ON COMPLETE ORBIT SPACES OF SL(2) ACTIONS, II

BY
ANDRZEJ BIAEYNICKI-BIRULA
and JOANNA ŚWIȨCICKA (WARSZAWA)

The aim of this paper is to extend the results of [BB-Ś2] concerning geometric quotients of actions of $\mathrm{SL}(2)$ to the case of good quotients. Thus the results of the present paper can be applied to any action of $\operatorname{SL}(2)$ on a complete smooth algebraic variety, while the theorems proved in [BB-Ś2] concerned only special situations.

Like in [BB-S2], the source of our study lies in Mumford's Geometric Invariant Theory [GIT]. His results concerning semi-stability lead to the Conjecture (see below). In order to state it we need the following definition:

Definition. Let T be an algebraic torus and let U, V be two open T invariant subsets of X for which there exist good quotients $\pi_{U}: U \rightarrow U / / T$ and $\pi_{V}: V \rightarrow V / / T$. We shall write $V \triangleleft U$ if $V \subset U$ and the induced morphism $V / / T \rightarrow U / / T$ is an open embedding.

We shall say that a T-invariant open subset U of X having a good quotient is maximal with respect to the property of having good quotient if U is maximal with respect to \triangleleft.

Conjecture. Let X be a smooth algebraic variety with an action of a reductive group G. Let T be a maximal torus of G and let $N(T)$ be its normalizer in G. Let U be an $N(T)$-invariant open subset of X for which there exists a good quotient $\pi: U \rightarrow U / / T$ and which is maximal with respect to this property. Then $\bigcap_{g \in G} g U$ is open, G-invariant and there exists a good quotient $\bigcap_{g \in G} g U \rightarrow \bigcap_{g \in G} g U / / G$. Moreover, if $U / / T$ is complete, then $\bigcap_{g \in G} g U / / G$ is also complete.

In the present paper we only consider the case $G=\mathrm{SL}(2)$. Theorem 1 shows that if $U / / T$ is projective then the conjecture is valid. Moreover, then X and $\bigcap_{g \in \operatorname{SL}(2)} g U / / G$ are projective and there exists an ample, invertible, G-linearized sheaf \mathcal{L} on X such that U is the set of semi-stable points with respect to the action of T induced by the action of G.

We also prove the conjecture under the additional assumption that either $U / / T$ is complete (Theorem 2) or $U / / T$ is quasi-projective (Theorem 9).

Answering a question of D. Luna we also describe an example of an action of $\mathrm{SL}(2)$ on an algebraic variety X such that there exists a geometric quotient $X \rightarrow X / \mathrm{SL}(2)$, where $X / \mathrm{SL}(2)$ is an algebraic space but not an algebraic variety.

1. Notation and terminology. We use the terminology of [BB-Śs] and [BB-S2]. We now fix the notation and quote the definitions needed in the sequel.

The ground field k is supposed to be algebraically closed of characteristic 0 .

If $X \rightarrow Y$ is a good quotient of X by an action of a reductive group G, then we write $X / / G$ in place of Y. We write X / G for the geometric quotient space of X by the action of G.

For a given action of a one-dimensional torus $T=k^{*}$ on a smooth complete variety X we denote by X^{T} the fixed point subvariety of the action. Let $X^{T}=X_{1} \cup \ldots \cup X_{r}$ be the decomposition into irreducible components. For $i=1, \ldots, r$, we define

$$
X_{i}^{+}=\left\{x \in X ; \lim _{t \rightarrow 0} t x \in X_{i}\right\}, \quad X_{i}^{-}=\left\{x \in X ; \lim _{t \rightarrow \infty} t x \in X_{i}\right\}
$$

We say that X_{i} is less than X_{j}, and write $X_{i} \prec X_{j}$, if there exists a finite sequence of points $x_{1}, \ldots, x_{m} \in X-X^{T}$ such that
(a) $\lim _{t \rightarrow 0} t x_{1} \in X_{i}$,
(b) $\lim _{t \rightarrow \infty} t x_{m} \in X_{j}$,
(c) for $k=1, \ldots, m-1, \lim _{t \rightarrow \infty} t x_{k}$ and $\lim _{t \rightarrow 0} t x_{k+1}$ belong to the same irreducible component of X^{T}.

By a semi-section of $\left\{X_{1}, \ldots, X_{r}\right\}$ we mean a partition, denoted by A, of $\left\{X_{1}, \ldots, X_{r}\right\}$ into three pairwise disjoint subsets A^{-}, A^{0}, A^{+}such that $A^{-} \neq \emptyset \neq A^{+}$, and if $X_{i} \in A^{-} \cup A^{0}, X_{j} \prec X_{i}$ and $i \neq j$, then $X_{j} \in A^{-}$. Any semi-section determines two open T-invariant subsets
$X^{\mathrm{ss}}(A)=X-\left(\bigcup_{j \in A^{-}} X_{j}^{-} \cup \bigcup_{j \in A^{+}} X_{j}^{+}\right), \quad X^{\mathrm{s}}(A)=X^{\mathrm{ss}}-\bigcup_{j \in A^{0}}\left(X_{j}^{-} \cup X_{j}^{+}\right)$,
where we write $j \in A^{-}, A^{0}, A^{+}$in place of $X_{j} \in A^{-}, A^{0}, A^{+}$. We shall call $X^{\mathrm{ss}}(A)$ and $X^{\mathrm{s}}(A)$ the sets of semi-stable and stable points determined by the semi-section A, respectively.

