3.20) D|S(N3).

Then writing u′ = u+ S(N3), by (3.14) and (3.20) we have

(3.21) D|(u+ S(N3)) = u′ .

Furthermore, it follows from (3.17) and (3.19) that for n ≥ 3,

u < u′ = u+ S(N3) = S(N ′) + S(N3) ≤ S(N ′) + n′′1 + . . .+ n′′D(3.22)
≤ 1500

√
n log n+ n[log n]−2 < 2 · 106n(log n)−2 .

(3.21) and (3.22) contradict the maximum property of u, which proves (3.13)
and completes the proof of the lemma.

Lemma 7. For all ε > 0 the number of pairs (τ1, τ2) of partitions of
n such that τ1 satisfies (3.3), τ1 and τ2 are additively independent and the
greatest part of τ2 is less than n− 3000

√
n log n is

(i) Oε(p(n)1/
√

2+ε) for unrestricted partitions,
(ii) Oε(q(n)1/

√
2+ε) for unequal partitions.

P r o o f. We shall prove (i); for unequal partitions, everything goes in the
same way. To the couple (τ1, τ2) we assign the sets N1,N2,N ′,N ′′ satisfying
the conditions in Lemma 6. Write N ′′ = {n′′1 , . . . , n′′v} where n′′1 ≤ . . . ≤ n′′v ,
and define x by

S(N ′) + (n′′1 + . . .+ n′′x−1) < 1500
√
n log n(3.23)

≤ S(N ′) + (n′′1 + . . .+ n′′x)

(and x = 1 for 1500
√
n log n ≤ S(N ′) + n′′1). Let

(3.24) a = S(N ′) + n′′1 + . . .+ n′′x.
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By (3.23) and (3.24) we have

(3.25) 1500
√
n log n < a = S(N ′) + (n′′1 + . . .+ n′′x−1) + n′′x

< 1500
√
n log n+ (n− 3000

√
n log n) = n− 1500

√
n log n .

By (3.24) τ2 represents a. Since τ1 and τ2 are additively independent, τ1
does not represent a, so that, for fixed a, it can be chosen in at most R(n, a)
ways.

Writing k = S(N ′), by (3.12) we have

(3.26) k < 1500
√
n log n

and clearly N ′ can be chosen in at most p(k) ways. Finally, all the elements
of N ′′ can be chosen in at most n ways, and by (3.13) their number is at
most D(log n)2, so that N ′′ can be chosen in at most

nD(log n)2 = exp(D(log n)3)

ways.
Collecting the results above, and summing over the a’s in (3.25) and k’s

in (3.26), we find that the number of pairs considered in this lemma is at
most( ∑

1500
√

n log n<a<n−1500
√

n log n

R(n, a)
)( 1500

√
n log n∑

k=1

p(k)
)

exp(D(log n)3) ,

and by (1.13) and (1.17) this quantity is O(p(n)1/
√

2+ε) for all ε > 0.
To prove (ii) we just have to replace p(k) by q(k), R(n, a) by Q(n, a) and

to use (1.14) and (1.20) instead of (1.13) and (1.17).

Proposition 2. For all ε > 0 we have

(i) G(n) = 2
3000

√
n log n∑

h=0

∑
σ∈π(h)

R(n,P(σ)) +Oε(p(n)1/
√

2 +ε) ,

(ii) H(n) = 2
3000

√
n log n∑

h=0

∑
σ∈π′(h)

Q(n,P(σ)) +Oε(q(n)1/
√

2 +ε) .

P r o o f. First we observe that the lower bounds for G(n) and H(n)
follow from Proposition 1, and more precisely from (2.1), (2.2) and (1.17),
and respectively from (2.4), (2.5) and (1.20), with h0 = [3000

√
n log n].

