COLLOQUIUM MATHEMATICUM

1992

VOL. LXIII

FASC. 1

ON COMPLETE ORBIT SPACES OF SL(2) ACTIONS, II

BY

ANDRZEJ BIAŁYNICKI-BIRULA AND JOANNA ŚWIĘCICKA (WARSZAWA)

The aim of this paper is to extend the results of [BB-S2] concerning geometric quotients of actions of SL(2) to the case of good quotients. Thus the results of the present paper can be applied to any action of SL(2) on a complete smooth algebraic variety, while the theorems proved in [BB-S2]concerned only special situations.

Like in [BB-S2], the source of our study lies in Mumford's Geometric Invariant Theory [GIT]. His results concerning semi-stability lead to the Conjecture (see below). In order to state it we need the following definition:

DEFINITION. Let T be an algebraic torus and let U, V be two open Tinvariant subsets of X for which there exist good quotients $\pi_U : U \to U//T$ and $\pi_V : V \to V//T$. We shall write $V \triangleleft U$ if $V \subset U$ and the induced morphism $V//T \to U//T$ is an open embedding.

We shall say that a *T*-invariant open subset *U* of *X* having a good quotient is *maximal* with respect to the property of having good quotient if *U* is maximal with respect to \triangleleft .

CONJECTURE. Let X be a smooth algebraic variety with an action of a reductive group G. Let T be a maximal torus of G and let N(T) be its normalizer in G. Let U be an N(T)-invariant open subset of X for which there exists a good quotient $\pi : U \to U//T$ and which is maximal with respect to this property. Then $\bigcap_{g \in G} gU$ is open, G-invariant and there exists a good quotient $\bigcap_{g \in G} gU \to \bigcap_{g \in G} gU//G$. Moreover, if U//T is complete, then $\bigcap_{g \in G} gU//G$ is also complete.

In the present paper we only consider the case $G = \mathrm{SL}(2)$. Theorem 1 shows that if U//T is projective then the conjecture is valid. Moreover, then X and $\bigcap_{g\in\mathrm{SL}(2)} gU//G$ are projective and there exists an ample, invertible, G-linearized sheaf \mathcal{L} on X such that U is the set of semi-stable points with respect to the action of T induced by the action of G.

We also prove the conjecture under the additional assumption that either U//T is complete (Theorem 2) or U//T is quasi-projective (Theorem 9).

Answering a question of D. Luna we also describe an example of an action of SL(2) on an algebraic variety X such that there exists a geometric quotient $X \to X/SL(2)$, where X/SL(2) is an algebraic space but not an algebraic variety.

1. Notation and terminology. We use the terminology of [BB-Ś1] and [BB-Ś2]. We now fix the notation and quote the definitions needed in the sequel.

The ground field k is supposed to be algebraically closed of characteristic 0.

If $X \to Y$ is a good quotient of X by an action of a reductive group G, then we write X//G in place of Y. We write X/G for the geometric quotient space of X by the action of G.

For a given action of a one-dimensional torus $T = k^*$ on a smooth complete variety X we denote by X^T the fixed point subvariety of the action. Let $X^T = X_1 \cup \ldots \cup X_r$ be the decomposition into irreducible components. For $i = 1, \ldots, r$, we define

$$X_{i}^{+} = \{x \in X; \lim_{t \to 0} tx \in X_{i}\}, \quad X_{i}^{-} = \{x \in X; \lim_{t \to \infty} tx \in X_{i}\}.$$

We say that X_i is *less* than X_j , and write $X_i \prec X_j$, if there exists a finite sequence of points $x_1, \ldots, x_m \in X - X^T$ such that

- (a) $\lim_{t\to 0} tx_1 \in X_i$,
- (b) $\lim_{t\to\infty} tx_m \in X_j$,

(c) for k = 1, ..., m-1, $\lim_{t\to\infty} tx_k$ and $\lim_{t\to 0} tx_{k+1}$ belong to the same irreducible component of X^T .

By a semi-section of $\{X_1, \ldots, X_r\}$ we mean a partition, denoted by A, of $\{X_1, \ldots, X_r\}$ into three pairwise disjoint subsets A^-, A^0, A^+ such that $A^- \neq \emptyset \neq A^+$, and if $X_i \in A^- \cup A^0, X_j \prec X_i$ and $i \neq j$, then $X_j \in A^-$. Any semi-section determines two open *T*-invariant subsets

$$X^{\rm ss}(A) = X - \left(\bigcup_{j \in A^-} X_j^- \cup \bigcup_{j \in A^+} X_j^+\right), \quad X^{\rm s}(A) = X^{\rm ss} - \bigcup_{j \in A^0} \left(X_j^- \cup X_j^+\right),$$

where we write $j \in A^-, A^0, A^+$ in place of $X_j \in A^-, A^0, A^+$. We shall call $X^{ss}(A)$ and $X^s(A)$ the sets of *semi-stable* and *stable* points determined by the semi-section A, respectively.

It has been proved in [BB-S1] that for any semi-section A there exists a good quotient $\pi : X^{ss}(A) \to X^{ss}(A)//T$, where $X^{ss}(A)//T$ is a complete algebraic variety, $\pi \mid X^{s}(A)$ is a geometric quotient and $\pi(X^{s}(A))$ is an open subset of $X^{ss}(A)//T$.