It has been proved in [BB-Ś1] that for any semi-section A there exists a good quotient $\pi: X^{\mathrm{ss}}(A) \rightarrow X^{\mathrm{ss}}(A) / / T$, where $X^{\mathrm{ss}}(A) / / T$ is a complete algebraic variety, $\pi \mid X^{\mathrm{s}}(A)$ is a geometric quotient and $\pi\left(X^{\mathrm{s}}(A)\right)$ is an open subset of $X^{\mathrm{ss}}(A) / / T$.

Let X be a smooth complete algebraic variety with a non-trivial action
of SL(2). Assume that

$$
\begin{gathered}
T=\left\{\left[\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right] ; t \in k^{*}\right\}, \\
B^{+}=\left\{\left[\begin{array}{cc}
t & \lambda \\
0 & t^{-1}
\end{array}\right] ; t \in k^{*}, \lambda \in k\right\}, \quad B^{-}=\left\{\left[\begin{array}{cc}
t & 0 \\
\lambda & t^{-1}
\end{array}\right] ; t \in k^{*}, \lambda \in k\right\}, \\
N(T)=T \cup \tau T, \quad \text { where } \quad \tau=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] .
\end{gathered}
$$

Then T is a maximal torus, $N(T)$ is the normalizer of T and B^{+}, B^{-}are two Borel subgroups containing T.

The Weyl group $W=N(T) / T$ acts on $\left\{X_{1}, \ldots, X_{r}\right\}$. Denote by w the involution on $\left\{X_{1}, \ldots, X_{r}\right\}$ determined by τ. A semi-section $\left(A^{-}, A^{0}, A^{+}\right)$ for the action of T is called Weyl-invariant if $w\left(A^{-}\right)=A^{+}$(hence $w\left(A^{0}\right)=$ $\left.A^{0}, w\left(A^{+}\right)=A^{-}\right)$.
2. Projective and complete quotients. The proof of Theorem 1 in [BB-Ś1] can be easily adapted to give the proof of the following Theorem 1.

Theorem 1. Let $U \subset X$ be an $N(T)$-invariant open subset such that a good quotient $U \rightarrow U / / T$ exists and $U / / T$ is projective. Then X is projective and there exists an ample $\mathrm{SL}(2)$-linearized linear sheaf \mathcal{L} on X such that

$$
X^{\mathrm{SS}}(\mathcal{L})=\bigcap_{g \in \operatorname{SL}(2)} g U
$$

Hence $\bigcap_{g \in \operatorname{SL}(2)} g U$ is open and $\mathrm{SL}(2)$-invariant, a good quotient

$$
\bigcap_{g \in \operatorname{SL}(2)} g U \rightarrow \bigcap_{g \in \operatorname{SL}(2)} g U / / \mathrm{SL}(2)
$$

exists and $\bigcap_{g \in \operatorname{SL}(2)} g U / / \mathrm{SL}(2)$ is a projective (normal) variety.
Theorem 2. Let $U \subset X$ be an $N(T)$-invariant open subset of X such that a good quotient $U \rightarrow U / / T$ exists and $U / / T$ is a complete algebraic variety. Then a good quotient

$$
\bigcap_{g \in \operatorname{SL}(2)} g U \rightarrow \bigcap_{g \in \operatorname{SL}(2)} g U / / \mathrm{SL}(2)
$$

exists and $\bigcap_{g \in \operatorname{SL}(2)} g U / / \mathrm{SL}(2)$ is a complete normal algebraic space.
In the proof we may and will assume that $U=X^{\mathrm{ss}}(A)$, where A is a Weyl-invariant semi-section (see [BB-Ś1]).

First we prove the following:
Proposition 3. Let $A=\left(A^{-}, A^{0}, A^{+}\right)$be a Weyl-invariant semi-section and let $X^{\mathrm{ss}}(A), X^{\mathrm{s}}(A)$ be the sets of semi-stable and stable points determined
by A. Then

$$
\mathrm{SL}(2)\left(X^{\mathrm{ss}}(A)-X^{\mathrm{s}}(A)\right) \subset X^{\mathrm{ss}}(A) .
$$

Proof. We shall write $X^{\mathrm{ss}}, X^{\mathrm{s}}$ instead of $X^{\mathrm{ss}}(A)$ and $X^{\mathrm{s}}(A)$, respectively. Let $x \in X^{\text {ss }}-X^{\mathrm{s}}$. Then $x \in X_{i}^{+} \cup X_{i}^{-}$for some $X_{i} \in A^{0}$. By symmetry we may assume that $x \in X_{i}^{+}$. Assume that $g x \notin X^{\text {ss }}$ for some $g \in \mathrm{SL}(2)$. Then $g x \in \bigcup X_{l}^{-} \cup \bigcup X_{l}^{+}$. We may suppose that $g x \in X_{l}^{+}$for some $X_{l} \in A^{+}$(otherwise we take τg instead of g). By the Bruhat decomposition, $g=b_{1} \tau b_{2}$ for some $b_{1}, b_{2} \in B^{+}$. Now $b_{2} x \in X_{i}^{+}$and $\tau b_{2} x \in X_{l}^{+}$ (since $B^{+} x \subset X_{i}^{+}$and $B^{+} X_{l}^{+} \subset X_{l}^{+}$, see [C-S]). Consider $\lim _{t \rightarrow \infty} t \tau b_{2} x$. We get

$$
\lim _{t \rightarrow \infty} t \tau b_{2} x=\lim _{t \rightarrow \infty} \tau\left(\tau^{-1} t \tau\right) b_{2} x=\tau \lim _{t \rightarrow \infty} t^{-1} b_{2} x=\tau \lim _{t \rightarrow 0} t b_{2} x,
$$

hence $\tau b_{2} x \in\left(\tau X_{i}\right)^{-}$, where $\tau X_{i} \in A^{0}$. At the same time $\tau b_{2} x \in X_{l}^{+}$, which implies that $X_{l} \prec \tau X_{i} \in A^{0}$. This contradicts the assumption $X_{l} \in A^{+}$. The proof of the proposition is complete.