For the upper bounds, we notice that if (τ1, τ2) is a pair of additively
independent partitions of n, at least one of the following 5 cases must occur:

C a s e 1: Neither τ1 nor τ2 satisfies (3.3). From Lemma 2, the number
of such pairs is O(p(n)1/2) for unrestricted partitions, and O(q(n)1/2) for
unequal partitions.
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C a s e 2: τ1 satisfies (3.3), and the greatest element of τ2 is less than
n−3000

√
n log n. By Lemma 7, the number of such pairs is O(p(n)1/

√
2 +ε)

resp. O(q(n)1/
√

2 +ε).
C a s e 3: τ2 satisfies (3.3) and the greatest element of τ1 is less than

n− 3000
√
n log n. The number of such pairs is the same as for Case 2.

C a s e 4: The greatest element t of τ2 is greater than or equal to n −
3000

√
n log n, so that

h
def= n− t ≤ 3000

√
n log n .

For a fixed h, τ2 is the union of a large part t = n − h and of a partition
σ ∈ π(h). So τ1 can be chosen in at most R(n,P(σ)) ways. The number of
such pairs is at most

3000
√

n log n∑
h=0

∑
σ∈π(h)

R(n,P(σ)) .

C a s e 5: The greatest element of τ1 is greater than or equal to n −
3000

√
n log n. The number of pairs is the same as for Case 4.

For Cases 4 or 5 we have only considered unrestricted partitions. For
unequal partitions, replace π(h) by π′(h) and R(n,P(σ)) by Q(n,P(σ)).

4. Proof of Theorem 1. To obtain an asymptotic expansion of order
k, we shall split the summation over h appearing in Proposition 2(i) into
four subsums:

S1 where h runs between 0 and h0
def= 2k − 1,

S2 where h runs between h0 + 1 = 2k and h0 + 4,
S3 where h runs between h0+5 and ε

√
n with ε smaller than ε0 considered

in (1.11),
S4 where h runs between ε

√
n and 3000

√
n log n.

We have to prove that S2 + S3 + S4 = O(p(n)n−(k+1)/2).
First, it follows from (1.9) that∑

σ∈π(h)

R(n,P(σ)) ≤ p(h)R(n, h).

To estimate S4, we use (1.15). So, for n large enough,

S4 =
3000

√
n log n∑

h=[ε
√

n]+1

p(h)R(n, h) ≤ n p([3000
√
n log n])p(n)δ
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and S4 = O(p(n)n−(k+1)/2) for all k, by (1.17). For S3, we use (1.11):

R(n, h) = O

(
p(n) exp

(
h

2
log

πh√
6n

))
.

Now, from (1.17) we have p(h) = O(exp(C
√
h)) so that

p(h)R(n, h) = O(p(n) exp g(h, n))

where

g(h, n) = C
√
h+

h

2
log

πh√
6n

.

We notice that for ε small enough and n fixed, g(h, n) is decreasing in h for
h ≤ ε

√
n, therefore

S3 ≤
ε
√

n∑
h=h0+5

p(h)R(n, h) = O(ε
√
n p(n) exp g(h0 + 5, n))

and so S3 = O(p(n)n−(k+1)/2). The same estimate for S2 follows easily from
(1.7).

It remains to obtain an asymptotic expansion of S1, of order k. By using
the polynomials introduced in (1.3) and setting

F (X) =
h0∑

h=0

∑
σ∈π(h)

f(P(σ);X) =
d′∑

i=0

biX
i ,

we obtain by (1.4)

S1 =
h0∑

h=0

∑
σ∈π(h)

R(n,P(σ)) =
d′∑

i=0

bip(n− i)

and by (1.18), each p(n− i)/p(n) can be expanded in the powers of 1/
√
n.

For instance, we choose k = 2, h0 = 3. From Dixmier’s table (cf. [1]) we
have

h σ P(σ) f(P(σ); X)

0 ∅ 1

1 1 {1} 1−X

2 2 {2} 1− 2X2 + X4

2 1 + 1 {1, 2} 1−X −X2 + X3

3 3 {3} 1− 3X3 + X5 + 2X6 −X8

3 2 + 1 {1, 2, 3} 1−X −X2 + X4 + X5 −X6

3 1 + 1 + 1 {1, 2, 3} 1−X −X2 + X4 + X5 −X6

F (X) = 7− 4X − 5X2 − 2X3 + 3X4 + 3X5 −X8 =
8∑

µ=0

bµX
µ .
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Then we have S1 =
∑8

µ=0 bµ p(n− µ) , and by (1.18) and (1.19)

S1 = p(n)
(
s0 −

C

2
√
n
s1 +

(
s1 +

C2

8
s2

)
1
n

+O

(
1

n3/2

))
with

s0 =
8∑

µ=0

bµ = 1 , s1 =
8∑

µ=0

µbµ = −1 , s2 =
8∑

µ=0

µ2bµ = 17 .