Let X be a smooth complete algebraic variety with a non-trivial action

of SL(2). Assume that

$$T = \left\{ \begin{bmatrix} t & 0\\ 0 & t^{-1} \end{bmatrix}; t \in k^* \right\},$$
$$B^+ = \left\{ \begin{bmatrix} t & \lambda\\ 0 & t^{-1} \end{bmatrix}; t \in k^*, \lambda \in k \right\}, \quad B^- = \left\{ \begin{bmatrix} t & 0\\ \lambda & t^{-1} \end{bmatrix}; t \in k^*, \lambda \in k \right\}$$
$$N(T) = T \cup \tau T, \quad \text{where} \quad \tau = \begin{bmatrix} 0 & 1\\ -1 & 0 \end{bmatrix}.$$

Then T is a maximal torus, N(T) is the normalizer of T and B^+, B^- are two Borel subgroups containing T.

The Weyl group W = N(T)/T acts on $\{X_1, \ldots, X_r\}$. Denote by w the involution on $\{X_1, \ldots, X_r\}$ determined by τ . A semi-section (A^-, A^0, A^+) for the action of T is called *Weyl-invariant* if $w(A^-) = A^+$ (hence $w(A^0) = A^0$, $w(A^+) = A^-$).

2. Projective and complete quotients. The proof of Theorem 1 in [BB-Ś1] can be easily adapted to give the proof of the following Theorem 1.

THEOREM 1. Let $U \subset X$ be an N(T)-invariant open subset such that a good quotient $U \to U//T$ exists and U//T is projective. Then X is projective and there exists an ample SL(2)-linearized linear sheaf \mathcal{L} on X such that

$$X^{\rm ss}(\mathcal{L}) = \bigcap_{g \in {\rm SL}(2)} gU$$

Hence $\bigcap_{a \in SL(2)} gU$ is open and SL(2)-invariant, a good quotient

$$\bigcap_{\in \mathrm{SL}(2)} gU \to \bigcap_{g \in \mathrm{SL}(2)} gU //\mathrm{SL}(2)$$

exists and $\bigcap_{g \in SL(2)} gU//SL(2)$ is a projective (normal) variety.

g

THEOREM 2. Let $U \subset X$ be an N(T)-invariant open subset of X such that a good quotient $U \to U//T$ exists and U//T is a complete algebraic variety. Then a good quotient

$$\bigcap_{g\in \mathrm{SL}(2)} gU \to \bigcap_{g\in \mathrm{SL}(2)} gU //\mathrm{SL}(2)$$

exists and $\bigcap_{a \in SL(2)} gU//SL(2)$ is a complete normal algebraic space.

In the proof we may and will assume that $U = X^{ss}(A)$, where A is a Weyl-invariant semi-section (see [BB-Ś1]).

First we prove the following:

PROPOSITION 3. Let $A = (A^-, A^0, A^+)$ be a Weyl-invariant semi-section and let $X^{ss}(A), X^s(A)$ be the sets of semi-stable and stable points determined by A. Then

$$\operatorname{SL}(2)(X^{\operatorname{ss}}(A) - X^{\operatorname{s}}(A)) \subset X^{\operatorname{ss}}(A)$$

Proof. We shall write X^{ss}, X^s instead of $X^{ss}(A)$ and $X^s(A)$, respectively. Let $x \in X^{ss} - X^s$. Then $x \in X_i^+ \cup X_i^-$ for some $X_i \in A^0$. By symmetry we may assume that $x \in X_i^+$. Assume that $gx \notin X^{ss}$ for some $g \in SL(2)$. Then $gx \in \bigcup X_l^- \cup \bigcup X_l^+$. We may suppose that $gx \in X_l^+$ for some $X_l \in A^+$ (otherwise we take τg instead of g). By the Bruhat decomposition, $g = b_1 \tau b_2$ for some $b_1, b_2 \in B^+$. Now $b_2 x \in X_i^+$ and $\tau b_2 x \in X_l^+$ (since $B^+x \subset X_i^+$ and $B^+X_l^+ \subset X_l^+$, see [C-S]). Consider $\lim_{t\to\infty} t\tau b_2 x$. We get

$$\lim_{t \to \infty} t\tau b_2 x = \lim_{t \to \infty} \tau(\tau^{-1}t\tau) b_2 x = \tau \lim_{t \to \infty} t^{-1}b_2 x = \tau \lim_{t \to 0} tb_2 x \,,$$

hence $\tau b_2 x \in (\tau X_i)^-$, where $\tau X_i \in A^0$. At the same time $\tau b_2 x \in X_l^+$, which implies that $X_l \prec \tau X_i \in A^0$. This contradicts the assumption $X_l \in A^+$. The proof of the proposition is complete.