Now we shall prove the first part of Theorem 2. Let $V=\bigcap_{g \in \operatorname{SL}(2)} g X^{\mathrm{ss}}$. Then V is obviously $\mathrm{SL}(2)$-invariant. In order to see that V is open notice that

$$
\begin{aligned}
X-V & =\operatorname{SL}(2)\left(X-X^{\mathrm{ss}}\right)=\operatorname{SL}(2)\left(\bigcup_{l \in A^{-}} X_{l}^{-} \cup \bigcup_{l \in A^{+}} X_{l}^{+}\right) \\
& =\operatorname{SL}(2)\left(\bigcup_{l \in A^{-}} X_{l}^{-}\right) \cup \operatorname{SL}(2)\left(\bigcup_{l \in A^{+}} X_{l}^{+}\right) .
\end{aligned}
$$

Hence it suffices to show that $\operatorname{SL}(2)\left(\bigcup_{l \in A^{-}} X_{l}^{-}\right)$and $\operatorname{SL}(2)\left(\bigcup_{l \in A^{+}} X_{l}^{+}\right)$ are closed. This is clear, since $\mathrm{SL}(2) / B^{-}, \mathrm{SL}(2) / B^{+}$are complete and $\bigcup_{l \in A^{-}} X_{l}^{-}$and $\bigcup_{l \in A^{+}} X_{l}^{+}$are closed and invariant under the actions of B^{-}and B^{+}, respectively.

Now in order to show that there exists a good quotient $\pi: V \rightarrow V / / \mathrm{SL}(2)$ it suffices to prove that there exists a good quotient $\pi_{T}: V \rightarrow V / / T$ (by Theorem 1 of [BB-S4] or Theorem 5 of [BB-S3]). This is obvious since V is an open, T-invariant and T-saturated subset of $X^{\text {ss }}$. In fact, every T-orbit contained in V is either closed in X^{ss} or belongs to $X^{\mathrm{ss}}-X^{\mathrm{s}}$. In the second case, by Proposition 3 the closure in $X^{\text {ss }}$ of the orbit is contained in V.

It remains to show that $V / / \mathrm{SL}(2)$ is complete. We start with the following remark:

Let U_{1}, U_{2} be two different Weyl-invariant semi-sectional sets defined by semi-sections $\left(A_{1}^{-}, A_{1}^{0}, A_{1}^{+}\right),\left(A_{2}^{-}, A_{2}^{0}, A_{2}^{+}\right)$, respectively. We say that U_{2} is an elementary transform of U_{1} if there exists a maximal (with respect to the order \prec given by the action of T) element $X_{i_{0}}$ in A_{2}^{-}such that

$$
A_{1}^{0}=A_{2}^{0} \cup\left\{X_{i_{0}}, w X_{i_{0}}\right\} \quad \text { and } \quad A_{1}^{-}=A_{2}^{-}-\left\{X_{i_{0}}\right\} .
$$

Notice that in this case $\left(X_{i_{0}}\right)^{B^{+}}=\emptyset$. If U_{2} is an elementary transform of U_{1} then there is a morphism α of $Y_{2}=\bigcap_{g \in \operatorname{SL}(2)} g U_{2} / / \mathrm{SL}(2)$ into $Y_{1}=$ $\bigcap_{g \in \operatorname{SL}(2)} g U_{1} / / \mathrm{SL}(2)$. It follows from [BB-Ś2] that $\mathrm{SL}(2)\left(X_{i_{0}}^{+}-B^{+} X_{i_{0}}\right)$ is a closed subset of $\bigcap_{g \in \operatorname{SL}(2)} g U_{2}$. Similarly, by Proposition 3, SL(2) $\left(X_{i_{0}}^{+} \cup X_{i_{0}}^{-}\right)$ is a closed subset of $\bigcap_{g \in \operatorname{SL}(2)} g U_{1}$, since $X_{i_{0}}^{+}, X_{i_{0}}^{-}$are B^{+}- and B^{-}-invariant, respectively, and $\mathrm{SL}(2) / B^{+}, \mathrm{SL}(2) / B^{-}$are complete. The morphism α restricted to $Y_{2}-\left(\mathrm{SL}(2)\left(X_{i_{0}}^{+}-B^{+} X_{i_{0}}\right) / / \mathrm{SL}(2)\right)$ is an isomorphism onto $Y_{1}-\left(\mathrm{SL}(2)\left(X_{i_{0}}^{+} \cup X_{i_{0}}^{-}\right) / / \mathrm{SL}(2)\right)$.

Moreover, notice that

$$
Z_{1}=\operatorname{SL}(2)\left(X_{i_{0}}^{+} \cup X_{i_{0}}^{-}\right) / \mathrm{SL}(2) \quad \text { and } \quad Z_{2}=\operatorname{SL}(2)\left(X_{i_{0}}^{+}-B^{+} X_{i_{0}}\right) / \mathrm{SL}(2)
$$

are complete. In fact, Z_{2} is complete by Lemma 1 and Corollary 1 in [BBŚ2]. Moreover, $X_{i_{0}}$ is contained in $\operatorname{SL}(2)\left(X_{i_{0}}^{+} \cup X_{i_{0}}^{-}\right)$, the quotient morphism $\mathrm{SL}(2)\left(X_{i_{0}}^{+} \cup X_{i_{0}}^{-}\right) \rightarrow Z_{2}$ maps $X_{i_{0}}$ onto Z_{2} and $X_{i_{0}}$ is complete, hence Z_{1} is complete.