5. Proof of Theorem 2. Here we split the summation over h appearing
in Proposition 2(ii) in the following way:

S1 with 0 ≤ h ≤ 5 log n,
S2 with 5 log n < h ≤ 10 log n,
S3 with 10 log n < h ≤ ε

√
n where ε is small enough, and

S4 with ε
√
n < h ≤ 3000

√
n log n.

First, by (1.10), we notice that∑
σ∈π′(h)

Q(n,P(σ)) ≤ q(h)Q(n, h).

Then we obtain an upper bound for S4 and S3 by using (1.14) and (1.12)
in the same way as in Section 4:

(5.1) S3 + S4 = O(q(n)/
√
n).

Now, for 5 log n < h ≤ 10 log n, (1.12) yields

Q(n, h) = O(q(n) exp(−h log(2/
√

3))

and (1.20) yields

(5.2) q(h) = O(exp(0.03h)) ,

so that q(h)Q(n, h) = O(q(n) exp(−h/10)) and

(5.3) S2 = O(q(n) log n/
√
n).

To deal with S1, we have to introduce a new definition.
For P ⊂ N and h ≥ 1 let W(h, P ) denote the set of subsets A ⊂

{1, . . . , h} such that P(A) ∩ P = ∅. Then

(5.4) Q(n, P ) =
∑

A⊂W(h,P ),S(A)≤n

ρ(n− S(A), h+ 1)

provided that maxP ≤ h. To prove this, we just have to distinguish for a
partition of n the parts smaller than h and those larger than h+ 1.
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With (5.4) we have

(5.5) S1 = q(n) +
5 log n∑
h=1

∑
σ∈π′(h)

∑
A⊂W(h,P(σ))

ρ(n− S(A), h+ 1).

Further, remembering that ρ(n,m) is non-decreasing in n, observing that
in (5.5) we have

(5.6) S(A) ≤ h(h+ 1)/2 = O(log2 n)

and using (1.22), we get

ρ(n− S(A), h+ 1) ≤ ρ(n, h+ 1) ≤ 1
2h
q

(
n+

(h+ 1)(h+ 2)
2

)
(5.7)

ρ(n− S(A), h+ 1) ≥ ρ

(
n− h(h+ 1)

2
, h+ 1

)
(5.8)

≥ 1
2h
q

(
n− h(h+ 1)

2

)
.

Now, (5.6)–(5.8) and (1.21) give

(5.9) ρ(n− S(A), h+ 1) =
1
2h
q(n)(1 +O(log2 n/

√
n)).

We set W (h, P ) = |W(h, P )| and we observe, as in the proof of Theo-
rem 5 of [8], that if h = maxP , then

(5.10) W (h, P ) ≤ 3h/2.

Indeed, for all i with 1 ≤ i < h/2 there are 3 possibilities: i ∈ A, h−i /∈ A ;
i /∈ A, h− i ∈ A ; and i /∈ A, (h− i) /∈ A.

Further, we define

(5.11) z(h) =
∑

σ∈π′(h)

W (h,P(σ)) ≤ q(h)3h/2

and z(0) = 1. We denote by c/2 the sum of the convergent series

(5.12) c/2 =
∞∑

h=0

z(h)2−h.

From (5.2) and (5.11) we get

(5.13)
∑

h>5 log n

z(h)2−h = O
( ∑

h>5 log n

exp(−h/10)
)

= O(1/
√
n) .

Finally, (5.5) and (5.9) give

(5.14) S1 = q(n)
( 5 log n∑

h=0

z(h)2−h
)
(1 +O(log2 n/

√
n)) .
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Combining this with (5.12) and (5.13) yields

(5.15) S1 =
c

2
q(n)(1 +O(log2 n/

√
n)),

which together with Proposition 2(ii), (5.1) and (5.3) completes the proof
of (1.2).