Now we shall prove the first part of Theorem 2. Let $V = \bigcap_{g \in SL(2)} gX^{ss}$. Then V is obviously SL(2)-invariant. In order to see that V is open notice that

$$X - V = \operatorname{SL}(2)(X - X^{\operatorname{ss}}) = \operatorname{SL}(2)\left(\bigcup_{l \in A^{-}} X_{l}^{-} \cup \bigcup_{l \in A^{+}} X_{l}^{+}\right)$$
$$= \operatorname{SL}(2)\left(\bigcup_{l \in A^{-}} X_{l}^{-}\right) \cup \operatorname{SL}(2)\left(\bigcup_{l \in A^{+}} X_{l}^{+}\right).$$

Hence it suffices to show that $SL(2)(\bigcup_{l \in A^-} X_l^-)$ and $SL(2)(\bigcup_{l \in A^+} X_l^+)$ are closed. This is clear, since $SL(2)/B^-$, $SL(2)/B^+$ are complete and $\bigcup_{l \in A^-} X_l^-$ and $\bigcup_{l \in A^+} X_l^+$ are closed and invariant under the actions of B^- and B^+ , respectively.

Now in order to show that there exists a good quotient $\pi : V \to V//\text{SL}(2)$ it suffices to prove that there exists a good quotient $\pi_T : V \to V//T$ (by Theorem 1 of [BB-Ś4] or Theorem 5 of [BB-Ś3]). This is obvious since V is an open, T-invariant and T-saturated subset of X^{ss} . In fact, every T-orbit contained in V is either closed in X^{ss} or belongs to $X^{\text{ss}} - X^{\text{s}}$. In the second case, by Proposition 3 the closure in X^{ss} of the orbit is contained in V.

It remains to show that V//SL(2) is complete. We start with the following remark:

Let U_1, U_2 be two different Weyl-invariant semi-sectional sets defined by semi-sections (A_1^-, A_1^0, A_1^+) , (A_2^-, A_2^0, A_2^+) , respectively. We say that U_2 is an *elementary transform* of U_1 if there exists a maximal (with respect to the order \prec given by the action of T) element X_{i_0} in A_2^- such that

$$A_1^0 = A_2^0 \cup \{X_{i_0}, wX_{i_0}\}$$
 and $A_1^- = A_2^- - \{X_{i_0}\}$

Notice that in this case $(X_{i_0})^{B^+} = \emptyset$. If U_2 is an elementary transform of U_1 then there is a morphism α of $Y_2 = \bigcap_{g \in \operatorname{SL}(2)} gU_2//\operatorname{SL}(2)$ into $Y_1 = \bigcap_{g \in \operatorname{SL}(2)} gU_1//\operatorname{SL}(2)$. It follows from [BB-Ś2] that $\operatorname{SL}(2)(X_{i_0}^+ - B^+ X_{i_0})$ is a closed subset of $\bigcap_{g \in \operatorname{SL}(2)} gU_2$. Similarly, by Proposition 3, $\operatorname{SL}(2)(X_{i_0}^+ \cup X_{i_0}^-)$ is a closed subset of $\bigcap_{g \in \operatorname{SL}(2)} gU_1$, since $X_{i_0}^+, X_{i_0}^-$ are B^+ - and B^- -invariant, respectively, and $\operatorname{SL}(2)/B^+, \operatorname{SL}(2)/B^-$ are complete. The morphism α restricted to $Y_2 - (\operatorname{SL}(2)(X_{i_0}^+ - B^+X_{i_0})//\operatorname{SL}(2))$ is an isomorphism onto $Y_1 - (\operatorname{SL}(2)(X_{i_0}^+ \cup X_{i_0}^-)//\operatorname{SL}(2))$.

Moreover, notice that

 $Z_1 = \mathrm{SL}(2)(X_{i_0}^+ \cup X_{i_0}^-)/\mathrm{SL}(2)$ and $Z_2 = \mathrm{SL}(2)(X_{i_0}^+ - B^+ X_{i_0})/\mathrm{SL}(2)$

are complete. In fact, Z_2 is complete by Lemma 1 and Corollary 1 in [BB-Ś2]. Moreover, X_{i_0} is contained in $SL(2)(X_{i_0}^+ \cup X_{i_0}^-)$, the quotient morphism $SL(2)(X_{i_0}^+ \cup X_{i_0}^-) \to Z_2$ maps X_{i_0} onto Z_2 and X_{i_0} is complete, hence Z_1 is complete.

LEMMA 4. If U_2 is an elementary transform of U_1 , then Y_2 is complete iff Y_1 is complete.

Proof. If Y_2 is complete, then its image $\alpha(Y_2)$ in Y_1 is complete. Since α is an isomorphism of open sets, it follows that α is onto, and Y_1 is complete.

Conversely, assume that Y_1 is complete. We noticed earlier that $\alpha \mid Y_2 - Z_2$ is an isomorphism onto $Y_1 - Z_1$ and Z_1, Z_2 are complete. Moreover, Z_2 is connected. From Lemma 3 in [BB-S2] it follows that Y_2 is complete.

LEMMA 5. Let U_1 and U_2 be two semi-sectional N(T)-invariant sets in X. Then there exists a chain of semi-sectional N(T)-invariant sets $V_1 = U_1$, $V_2, \ldots, V_k = U_2$ such that for each $i = 1, \ldots, k-1$, either V_i is an elementary transform of V_{i+1} , or vice versa.

Proof. We use the method of the proof of Lemma 2 in [BB-S2].

LEMMA 6. Let $\beta: X_1 \to X$ be an SL(2)-equivariant birational morphism of smooth algebraic complete varieties and let $U \subset X$ be an N(T)-invariant semi-sectional set. Moreover, assume that X_1 is projective. Then there exists an N(T)-invariant semi-sectional set $W \subset \beta^{-1}(U)$.