LEMMA 4. If U_{2} is an elementary transform of U_{1}, then Y_{2} is complete iff Y_{1} is complete.

Proof. If Y_{2} is complete, then its image $\alpha\left(Y_{2}\right)$ in Y_{1} is complete. Since α is an isomorphism of open sets, it follows that α is onto, and Y_{1} is complete.

Conversely, assume that Y_{1} is complete. We noticed earlier that $\alpha \mid$ $Y_{2}-Z_{2}$ is an isomorphism onto $Y_{1}-Z_{1}$ and Z_{1}, Z_{2} are complete. Moreover, Z_{2} is connected. From Lemma 3 in [BB-Ś2] it follows that Y_{2} is complete.

Lemma 5. Let U_{1} and U_{2} be two semi-sectional $N(T)$-invariant sets in X. Then there exists a chain of semi-sectional $N(T)$-invariant sets $V_{1}=U_{1}$, $V_{2}, \ldots, V_{k}=U_{2}$ such that for each $i=1, \ldots, k-1$, either V_{i} is an elementary transform of V_{i+1}, or vice versa.

Proof. We use the method of the proof of Lemma 2 in [BB-Ś2].
Lemma 6. Let $\beta: X_{1} \rightarrow X$ be an SL(2)-equivariant birational morphism of smooth algebraic complete varieties and let $U \subset X$ be an $N(T)$-invariant semi-sectional set. Moreover, assume that X_{1} is projective. Then there exists an $N(T)$-invariant semi-sectional set $W \subset \beta^{-1}(U)$.

Proof. Assume that U is a semi-sectional set corresponding to a Weylinvariant semi-section $\left(A^{-}, A^{0}, A^{+}\right)$. We shall define a semi-section $\left(A_{1}^{-}, A_{1}^{0}, A_{1}^{+}\right)$in the set of connected components of $\left(X_{1}\right)^{T}$. We may decompose A^{0} into disjoint subsets $S_{1} \cup S_{2} \cup w S_{2}$ in such a way that

$$
X_{i} \in S_{1} \quad \text { iff } \quad w X_{i}=X_{i}
$$

(of course this decomposition is not uniquely defined). For any $X_{i} \in S_{1}$ let ($D_{i}^{-}, D_{i}^{0}, D_{i}^{+}$) be any Weyl-invariant semi-section in the set of connected
components of $\beta^{-1}\left(X_{i}\right)$. Such a semi-section exists because $\beta^{-1}\left(X_{i}\right)$ is projective. Let $X_{1, j}$ be a connected component of $\left(X_{1}\right)^{T}$. Then define A_{1}^{+}in the following way: $X_{1, j} \in A_{1}^{+}$iff any of the following conditions is satisfied:
(a) $\beta\left(X_{1, j}\right) \subset X_{i}$ where $X_{i} \in A^{+}$,
(b) $\beta\left(X_{1, j}\right) \subset X_{j}$ where $X_{j} \in S_{2}$,
(c) $X_{1, j} \in D_{i}^{+}$.

The set A_{1}^{0} is defined by

$$
X_{1, j} \in A_{1}^{0} \Leftrightarrow X_{1, j} \in D_{i}^{0} .
$$

It is easy to check that the partition $\left(A_{1}^{-}, A_{1}^{0}, A_{1}^{+}\right)$(where $A_{1}^{-}=w A_{1}^{+}$) of the set of connected components of $\left(X_{1}\right)^{T}$ is a Weyl-invariant semi-section. Obviously the semi-sectional set defined by this semi-section is contained in $\beta^{-1}(U)$.

We are now ready to prove the second part of Theorem 2. Assume first that X is projective. Then there exists an $N(T)$-invariant semi-sectional set $U_{1}=X_{T}^{\text {ss }}(\mathcal{L})$ of semi-stable points with respect to some T-linearized ample sheaf \mathcal{L}, where the T-linearization is induced by an $\operatorname{SL}(2)$-linearization. Then $\bigcap_{g \in \mathrm{SL}(2)} g U_{1} / / \mathrm{SL}(2)$ is complete. By Lemmas 4 and 5 , for any $N(T)$ invariant semi-sectional set U in X, the quotient $\bigcap_{g \in \mathrm{SL}(2)} g U / / \mathrm{SL}(2)$ is complete.

If X is complete and not projective, then by the equivariant Chow Lemma (see [S]) there exists a projective variety X_{1} and an SL(2)-equivariant birational morphism $\beta: X_{1} \rightarrow X$. Let U be an $N(T)$-invariant semisectional set in X and let $U_{1} \subset X_{1}$ be an $N(T)$-invariant semi-sectional set contained in $\beta^{-1}(U)$. Such a set exists by Lemma 6 . Since Y is projective, $\bigcap_{g \in \operatorname{SL}(2)} g U_{1} / / \mathrm{SL}(2)$ is complete. The morphism $\beta \mid \bigcap_{g \in \operatorname{SL}(2)} g U_{1}$: $\bigcap_{g \in \mathrm{SL}(2)} g U_{1} \rightarrow \bigcap_{g \in \mathrm{SL}(2)} g U$ is birational and SL(2)-equivariant, hence it induces a birational morphism $\bigcap_{g \in \operatorname{SL}(2)} g U_{1} / / \mathrm{SL}(2) \rightarrow \bigcap_{g \in \operatorname{SL}(2)} g U_{2} / / \mathrm{SL}(2)$. Since $\bigcap_{g \in \mathrm{SL}(2)} g U_{1} / / \mathrm{SL}(2)$ is complete, it follows that $\bigcap_{g \in \mathrm{SL}(2)} g U_{2} / / \mathrm{SL}(2)$ is also complete. This completes the proof of Theorem 2.