6. Calculation of c. The real number c is defined by (5.12). Unfortu-
nately, z(h) is not easy to calculate, and M. Deléglise has calculated it for
h ≤ 40 after a long running time of the computer.

The upper bound (5.11) is rather poor: for h = 40 we have z(h)3−h/2 =
0.266 and q(h) = 1113. So, we need an improved upper bound for z(h).

Lemma 8. Let σ ∈ π′(h) and j = cardP(σ). We have

(6.1) W (h,P(σ)) ≤ 2
3 · 3

(h−j+1)/2.

P r o o f. First recall that if x ∈ P(σ), then h − x ∈ P(σ). We shall
consider 3 cases:

C a s e 1: h is odd. By the above remark, j must be odd. Write P(σ) =
{x1, . . . , xj} with x1 < . . . < x(j−1)/2 ≤ (h− 1)/2 and xi = h − xj−i for
i > (j − 1)/2.

How to choose A ∈ W(h,P(σ))? For all i with 1 ≤ i ≤ j, xi ∈ A is
impossible. For the 1

2 (h− 1)− 1
2 (j − 1) = 1

2 (h− j) x’s up to 1
2 (h− 1) and

6= xi we have at most 3 possibilities: x ∈ A and h − x /∈ A; x ∈ A and
h− x ∈ A; x /∈ A and h− x /∈ A; and thus,

(6.2) W (h,P(σ)) ≤ 3(h−j)/2.

C a s e 2: h even, j odd. Necessarily we have h/2 /∈ P(σ). Now, we have
1
2 (h − 2) − 1

2 (j − 1) = 1
2 (h − j − 1) x’s for which there are 3 possibilities,

and for x = h/2 we have two possibilities: x ∈ A or x /∈ A, and thus

(6.3) W (h,P(σ)) ≤ 2 · 3(h−j−1)/2 .

C a s e 3: h even, j even. We have h/2 ∈ P(σ) and h/2 /∈ A. The
number of free x’s is 1

2 (h− 2)− 1
2 (j − 2) = 1

2 (h− j), and thus

(6.4) W (h,P(σ)) ≤ 3(h−j)/2.

It remains to observe that (6.2)–(6.4) imply (6.1).
Let us introduce now for 1 ≤ j ≤ h,

(6.5) ρ(j) = card{σ ∈ π′(h) : cardP(σ) = j}.

It is easy to see that ρ(1) = 1, ρ(2) = 0, ρ(3) = [(h − 1)/2], the number of
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partitions with 2 parts. We define

(6.6) ŝ(h) =
∑

σ∈π′(h)

3(1−cardP(σ))/2 =
h∑

j=1

ρ(j)3−(j−1)/2.

It follows from (5.11), (6.6), and Lemma 8 that

(6.7)
z(h)
2h

≤ 2
3

(√
3

2

)h

ŝ(h) .

Lemma 9. For all real positive x, we have

(6.8) n ≤ 31/43x/2x2 ⇒ ŝ(n) ≤ 0.4√
n

3x2/4e2x ,

and

(6.9) ŝ(n) ≤ 0.4√
n

exp
(

log n(log n+ 4)
log 3

)
.

P r o o f. Consider a partition of n into m distinct parts. We clearly have
m ≤

√
2n, and for such a partition σ, cardP(σ) ≥ m(m+ 1)/2. Indeed,

if the parts are a1 < . . . < am, the subsums a1, . . . , am, am + a1, . . . , am +
am−1, am +am−1 +a1, . . . , am +am−1 +am−2, . . . , am +am−1 + . . .+a1 = n
are all distinct.

Now, it is known that the number of partitions of n into m distinct parts
is at most

1
m!

(
n− 1
m− 1

)
=

1
m!

m

n

(
n

m

)
.

Therefore, from (6.6) we have

ŝ(n) ≤

√
2n∑

m=1

1
m!

m

n

(
n

m

)
31/2−m(m+1)/4.