Proof. Assume that U is a semi-sectional set corresponding to a Weylinvariant semi-section (A^-, A^0, A^+) . We shall define a semi-section (A_1^-, A_1^0, A_1^+) in the set of connected components of $(X_1)^T$. We may decompose A^0 into disjoint subsets $S_1 \cup S_2 \cup wS_2$ in such a way that

$$X_i \in S_1$$
 iff $wX_i = X_i$

(of course this decomposition is not uniquely defined). For any $X_i \in S_1$ let (D_i^-, D_i^0, D_i^+) be any Weyl-invariant semi-section in the set of connected

components of $\beta^{-1}(X_i)$. Such a semi-section exists because $\beta^{-1}(X_i)$ is projective. Let $X_{1,j}$ be a connected component of $(X_1)^T$. Then define A_1^+ in the following way: $X_{1,j} \in A_1^+$ iff any of the following conditions is satisfied:

(a) $\beta(X_{1,j}) \subset X_i$ where $X_i \in A^+$, (b) $\beta(X_{1,j}) \subset X_j$ where $X_j \in S_2$, (c) $X_{1,j} \in D_i^+$.

The set A_1^0 is defined by

$$X_{1,j} \in A_1^0 \iff X_{1,j} \in D_i^0$$
.

It is easy to check that the partition (A_1^-, A_1^0, A_1^+) (where $A_1^- = wA_1^+$) of the set of connected components of $(X_1)^T$ is a Weyl-invariant semi-section. Obviously the semi-sectional set defined by this semi-section is contained in $\beta^{-1}(U)$.

We are now ready to prove the second part of Theorem 2. Assume first that X is projective. Then there exists an N(T)-invariant semi-sectional set $U_1 = X_T^{ss}(\mathcal{L})$ of semi-stable points with respect to some T-linearized ample sheaf \mathcal{L} , where the T-linearization is induced by an SL(2)-linearization. Then $\bigcap_{g \in SL(2)} gU_1//SL(2)$ is complete. By Lemmas 4 and 5, for any N(T)invariant semi-sectional set U in X, the quotient $\bigcap_{g \in SL(2)} gU//SL(2)$ is complete.

If X is complete and not projective, then by the equivariant Chow Lemma (see [S]) there exists a projective variety X_1 and an SL(2)-equivariant birational morphism $\beta : X_1 \to X$. Let U be an N(T)-invariant semisectional set in X and let $U_1 \subset X_1$ be an N(T)-invariant semi-sectional set contained in $\beta^{-1}(U)$. Such a set exists by Lemma 6. Since Y is projective, $\bigcap_{g \in SL(2)} gU_1 //SL(2)$ is complete. The morphism $\beta \mid \bigcap_{g \in SL(2)} gU_1 :$ $\bigcap_{g \in SL(2)} gU_1 \to \bigcap_{g \in SL(2)} gU$ is birational and SL(2)-equivariant, hence it induces a birational morphism $\bigcap_{g \in SL(2)} gU_1 //SL(2) \to \bigcap_{g \in SL(2)} gU_2 //SL(2)$. Since $\bigcap_{g \in SL(2)} gU_1 //SL(2)$ is complete, it follows that $\bigcap_{g \in SL(2)} gU_2 //SL(2)$ is also complete. This completes the proof of Theorem 2.

THEOREM 7. Let $A_1 = (A_1^-, A_1^0, A_1^+)$, $A_2 = (A_2^-, A_2^0, A_2^+)$ be two different Weyl-invariant semi-sections. Then $\bigcap_{g \in SL(2)} gX^{ss}(A_1) \neq \bigcap_{g \in SL(2)} gX^{ss}(A_2)$ unless both intersections are empty.

Proof. If $A_1^0 \neq A_2^0$, then the theorem follows from Proposition 3. Assume that $A_1^0 = A_2^0$ and let $X_{i_0} \in A_1^- - A_2^-$ be maximal in A_1^- with respect to the order \prec induced by T. Then $X_{i_0} \in A_2^+$. In this case we use the same argument as in the proof of Lemma 5 in [BB-Ś2] to see that $SL(2)x \subset X^{ss}(A_1)$ for any $x \in X_{i_0}^+ - B^+X_{i_0}$. But obviously $x \notin X^{ss}(A_2)$. Similarly, if $x \in X_{i_0} - B^-X_{i_0}$, then $SL(2)x \subset X^{ss}(A_2)$, but $x \notin X^{ss}(A_1)$. So it remains to consider the case where $X_{i_0}^+ = B^+X_{i_0}$ and $X_i^- = B^-X_{i_0}$. But then $SL(2)X_{i_0}$ is dense in X. On the other hand, the considered intersections are open and disjoint from $SL(2)X_{i_0}$. Hence they are empty. This completes the proof of the theorem.

THEOREM 8. Let $\operatorname{Pic}(x) = \mathbb{Z}$ and let X be projective. Then there exists the greatest open $\operatorname{SL}(2)$ -invariant subset V of X such that there exists a good quotient $V \to V//\operatorname{SL}(2)$, where $V//\operatorname{SL}(2)$ is an algebraic variety. Moreover, $V//\operatorname{SL}(2)$ is projective.