Theorem 7. Let $A_{1}=\left(A_{1}^{-}, A_{1}^{0}, A_{1}^{+}\right), A_{2}=\left(A_{2}^{-}, A_{2}^{0}, A_{2}^{+}\right)$be two different Weyl-invariant semi-sections. Then $\bigcap_{g \in \operatorname{SL}(2)} g X^{\mathrm{ss}}\left(A_{1}\right) \neq$ $\bigcap_{g \in \mathrm{SL}(2)} g X^{\mathrm{ss}}\left(A_{2}\right)$ unless both intersections are empty.

Proof. If $A_{1}^{0} \neq A_{2}^{0}$, then the theorem follows from Proposition 3. Assume that $A_{1}^{0}=A_{2}^{0}$ and let $X_{i_{0}} \in A_{1}^{-}-A_{2}^{-}$be maximal in A_{1}^{-}with respect to the order \prec induced by T. Then $X_{i_{0}} \in A_{2}^{+}$. In this case we use the same argument as in the proof of Lemma 5 in [BB-Ś2] to see that $\mathrm{SL}(2) x \subset X^{\text {ss }}\left(A_{1}\right)$ for any $x \in X_{i_{0}}^{+}-B^{+} X_{i_{0}}$. But obviously $x \notin X^{\text {ss }}\left(A_{2}\right)$. Similarly, if $x \in X_{i_{0}}-B^{-} X_{i_{0}}$, then $\mathrm{SL}(2) x \subset X^{\mathrm{ss}}\left(A_{2}\right)$, but $x \notin X^{\mathrm{ss}}\left(A_{1}\right)$. So it remains to consider the case where $X_{i_{0}}^{+}=B^{+} X_{i_{0}}$ and $X_{i}^{-}=B^{-} X_{i_{0}}$.

But then $\mathrm{SL}(2) X_{i_{0}}$ is dense in X. On the other hand, the considered intersections are open and disjoint from $\operatorname{SL}(2) X_{i_{0}}$. Hence they are empty. This completes the proof of the theorem.

Theorem 8. Let $\operatorname{Pic}(x)=\mathbb{Z}$ and let X be projective. Then there exists the greatest open SL(2)-invariant subset V of X such that there exists a good quotient $V \rightarrow V / / \mathrm{SL}(2)$, where $V / / \mathrm{SL}(2)$ is an algebraic variety. Moreover, $V / / \mathrm{SL}(2)$ is projective.

Proof. Let V be the $\mathrm{SL}(2)$-invariant open set of points satisfying the following condition: $x \in V$ if and only if there exists an affine open SL(2)invariant neighbourhood U of x. We shall show that $V=X^{\text {ss }}(\mathcal{L})$, for some ample $\operatorname{SL}(2)$-linearized sheaf \mathcal{L}. Notice that since $\operatorname{Pic}(X)=\mathbb{Z}$, an invertible sheaf \mathcal{F} is ample iff it has a non-zero section with support different from X.

Fix any invertible ample sheaf \mathcal{L} on X. Let $x \in V$ and let U be any affine SL(2)-invariant neighbourhood of x. Since there exists $U \rightarrow U / / \mathrm{SL}(2)$ and $U / / \mathrm{SL}(2)$ is affine, by [GIT] there exists an invertible SL(2)-linearized sheaf \mathcal{L}_{1} on U such that $U=U^{\text {ss }}\left(\mathcal{L}_{1}\right)$. Let $s \in H^{0}\left(U, \mathcal{L}_{1}\right)^{\mathrm{SL}(2)}$ be a section such that $s(x) \neq 0$ and its support is affine. The sheaf \mathcal{L}_{1} can be extended to an invertible $\operatorname{SL}(2)$-linearized sheaf \mathcal{L}_{2} on X such that s extends to a section of \mathcal{L}_{2} on X, equal to 0 on $X-U$ (see the proof of Prop. 1.13 in [GIT]). Then \mathcal{L}_{2} is ample on X and $U \subset X^{\text {ss }}\left(\mathcal{L}_{2}\right)$. Since $\operatorname{Pic}(X)=\mathbb{Z}, \mathcal{L}^{\otimes n}=\mathcal{L}_{2}^{\otimes m}$ for some positive integers n, m. Thus $X^{\mathrm{ss}}(\mathcal{L})=X^{\mathrm{ss}}\left(\mathcal{L}_{2}\right)$ and $U \subset X^{\mathrm{ss}}(\mathcal{L})$. The proof is complete.

Example. Now we shall construct an example of a smooth projective algebraic variety X with an action of $\mathrm{SL}(2)$ and an open SL(2)-invariant subset U of X such that there exists a geometric quotient $U \rightarrow U / \mathrm{SL}(2)$, where $U / \mathrm{SL}(2)$ is a complete algebraic space which is not an algebraic variety. This gives a negative answer to a question of D. Luna.

It is enough to describe a projective smooth algebraic variety X with an action of $\operatorname{SL}(2)$ such that $\operatorname{Pic}(X)=\mathbb{Z}$ and which has two different $N(T)$ invariant sectional sets V_{1}, V_{2} such that $\bigcap_{g \in \operatorname{SL}(2)} g V_{1} \neq \emptyset \neq \bigcap_{g \in \operatorname{SL}(2)} g V_{2}$.

In fact, by Theorem $7, \bigcap_{g \in \operatorname{SL}(2)} g V_{1} \neq \bigcap_{g \in \mathrm{SL}(2)} g V_{2}$ and by Theorem 8 , at most one of the sets $\bigcap_{g \in \operatorname{SL}(2)} g V_{i} / \mathrm{SL}(2), i=1,2$, is an algebraic variety.