By Stirling’s formula, m! ≥ mme−m
√

2πm, and thus,

(6.10) ŝ(n) ≤
√

3
2πn

√
2n∑

m=1

(
ne2

m23(m+1)/4

)m

.

Now, we set

y = x

(
log(ne2)− x+ 1

4
log 3− 2 log x

)
,

y′ = log n− log 3
4

− x

2
log 3− 2 log x .
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The derivative y′ vanishes at x0 = x0(n). It is easy to see that

(6.11) x0 <
2 log n
log 3

,

(6.12) x0(n) is increasing in n ,
(6.13) n = 31/43x0/2x2

0 .

Further, for x = x0 we have y = y0 = x0(2 + 1
4x0 log 3), so that (6.10)

becomes

(6.14) ŝ(n) ≤
√

6
2π
√
n

3x2
0/4e2x0 ≤ 0.4√

n
3x2

0/4e2x0 .

Then (6.8) follows from (6.12)–(6.14), while (6.9) follows from (6.11) and
(6.14).

Now, we write

c/2 =
∞∑

h=0

z(h)2−h =
40∑
0

+
100∑
41

+
137∑
101

+
512∑
138

+
∞∑
513

= T1 + T2 + T3 + T4 + T5 .

From the table at the end of the paper we have T1 = 6.9168 . . . The upper
bound T2 ≤ 0.212 has been obtained by using (6.7), and by computing the
exact value of ŝ(h) from (6.6) (cf. table at the end of the paper). For T3, we
use (6.8) with x = 3.7, which yields

n ≤ 137 ⇒ ŝ(n) ≤ 28106/
√
n ,

so that by (6.7)

T3 ≤
2
3

28106
10

∑
h≥101

(
√

3/2)h ≤ 0.007 .

Using (6.8) with x = 5 yields

n ≤ 512 ⇒ ŝ(n) ≤ 8.5 · 106/
√
n

and allows us to get T4 ≤ 0.009.
For T5, we use (6.9), and we observe that for n ≥ 513,

log n(log n+ 4)
log 3

≤ 0.114n .

Therefore, by (6.7), we have

T5 ≤
∑

h≥513

2
3

0.4√
513

exp
((

0.114− log
2√
3

)
h

)
≤ 4 · 1 10−9 .

In conclusion, 6.916 ≤ c/2 ≤ 7.145, which completes the proof of Theorem 2.
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T A B L E O F G(n)

n p(n) G(n) G(n)/p(n) n p(n) G(n) G(n)/p(n)

1 1 1 1.00 36 17977 151371 8.42

2 2 3 1.50 37 21637 171675 7.93

3 3 5 1.67 38 26015 214973 8.26

4 5 11 2.20 39 31185 251205 8.06

5 7 15 2.14 40 37338 313449 8.39

6 11 33 3.00 41 44583 356495 8.00

7 15 41 2.73 42 53174 447651 8.42

8 22 77 3.50 43 63261 506113 8.00

9 30 105 3.50 44 75175 625341 8.32

10 42 173 4.12 45 89134 721223 8.09

11 56 215 3.84 46 105558 868565 8.23

12 77 381 4.95 47 124754 989791 7.93

13 101 449 4.45 48 147273 1222899 8.30

14 135 699 5.18 49 173525 1372535 7.91

15 176 911 5.18 50 204226 1657831 8.12

16 231 1335 5.78 51 239943 1890863 7.88

17 297 1611 5.42 52 281589 2264913 8.04

18 385 2433 6.32 53 329931 2550905 7.73

19 490 2867 5.85 54 386155 3079125 7.97

20 627 4179 6.67 55 451276 3457885 7.66

21 792 5113 6.46 56 526823 4132983 7.85

22 1002 6903 6.89 57 614154 4662771 7.59

23 1255 8251 6.57 58 715220 5488969 7.67

24 1575 11769 7.47 59 831820 6172705 7.42

25 1958 13661 6.98 60 966467 7397379 7.65

26 2436 18177 7.46 61 1121505 8200197 7.31

27 3010 22011 7.31 62 1300156 9643057 7.42

28 3718 28997 7.80 63 1505499 10894619 7.24

29 4565 33711 7.38 64 1741630 12737677 7.31

30 5604 45251 8.07 65 2012558 14233625 7.07

31 6842 51891 7.58 66 2323520 16720939 7.20

32 8349 67697 8.11 67 2679689 18567877 6.93

33 10143 79499 7.84 68 3087735 21685005 7.02

34 12310 100123 8.13 69 3554345 24264927 6.83

35 14883 117307 7.88 70 4087968 28143245 6.88
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T A B L E O F H(n)