Proof. Let V be the SL(2)-invariant open set of points satisfying the following condition: $x \in V$ if and only if there exists an affine open SL(2)-invariant neighbourhood U of x. We shall show that $V = X^{ss}(\mathcal{L})$, for some ample SL(2)-linearized sheaf \mathcal{L} . Notice that since $\operatorname{Pic}(X) = \mathbb{Z}$, an invertible sheaf \mathcal{F} is ample iff it has a non-zero section with support different from X.

Fix any invertible ample sheaf \mathcal{L} on X. Let $x \in V$ and let U be any affine $\operatorname{SL}(2)$ -invariant neighbourhood of x. Since there exists $U \to U//\operatorname{SL}(2)$ and $U//\operatorname{SL}(2)$ is affine, by [GIT] there exists an invertible $\operatorname{SL}(2)$ -linearized sheaf \mathcal{L}_1 on U such that $U = U^{\operatorname{ss}}(\mathcal{L}_1)$. Let $s \in H^0(U, \mathcal{L}_1)^{\operatorname{SL}(2)}$ be a section such that $s(x) \neq 0$ and its support is affine. The sheaf \mathcal{L}_1 can be extended to an invertible $\operatorname{SL}(2)$ -linearized sheaf \mathcal{L}_2 on X such that s extends to a section of \mathcal{L}_2 on X, equal to 0 on X - U (see the proof of Prop. 1.13 in [GIT]). Then \mathcal{L}_2 is ample on X and $U \subset X^{\operatorname{ss}}(\mathcal{L}_2)$. Since $\operatorname{Pic}(X) = \mathbb{Z}, \mathcal{L}^{\otimes n} = \mathcal{L}_2^{\otimes m}$ for some positive integers n, m. Thus $X^{\operatorname{ss}}(\mathcal{L}) = X^{\operatorname{ss}}(\mathcal{L}_2)$ and $U \subset X^{\operatorname{ss}}(\mathcal{L})$. The proof is complete.

EXAMPLE. Now we shall construct an example of a smooth projective algebraic variety X with an action of SL(2) and an open SL(2)-invariant subset U of X such that there exists a geometric quotient $U \to U/SL(2)$, where U/SL(2) is a complete algebraic space which is not an algebraic variety. This gives a negative answer to a question of D. Luna.

It is enough to describe a projective smooth algebraic variety X with an action of SL(2) such that $\operatorname{Pic}(X) = \mathbb{Z}$ and which has two different N(T)-invariant sectional sets V_1, V_2 such that $\bigcap_{g \in \operatorname{SL}(2)} gV_1 \neq \emptyset \neq \bigcap_{g \in \operatorname{SL}(2)} gV_2$.

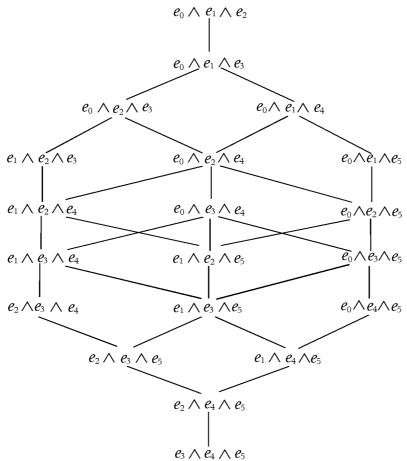
In fact, by Theorem 7, $\bigcap_{g \in SL(2)} gV_1 \neq \bigcap_{g \in SL(2)} gV_2$ and by Theorem 8, at most one of the sets $\bigcap_{g \in SL(2)} gV_i/SL(2)$, i = 1, 2, is an algebraic variety.

Let X be the Grassmannian of 3-dimensional linear subspaces in a 6dimensional linear space V with an action of SL(2) induced by an irreducible representation of SL(2) in V. Then V can be identified with the space of 5-forms in two variables x, y, with the action of SL(2) induced by the natural representation of SL(2) in the two-dimensional space of linear forms in x, y. Set

 $e_0 = x^5, \quad e_1 = x^4 y, \quad e_2 = x^3 y^2, \quad e_4 = x y^4, \quad e_5 = y^5.$

Then the action of $t \in T$ is given by $t(e_i) = t^{5-2i}e_i$ and $\tau(e_i) = e_{5-i}$, for

i = 0, 1, ..., 5. The fixed points of the action of T on X are of the form $e_i \wedge e_j \wedge e_k, i < j < k, i, j, k = 0, 1, ..., 5$, with the order described by the diagram.



It is clear that we have two N(T)-invariant sectional sets given by the following sections:

a)
$$A_{1}^{+} = \{e_{0} \land e_{1} \land e_{2}, \ e_{0} \land e_{1} \land e_{3}, \ e_{0} \land e_{2} \land e_{3}, \ e_{0} \land e_{1} \land e_{4}, \\ e_{1} \land e_{2} \land e_{3}, \ e_{0} \land e_{2} \land e_{4}, \ e_{0} \land e_{1} \land e_{5}, \ e_{1} \land e_{2} \land e_{4}, \\ e_{0} \land e_{2} \land e_{5}, \ e_{0} \land e_{3} \land e_{4}\}, \\ A_{1}^{-} = \{X_{1}, \dots, X_{r}\} - A_{1}^{+}, \quad V_{1} = X^{\text{ss}}(A_{1}^{-}, A_{1}^{+}), \\ b) \quad A_{2}^{+} = (A_{1}^{+} - \{e_{0} \land e_{3} \land e_{4}\}) \cup \{e_{1} \land e_{2} \land e_{5}\}, \\ A_{2}^{-} = \{X_{1}, \dots, X_{r}\} - A_{2}^{+}, \quad V_{2} = X^{\text{ss}}(A_{2}^{-}, A_{2}^{+}).$$