Let X be the Grassmannian of 3 -dimensional linear subspaces in a 6 dimensional linear space V with an action of $\mathrm{SL}(2)$ induced by an irreducible representation of $\mathrm{SL}(2)$ in V. Then V can be identified with the space of 5 -forms in two variables x, y, with the action of $\mathrm{SL}(2)$ induced by the natural representation of $\mathrm{SL}(2)$ in the two-dimensional space of linear forms in x, y. Set

$$
e_{0}=x^{5}, \quad e_{1}=x^{4} y, \quad e_{2}=x^{3} y^{2}, \quad e_{4}=x y^{4}, \quad e_{5}=y^{5} .
$$

Then the action of $t \in T$ is given by $t\left(e_{i}\right)=t^{5-2 i} e_{i}$ and $\tau\left(e_{i}\right)=e_{5-i}$, for
$i=0,1, \ldots, 5$. The fixed points of the action of T on X are of the form $e_{i} \wedge e_{j} \wedge e_{k}, i<j<k, \quad i, j, k=0,1, \ldots, 5$, with the order described by the diagram.

It is clear that we have two $N(T)$-invariant sectional sets given by the following sections:
a) $A_{1}^{+}=\left\{e_{0} \wedge e_{1} \wedge e_{2}, e_{0} \wedge e_{1} \wedge e_{3}, e_{0} \wedge e_{2} \wedge e_{3}, e_{0} \wedge e_{1} \wedge e_{4}\right.$,
$e_{1} \wedge e_{2} \wedge e_{3}, e_{0} \wedge e_{2} \wedge e_{4}, e_{0} \wedge e_{1} \wedge e_{5}, e_{1} \wedge e_{2} \wedge e_{4}$,
$\left.e_{0} \wedge e_{2} \wedge e_{5}, e_{0} \wedge e_{3} \wedge e_{4}\right\}$,

$$
A_{1}^{-}=\left\{X_{1}, \ldots, X_{r}\right\}-A_{1}^{+}, \quad V_{1}=X^{\mathrm{ss}}\left(A_{1}^{-}, A_{1}^{+}\right)
$$

b) $A_{2}^{+}=\left(A_{1}^{+}-\left\{e_{0} \wedge e_{3} \wedge e_{4}\right\}\right) \cup\left\{e_{1} \wedge e_{2} \wedge e_{5}\right\}$,

$$
A_{2}^{-}=\left\{X_{1}, \ldots, X_{r}\right\}-A_{2}^{+}, \quad V_{2}=X^{\mathrm{ss}}\left(A_{2}^{-}, A_{2}^{+}\right)
$$

Since $\operatorname{dim}\left\{e_{0} \wedge e_{3} \wedge e_{4}\right\}^{+}=4>2$, the set $\left\{e_{0} \wedge e_{3} \wedge e_{4}\right\}^{+}-B^{+}\left\{e_{0} \wedge e_{3} \wedge e_{4}\right\}$
is non-empty, and it follows from Proposition 3 that $\bigcap_{g \in \operatorname{SL}(2)} g V_{1} \neq \emptyset$. Similarly $\bigcap_{g \in \operatorname{SL}(2)} g V_{2} \neq \emptyset$. Hence by Theorem 7, the two intersections are different.

One may easily check that in case a) one obtains the geometric quotient $\bigcap_{g \in \operatorname{SL}(2)} g V_{1} \rightarrow \bigcap_{g \in \operatorname{SL}(2)} g V_{1} / \mathrm{SL}(2)$ with projective orbit space. Since $\operatorname{Pic}(X)=\mathbb{Z}$, in case b) one obtains the geometric quotient $\bigcap_{g \in \operatorname{SL}(2)} g V_{2} \rightarrow$ $\bigcap_{g \in \operatorname{SL}(2)} g V_{2} / \mathrm{SL}(2)$ with orbit space which is not an algebraic variety.

Theorem 9. Let X be a smooth complete algebraic variety with an action of SL(2). Let U be an $N(T)$-invariant open subset of X for which there exists a good quotient $U \rightarrow U / / T$ and let U be maximal with respect to this property. Moreover, assume that $U / / T$ is quasi-projective. Then $\bigcap_{g \in \operatorname{SL}(2)} g U$ is open, $\mathrm{SL}(2)$-invariant, and there exists a good quotient $\bigcap_{g \in \operatorname{SL}(2)} g U \rightarrow \bigcap_{g \in \operatorname{SL}(2)} g U / / \mathrm{SL}(2)$.

The proof of the theorem will follow from a sequence of lemmas.
Lemma 10. Under the assumptions of Theorem 9 , the set $X-U$ is the union of two closed subsets F_{+}, F_{-}such that F_{+}is B^{+}-invariant and F_{-}is B^{-}-invariant.

Proof. It follows from [GIT] that there exists an $N(T)$-linearized invertible ample sheaf \mathcal{L} on U such that U consists of semi-stable points with respect to \mathcal{L}. We may extend the sheaf \mathcal{L} to X so that $X^{\text {ss }}(\mathcal{L}) \supset$ $U, X^{\mathrm{s}}(\mathcal{L}) \supset U^{\mathrm{s}}(\mathcal{L})$. Moreover, we may assume that there exist sections $s_{1}, \ldots, s_{r} \in \Gamma(X, \mathcal{L})$ which separate points and tangent vectors. Such an extension can be found using the method of proof of Theorem 1 of [BB-Ś2].