rn := H(n)/q(n)

n q(n) H(n) rn rn+1 − rn−1 n q(n) H(n) rn rn+1 − rn−1

1 1 1 1.00 41 1260 54541 43.29 3.71

2 1 1 1.00 0.50 42 1426 64497 45.23 3.81

3 2 3 1.50 0.50 43 1610 75823 47.10 3.82

4 2 3 1.50 0.83 44 1816 89067 49.05 4.01

5 3 7 2.33 0.75 45 2048 104665 51.11 4.13

6 4 9 2.25 0.67 46 2304 122527 53.18 3.98

7 5 15 3.00 0.92 47 2590 142677 55.09 4.03

8 6 19 3.17 1.12 48 2910 166471 57.21 4.09

9 8 33 4.12 1.13 49 3264 193149 59.18 4.36

10 10 43 4.30 1.13 50 3658 225237 61.57 4.30

11 12 63 5.25 1.10 51 4097 260071 63.48 4.17

12 15 81 5.40 1.25 52 4582 301201 65.74 4.23

13 18 117 6.50 1.46 53 5120 346697 67.71 4.44

14 22 151 6.86 1.54 54 5718 401399 70.20 4.40

15 27 217 8.04 1.67 55 6378 459917 72.11 4.23

16 32 273 8.53 1.72 56 7108 529029 74.43 4.31

17 38 371 9.76 1.93 57 7917 604999 76.42 4.49

18 46 481 10.46 1.85 58 8808 695093 78.92 4.39

19 54 627 11.61 1.90 59 9792 791261 80.81 4.48

20 64 791 12.36 1.82 60 10880 906317 83.30 4.40

21 76 1021 13.43 2.06 61 12076 1028939 85.21 4.45

22 89 1283 14.42 2.31 62 13394 1175301 87.75 4.41

23 104 1637 15.74 2.23 63 14848 1330657 89.62 4.40

24 122 2031 16.65 2.48 64 16444 1515269 92.15 4.42

25 142 2587 18.22 2.70 65 18200 1711531 94.04 4.47

26 165 3193 19.35 2.64 66 20132 1945243 96.62 4.45

27 192 4005 20.86 2.64 67 22250 2191343 98.49 4.40

28 222 4881 21.99 2.75 68 24576 2482699 101.02 4.43

29 256 6043 23.61 3.13 69 27130 2792127 102.92 4.40

30 296 7437 25.12 2.98 70 29927 3157955 105.52 4.44

31 340 9041 26.59 2.94 71 32992 3541887 107.36 4.41

32 390 10943 28.06 3.02 72 36352 3996105 109.93 4.43

33 448 13265 29.61 3.23 73 40026 4474421 111.79 4.46

34 512 16021 31.29 3.23 74 44046 5038449 114.39 4.49

35 585 19213 32.84 3.19 75 48446 5633187 116.28 4.38

36 668 23035 34.48 3.33 76 53250 6324539 118.77 4.29

37 760 27487 36.17 3.50 77 58499 7053295 120.57 4.47

38 864 32811 37.98 3.46 78 64234 7916409 123.24 4.42

39 982 28921 39.63 3.54 79 70488 8810353 124.99 4.30

40 1113 46213 41.52 3.66 80 77312 9860123 127.54
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T A B L E O F z(h)