Since dim $\{e_0 \land e_3 \land e_4\}^+ = 4 > 2$, the set $\{e_0 \land e_3 \land e_4\}^+ - B^+ \{e_0 \land e_3 \land e_4\}^+$

is non-empty, and it follows from Proposition 3 that $\bigcap_{g \in SL(2)} gV_1 \neq \emptyset$. Similarly $\bigcap_{g \in SL(2)} gV_2 \neq \emptyset$. Hence by Theorem 7, the two intersections are different.

One may easily check that in case a) one obtains the geometric quotient $\bigcap_{g \in \mathrm{SL}(2)} gV_1 \to \bigcap_{g \in \mathrm{SL}(2)} gV_1/\mathrm{SL}(2)$ with projective orbit space. Since $\mathrm{Pic}(X) = \mathbb{Z}$, in case b) one obtains the geometric quotient $\bigcap_{g \in \mathrm{SL}(2)} gV_2 \to \bigcap_{g \in \mathrm{SL}(2)} gV_2/\mathrm{SL}(2)$ with orbit space which is not an algebraic variety.

THEOREM 9. Let X be a smooth complete algebraic variety with an action of SL(2). Let U be an N(T)-invariant open subset of X for which there exists a good quotient $U \to U//T$ and let U be maximal with respect to this property. Moreover, assume that U//T is quasi-projective. Then $\bigcap_{g\in SL(2)} gU$ is open, SL(2)-invariant, and there exists a good quotient $\bigcap_{g\in SL(2)} gU \to \bigcap_{g\in SL(2)} gU//SL(2)$.

The proof of the theorem will follow from a sequence of lemmas.

LEMMA 10. Under the assumptions of Theorem 9, the set X - U is the union of two closed subsets F_+, F_- such that F_+ is B^+ -invariant and F_- is B^- -invariant.

Proof. It follows from [GIT] that there exists an N(T)-linearized invertible ample sheaf \mathcal{L} on U such that U consists of semi-stable points with respect to \mathcal{L} . We may extend the sheaf \mathcal{L} to X so that $X^{ss}(\mathcal{L}) \supset U$, $X^{s}(\mathcal{L}) \supset U^{s}(\mathcal{L})$. Moreover, we may assume that there exist sections $s_{1}, \ldots, s_{r} \in \Gamma(X, \mathcal{L})$ which separate points and tangent vectors. Such an extension can be found using the method of proof of Theorem 1 of [BB-Ś2].

Some tensor power $\mathcal{L}^{\otimes n}$, n > 0, can be SL(2)-linearized (see [GIT]). Since the character group of N(T) is finite, the restriction of the SL(2)linearization to N(T) coincides with the N(T)-linearization determined previously (see [GIT]). It follows from the above that the rational map $\Phi_{\mathcal{L}}$: $X \to \mathbb{P}^m$ determined by the SL(2)-linearized sheaf \mathcal{L} is SL(2)-equivariant and gives an embedding of U into \mathbb{P}^m . Hence for any $g \in \text{SL}(2)$, $\Phi_{\mathcal{L}}|gU$ is also an embedding. It follows that $\Phi_{\mathcal{L}}|\bigcup_{g\in\text{SL}(2)}gU$ is an embedding. In fact, if $x_1, x_2 \in \bigcup_{g\in\text{SL}(2)}gU$, then $x_1 \in g_1U$, $x_2 \in g_2U$ for some $g_1, g_2 \in \text{SL}(2)$. The set of $g \in \text{SL}(2)$ such that $x_1 \in gU$ is not empty and open, and similarly for the set of $g \in \text{SL}(2)$ such that $x_2 \in gU$. Since SL(2) is irreducible as an algebraic variety, these two sets intersect, i.e. there exists $g \in \text{SL}(2)$ such that $x_1, x_2 \in gU$. Thus if $x_1 \neq x_2$, then $\Phi_{\mathcal{L}}(x_1) \neq \Phi_{\mathcal{L}}(x_2)$. Similarly $\Phi_{\mathcal{L}}$ separates tangent vectors.

Let $X_1 = \overline{\Phi_{\mathcal{L}}(X)}$. Then $\Phi_{\mathcal{L}}(U) \subset X_1^{ss}$. Now we need the following:

LEMMA 11. Let SL(2) act on \mathbb{P}^m . Let $U_0 \subset (\mathbb{P}^m)^{ss}$ be a locally closed *T*-invariant subset such that a good quotient $U_0 \to U_0//T$ exists. Then there

exists a semi-sectional set W in \overline{U}_0 such that U_0 is saturated in W. If U_0 is N(T)-invariant, then W can also be chosen to be N(T)-invariant.