Some tensor power $\mathcal{L}^{\otimes n}, n>0$, can be $\mathrm{SL}(2)$-linearized (see [GIT]). Since the character group of $N(T)$ is finite, the restriction of the SL(2)linearization to $N(T)$ coincides with the $N(T)$-linearization determined previously (see [GIT]). It follows from the above that the rational map $\Phi_{\mathcal{L}}$: $X \rightarrow \mathbb{P}^{m}$ determined by the $\mathrm{SL}(2)$-linearized sheaf \mathcal{L} is SL(2)-equivariant and gives an embedding of U into \mathbb{P}^{m}. Hence for any $g \in \operatorname{SL}(2), \Phi_{\mathcal{L}} \mid g U$ is also an embedding. It follows that $\Phi_{\mathcal{L}} \mid \bigcup_{g \in \operatorname{SL}(2)} g U$ is an embedding. In fact, if $x_{1}, x_{2} \in \bigcup_{g \in \operatorname{SL}(2)} g U$, then $x_{1} \in g_{1} U, x_{2} \in g_{2} U$ for some $g_{1}, g_{2} \in \operatorname{SL}(2)$. The set of $g \in \mathrm{SL}(2)$ such that $x_{1} \in g U$ is not empty and open, and similarly for the set of $g \in \mathrm{SL}(2)$ such that $x_{2} \in g U$. Since $\mathrm{SL}(2)$ is irreducible as an algebraic variety, these two sets intersect, i.e. there exists $g \in \operatorname{SL}(2)$ such that $x_{1}, x_{2} \in g U$. Thus if $x_{1} \neq x_{2}$, then $\Phi_{\mathcal{L}}\left(x_{1}\right) \neq \Phi_{\mathcal{L}}\left(x_{2}\right)$. Similarly $\Phi_{\mathcal{L}}$ separates tangent vectors.

Let $X_{1}=\overline{\Phi_{\mathcal{L}}(X)}$. Then $\Phi_{\mathcal{L}}(U) \subset X_{1}^{\text {ss }}$. Now we need the following:
Lemma 11. Let $\mathrm{SL}(2)$ act on \mathbb{P}^{m}. Let $U_{0} \subset\left(\mathbb{P}^{m}\right)^{\text {ss }}$ be a locally closed T-invariant subset such that a good quotient $U_{0} \rightarrow U_{0} / / T$ exists. Then there
exists a semi-sectional set W in \bar{U}_{0} such that U_{0} is saturated in W. If U_{0} is $N(T)$-invariant, then W can also be chosen to be $N(T)$-invariant.

Proof. Let $Y=\bar{U}_{0}$. The set U_{0} is contained in the set $V=Y \cap\left(\mathbb{P}^{m}\right)^{\text {ss }}$ of semi-stable points of Y with respect to the action of T. The set V is semi-sectional, corresponding to a semi-section $A_{1}=\left(A_{1}^{-}, A_{1}^{0}, A_{1}^{+}\right)$in the set Y_{1}, \ldots, Y_{r} of connected components of Y^{T}. We shall define a semi-section $A=\left(A^{-}, A^{0}, A^{+}\right)$such that U_{0} is saturated in $W=X^{\mathrm{ss}}(A)$.

Let $Y_{i} \in A^{0}$ and $Y_{i} \cap U_{0}=\emptyset$. Then there are three possibilities:
(i) $Y_{0} \cap\left(Y_{i}^{-} \cup Y_{0}^{+}\right)=\emptyset$,
(ii) $U_{0} \cap Y_{i}^{-} \neq \emptyset, \quad$ (iii) $U_{0} \cap Y_{i}^{+} \neq \emptyset$.

We shall define $\left(A^{-}, A^{0}, A^{+}\right)$in the following way: $Y_{i} \in A_{1}^{-}$implies that $Y_{i} \in A^{-}, Y_{i} \in A_{1}^{+}$implies that $Y_{i} \in A^{+}$. If $Y_{i} \in A_{1}^{0}$ then: $Y_{i} \in A^{0}$ iff $Y_{i} \cap U_{0} \neq \emptyset$, in case (i) we may choose $Y_{i} \in A^{-}$or $Y_{i} \in A^{+}$, in case (ii) $Y_{i} \in A^{-}$, finally in case (iii) $Y_{i} \in A^{+}$.

If U_{0} is $N(T)$-invariant then the choice in case (i) must be made in the following way: $Y_{i} \in A^{-}$implies that $w\left(Y_{i}\right) \in A^{+}$. It is easy to check that U_{0} is saturated in W and if U_{0} is $N(T)$-invariant then W is also $N(T)$-invariant. This completes the proof of Lemma 11.

Now we come back to the proof of Lemma 10.
It follows from the above lemma that there exists a Weyl-invariant semisection $A=\left(A^{-}, A^{0}, A^{+}\right)$in X_{1} such that $\Phi_{\mathcal{L}}(U)$ is saturated in $X_{1}^{\text {ss }}(A)$. Thus $\Phi_{\mathcal{L}}(U) \subset X_{1}^{\mathrm{ss}}(A) \cap \Phi_{\mathcal{L}}\left(\bigcup_{g \in \mathrm{SL}(2)} g U\right)$. Moreover, since U is maximal in X with respect to the order \triangleleft, the set $\Phi_{\mathcal{L}}(U)$ is maximal with respect to \triangleleft in $\Phi_{\mathcal{L}}\left(\bigcup_{g \in \operatorname{SL}(2)} g U\right) \subset X_{1}$.

Let $Z=\left(X_{1}^{\mathrm{ss}}(A) \cap \Phi_{\mathcal{L}}\left(\bigcup_{g \in \operatorname{SL}(2)} g U\right)\right)-\Phi_{\mathcal{L}}(U)$. We want to show that for any $x \in Z$ either $B^{+} x$ or $B^{-} x$ is in Z.