h q(h) z(h) z(h)2−h
∑

z(h)2−h

0 1 1 1.000000 1.000000

1 1 1 0.500000 1.500000

2 1 2 0.500000 2.000000

3 2 4 0.500000 2.500000

4 2 8 0.500000 3.000000

5 3 15 0.468750 3.468750

6 4 28 0.437500 3.906250

7 5 51 0.398438 4.304688

8 6 96 0.375000 4.679688

9 8 162 0.316406 4.996094

10 10 302 0.294922 5.291016

11 12 506 0.247070 5.538086

12 15 913 0.222900 5.760986

13 18 1509 0.184204 5.945190

14 22 2722 0.166138 6.111328

15 27 4339 0.132416 6.243744

16 32 7849 0.119766 6.363510

17 38 12459 0.095055 6.458565

18 46 21887 0.083492 6.542057

19 54 34721 0.066225 6.608282

20 64 61176 0.058342 6.666624

21 76 94817 0.045212 6.711836

22 89 166763 0.039759 6.751596

23 104 258428 0.030807 6.782403

24 122 448453 0.026730 6.809133

25 142 691043 0.020595 6.829727

26 165 1199147 0.017869 6.847596

27 192 1825810 0.013603 6.861199

28 222 3175164 0.011828 6.873028

29 256 4823668 0.008985 6.882013

30 296 8245366 0.007679 6.889692

31 340 12570653 0.005854 6.895545

32 390 21611259 0.005032 6.900577

33 448 32414428 0.003774 6.904351

34 512 55627306 0.003238 6.907589

35 585 83671722 0.002435 6.910024

36 668 142505471 0.002074 6.912097

37 760 214103771 0.001558 6.913655

38 864 364227805 0.001325 6.914980

39 982 542624438 0.000987 6.915967

40 1113 926297112 0.000842 6.916809
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T A B L E O F ŝ(h) A N D t(h) = 2
3 ( 3h/2

2h )̂s(h)

h t(h)
∑h

i=41
t(i) ŝ(h) h t(h)

∑h

i=41
t(i) ŝ(h)

41 0.022594 0.022594 12.34 71 0.000688 0.205860 28.11

42 0.020468 0.043062 12.91 72 0.000617 0.206478 29.14

43 0.018116 0.061178 13.19 73 0.000539 0.207017 29.39

44 0.016377 0.077555 13.77 74 0.000484 0.207501 30.47

45 0.014496 0.092051 14.08 75 0.000423 0.207924 30.71

46 0.013106 0.105156 14.69 76 0.000379 0.208303 31.81

47 0.011567 0.116724 14.98 77 0.000331 0.208634 32.05

48 0.010450 0.127174 15.62 78 0.000297 0.208931 33.20

49 0.009216 0.136389 15.91 79 0.000259 0.209190 33.44

50 0.008327 0.144716 16.60 80 0.000232 0.209422 34.60

51 0.007333 0.152050 16.88 81 0.000202 0.209624 34.84

52 0.006614 0.158664 17.58 82 0.000181 0.209805 36.06

53 0.005821 0.164485 17.86 83 0.000158 0.209963 36.28

54 0.005254 0.169739 18.62 84 0.000141 0.210105 37.52

55 0.004616 0.174355 18.89 85 0.000123 0.210228 37.76

56 0.004159 0.178514 19.65 86 0.000110 0.210339 39.04

57 0.003655 0.182169 19.94 87 0.000096 0.210435 39.26

58 0.003293 0.185462 20.75 88 0.000086 0.210521 40.56

59 0.002889 0.188351 21.01 89 0.000075 0.210596 40.79

60 0.002602 0.190952 21.85 90 0.000067 0.210663 42.15

61 0.002281 0.193233 22.12 91 0.000058 0.210721 42.36

62 0.002053 0.195287 23.00 92 0.000052 0.210773 43.73

63 0.001799 0.197085 23.26 93 0.000045 0.210819 43.95

64 0.001618 0.198703 24.16 94 0.000041 0.210859 45.38

65 0.001417 0.200120 24.43 95 0.000035 0.210895 45.59

66 0.001274 0.201394 25.37 96 0.000032 0.210926 47.03

67 0.001115 0.202508 25.62 97 0.000027 0.210954 47.24

68 0.001001 0.203510 26.59 98 0.000025 0.210978 48.94

69 0.000876 0.204386 26.85 99 0.000021 0.211000 48.94

70 0.000787 0.205173 27.86 100 0.000019 0.211019 50.46
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