Proof. Let $Y = \overline{U}_0$. The set U_0 is contained in the set $V = Y \cap (\mathbb{P}^m)^{ss}$ of semi-stable points of Y with respect to the action of T. The set V is semi-sectional, corresponding to a semi-section $A_1 = (A_1^-, A_1^0, A_1^+)$ in the set Y_1, \ldots, Y_r of connected components of Y^T . We shall define a semi-section $A = (A^-, A^0, A^+)$ such that U_0 is saturated in $W = X^{ss}(A)$.

Let $Y_i \in A^0$ and $Y_i \cap U_0 = \emptyset$. Then there are three possibilities:

(i) $Y_0 \cap (Y_i^- \cup Y_0^+) = \emptyset$, (ii) $U_0 \cap Y_i^- \neq \emptyset$, (iii) $U_0 \cap Y_i^+ \neq \emptyset$.

We shall define (A^-, A^0, A^+) in the following way: $Y_i \in A_1^-$ implies that $Y_i \in A^-$, $Y_i \in A_1^+$ implies that $Y_i \in A^+$. If $Y_i \in A_1^0$ then: $Y_i \in A^0$ iff $Y_i \cap U_0 \neq \emptyset$, in case (i) we may choose $Y_i \in A^-$ or $Y_i \in A^+$, in case (ii) $Y_i \in A^-$, finally in case (iii) $Y_i \in A^+$.

If U_0 is N(T)-invariant then the choice in case (i) must be made in the following way: $Y_i \in A^-$ implies that $w(Y_i) \in A^+$. It is easy to check that U_0 is saturated in W and if U_0 is N(T)-invariant then W is also N(T)-invariant. This completes the proof of Lemma 11.

Now we come back to the proof of Lemma 10.

It follows from the above lemma that there exists a Weyl-invariant semisection $A = (A^-, A^0, A^+)$ in X_1 such that $\Phi_{\mathcal{L}}(U)$ is saturated in $X_1^{ss}(A)$. Thus $\Phi_{\mathcal{L}}(U) \subset X_1^{ss}(A) \cap \Phi_{\mathcal{L}}(\bigcup_{g \in SL(2)} gU)$. Moreover, since U is maximal in X with respect to the order \triangleleft , the set $\Phi_{\mathcal{L}}(U)$ is maximal with respect to \triangleleft in $\Phi_{\mathcal{L}}(\bigcup_{g \in SL(2)} gU) \subset X_1$.

Let $Z = (X_1^{ss}(A) \cap \Phi_{\mathcal{L}}(\bigcup_{g \in SL(2)} gU)) - \Phi_{\mathcal{L}}(U)$. We want to show that for any $x \in Z$ either B^+x or B^-x is in Z.

Notice first that $x \in X_1^{ss}(A) - X_1^s(A)$ (if $x \in X_1^s(A) \cap \Phi_{\mathcal{L}}(\bigcup_{g \in SL(2)} gU)$, then by maximality of $\Phi_{\mathcal{L}}(U)$ in $\Phi_{\mathcal{L}}(\bigcup_{g \in SL(2)} gU)$ we have $x \in \Phi_{\mathcal{L}}(U)$). Hence there exists $X_i \in A^0$ such that either $x \in X_i^+$ or $x \in X_i^-$. By symmetry we may assume that $x \in X_i^+$. Since $\Phi_{\mathcal{L}}(U)$ is open and saturated in $X_1^{ss}(A)$ we have $X_i^+ \cap \Phi_{\mathcal{L}}(U) = X_i \cap \Phi_{\mathcal{L}}(U)^+$. But for any $y \in X_i$, $\{y\}^+$ is B^+ -invariant, hence $\{\lim_{t\to 0} tx\}^+$ is B^+ -invariant. Therefore $B^+x \cap \Phi_{\mathcal{L}}(U) = \emptyset$ and $B^+x \subset Z$.

Now we want to show that for any $x \in \Phi_{\mathcal{L}}(\bigcup_{g \in \mathrm{SL}(2)} gU) - X_1^{\mathrm{ss}}(A)$ either B^+x or B^-x is contained in Z. Since $\bigcup_{g \in \mathrm{SL}(2)} gU$ is $\mathrm{SL}(2)$ -invariant it suffices to show that either B^+x or B^-x is contained in $X_1 - X_1^{\mathrm{ss}}(A)$. But this is clear since $X_1 - X_1^{\mathrm{ss}}(A) = \bigcup_{j \in A^+} X_j^+ \cup \bigcup_{j \in A^-} X_j^-$ and X_j^+, X_j^- are B^+ - and B^- -invariant, respectively.

It follows from the above results that for any $x \in \Phi_{\mathcal{L}}(\bigcup_{g \in \mathrm{SL}(2)} gU) - \Phi_{\mathcal{L}}(U)$ either B^+x or B^-x is contained in Z. Since $\Phi_{\mathcal{L}}$ is an $\mathrm{SL}(2)$ -invariant

map, for any $x \in X - U$ either B^+x or B^-x is contained in X - U. Let F_1, F_2 be the sets of all $x \in X - U$ such that $B^+x \subset X - U$, $B^-x \subset X - U$, respectively. Then F_1, F_2 are obviously closed and $F_1 \cup F_2 = X$. The proof of Lemma 10 is complete.

COROLLARY 12. Under the assumptions of Theorem 9 the set $\bigcap_{q \in SL(2)} gU$ is open and SL(2)-invariant.

Proof. In fact, since the sets $SL(2)F_1$ and $SL(2)F_2$ are B^+ - and B^- invariant, respectively, and $SL(2)/B^+$, $SL(2)/B^-$ are complete we infer that $SL(2)F_1$ and $SL(2)F_2$ are closed. Hence $\bigcap_{g \in SL(2)} gU = X - SL(2)(X - U) = X - SL(2)(F_1 \cup F_2)$ is open and obviously SL(2)-invariant.

LEMMA 13. Let U be an N(T)-invariant open subset of X such that X-U is a union of B^+ - and B^- -orbits and let $x \in U$. If $SL(2)x \cap (X-U) \neq \emptyset$, then there exists $b_1 \in B^+$ such that $b_1x \in X - U$.

Proof. Let $SL(2)x \cap (X-U) \neq \emptyset$. Then there exist $g_1, g_2 \in SL(2)$ such that either $B^+g_1x \subset X-U$ or $B^-g_2x \subset X-U$. Assume that $B^+g_1X \subset X-U$. There exist $b_1, b_2 \in B^+$ such that $g = b_2\tau b_1$. Then also $\tau b_2x \in X-U$. Since U is N(T)-invariant and $\tau \in N(T)$, we have $b_2x \in X-U$. If $B^-g_2x \subset X-U$, then we obtain $\tau B^-\tau^{-1}g_2x \subset X-U$, and hence $B^+(\tau^{-1}g_2)x \subset X-U$. Then, arguing as above for $g_1 = \tau^{-1}g_2$, we conclude that for some $b_2 \in B^+$, $b_2x \in x-U$.

LEMMA 14. Let U satisfy the assumptions of Lemma 13. Then $\bigcap_{a \in SL(2)} gU$ is saturated in U with respect to the action of T.

Proof. Let $x \in \bigcap_{g \in SL(2)} gU$ and suppose that $y \in \overline{Tx} \cap U - Tx$. Then either $y = \lim_{t\to 0} tx$ or $y = \lim_{t\to\infty} tx$. Let $y = \lim_{t\to 0} tx$. Assume that $y \notin \bigcap_{g \in SL(2)} gU$. Then $SL(2)y \cap (X - U) \neq \emptyset$ and it follows from Lemma 13 that there exists $b_1 \in B^+$ such that $b_1y \in X - U$. But U is open and $y \in U^T$, hence $\{y\}^+ \subset U$. On the other hand, $B^+\{y\}^+ \subset \{y\}^+$. Thus $b_1y \in U$ and we have obtained a contradiction. This contradiction shows that $y \in \bigcap_{g \in SL(2)} gU$. Thus $\bigcap_{g \in SL(2)} gU$ is saturated in U with respect to the action of T.

COROLLARY 14. Under the assumptions of Lemma 13, if there exists a good quotient $U \to U//T$, then there exists a good quotient $\bigcap_{g \in SL(2)} gU \to \bigcap_{g \in SL(2)} gU//T$.

Proof of Theorem 9. Let U satisfy the assumptions of the theorem. It follows from Corollary 12 that U satisfies the assumptions of Lemma 13. Hence by Corollary 14, there exists a good quotient $\bigcap_{g \in SL(2)} gU \rightarrow \bigcap_{g \in SL(2)} gU//T$. By the Reduction Theorem (Theorem 5.1) of [BB-Ś4], we infer that there exists a good quotient $\bigcap_{g \in SL(2)} gU \rightarrow \bigcap_{g \in SL(2)} gU//SL(2)$.

REFERENCES

- [BB-S] A. Białynicki-Birula and A. J. Sommese, Quotients by \mathbb{C}^* and $SL(2,\mathbb{C})$ actions, Trans. Amer. Math. Soc. 279 (1983), 773–800.
- [BB-Ś1] A. Białynicki-Birula and J. Święcicka, Complete quotients by algebraic torus actions, in: Group Actions and Vector Fields, Lecture Notes in Math. 956, Springer, 1981, 10-22.
- [BB-Ś2] —, —, On complete orbit spaces of SL(2)-actions, Colloq. Math. 55 (1988), 229–243.
- [BB-Ś3] —, —, Good quotients for actions of SL(2), Bull. Polish Acad. Sci. Math. 36 (1988), 375–381.
- [BB-Ś4] —, —, A reduction theorem for existence of good quotients, Amer. J. Math. 113 (1991), 189–201.
 - [C-S] J. Carrell and A. J. Sommese, SL(2, C) actions on compact Kaehler manifolds, Trans. Amer. Math. Soc. 276 (1983), 165–179.
 - [K] D. Knutson, Algebraic Spaces, Lecture Notes in Math. 203, Springer, 1971.
 - [L] D. Luna, Slices étale, Bull. Soc. Math. France Mém. 33 (1973), 81–105.
 - [GIT] D. Mumford, Geometric Invariant Theory, Ergeb. Math. Grenzgeb. 34, Springer, 1982.
 - [S] H. Sumihiro, Equivariant completions, J. Math. Kyoto Univ. 14 (1974), 1–28.

INSTITUTE OF MATHEMATICS UNIVERSITY OF WARSAW BANACHA 2 00-913 WARSZAWA 59, POLAND

Reçu par la Rédaction le 13.6.1990