Notice first that $x \in X_{1}^{\mathrm{ss}}(A)-X_{1}^{\mathrm{s}}(A)$ (if $x \in X_{1}^{\mathrm{s}}(A) \cap \Phi_{\mathcal{L}}\left(\bigcup_{g \in \operatorname{SL}(2)} g U\right)$, then by maximality of $\Phi_{\mathcal{L}}(U)$ in $\Phi_{\mathcal{L}}\left(\bigcup_{g \in \operatorname{SL}(2)} g U\right)$ we have $\left.x \in \Phi_{\mathcal{L}}(U)\right)$. Hence there exists $X_{i} \in A^{0}$ such that either $x \in X_{i}^{+}$or $x \in X_{i}^{-}$. By symmetry we may assume that $x \in X_{i}^{+}$. Since $\Phi_{\mathcal{L}}(U)$ is open and saturated in $X_{1}^{\text {ss }}(A)$ we have $X_{i}^{+} \cap \Phi_{\mathcal{L}}(U)=X_{i} \cap \Phi_{\mathcal{L}}(U)^{+}$. But for any $y \in X_{i}$, $\{y\}^{+}$is B^{+}-invariant, hence $\left\{\lim _{t \rightarrow 0} t x\right\}^{+}$is B^{+}-invariant. Therefore $B^{+} x \cap$ $\Phi_{\mathcal{L}}(U)=\emptyset$ and $B^{+} x \subset Z$.

Now we want to show that for any $x \in \Phi_{\mathcal{L}}\left(\bigcup_{g \in \operatorname{SL}(2)} g U\right)-X_{1}^{\mathrm{ss}}(A)$ either $B^{+} x$ or $B^{-} x$ is contained in Z. Since $\bigcup_{g \in \operatorname{SL}(2)} g U$ is SL(2)-invariant it suffices to show that either $B^{+} x$ or $B^{-} x$ is contained in $X_{1}-X_{1}^{\text {ss }}(A)$. But this is clear since $X_{1}-X_{1}^{\mathrm{ss}}(A)=\bigcup_{j \in A^{+}} X_{j}^{+} \cup \bigcup_{j \in A^{-}} X_{j}^{-}$and X_{j}^{+}, X_{j}^{-}are B^{+}- and B^{-}-invariant, respectively.

It follows from the above results that for any $x \in \Phi_{\mathcal{L}}\left(\bigcup_{g \in \mathrm{SL}(2)} g U\right)-$ $\Phi_{\mathcal{L}}(U)$ either $B^{+} x$ or $B^{-} x$ is contained in Z. Since $\Phi_{\mathcal{L}}$ is an $\operatorname{SL}(2)$-invariant
map, for any $x \in X-U$ either $B^{+} x$ or $B^{-} x$ is contained in $X-U$. Let F_{1}, F_{2} be the sets of all $x \in X-U$ such that $B^{+} x \subset X-U, B^{-} x \subset X-U$, respectively. Then F_{1}, F_{2} are obviously closed and $F_{1} \cup F_{2}=X$. The proof of Lemma 10 is complete.

Corollary 12. Under the assumptions of Theorem 9 the set $\bigcap_{g \in \operatorname{SL}(2)} g U$ is open and $\mathrm{SL}(2)$-invariant.

Proof. In fact, since the sets $\mathrm{SL}(2) F_{1}$ and $\mathrm{SL}(2) F_{2}$ are B^{+}- and B^{-}invariant, respectively, and $\mathrm{SL}(2) / B^{+}, \mathrm{SL}(2) / B^{-}$are complete we infer that $\mathrm{SL}(2) F_{1}$ and $\mathrm{SL}(2) F_{2}$ are closed. Hence $\bigcap_{g \in \mathrm{SL}(2)} g U=X-\mathrm{SL}(2)(X-U)=$ $X-\mathrm{SL}(2)\left(F_{1} \cup F_{2}\right)$ is open and obviously $\mathrm{SL}(2)$-invariant.

Lemma 13. Let U be an $N(T)$-invariant open subset of X such that $X-U$ is a union of B^{+}- and B^{-}-orbits and let $x \in U$. If $\operatorname{SL}(2) x \cap(X-U) \neq$ \emptyset, then there exists $b_{1} \in B^{+}$such that $b_{1} x \in X-U$.

Proof. Let $\mathrm{SL}(2) x \cap(X-U) \neq \emptyset$. Then there exist $g_{1}, g_{2} \in \mathrm{SL}(2)$ such that either $B^{+} g_{1} x \subset X-U$ or $B^{-} g_{2} x \subset X-U$. Assume that $B^{+} g_{1} X \subset$ $X-U$. There exist $b_{1}, b_{2} \in B^{+}$such that $g=b_{2} \tau b_{1}$. Then also $\tau b_{2} x \in$ $X-U$. Since U is $N(T)$-invariant and $\tau \in N(T)$, we have $b_{2} x \in X-U$. If $B^{-} g_{2} x \subset X-U$, then we obtain $\tau B^{-} \tau^{-1} g_{2} x \subset X-U$, and hence $B^{+}\left(\tau^{-1} g_{2}\right) x \subset X-U$. Then, arguing as above for $g_{1}=\tau^{-1} g_{2}$, we conclude that for some $b_{2} \in B^{+}, b_{2} x \in x-U$.

Lemma 14. Let U satisfy the assumptions of Lemma 13. Then $\bigcap_{g \in \mathrm{SL}(2)} g U$ is saturated in U with respect to the action of T.

Proof. Let $x \in \bigcap_{g \in \operatorname{SL}(2)} g U$ and suppose that $y \in \overline{T x} \cap U-T x$. Then either $y=\lim _{t \rightarrow 0} t x$ or $y=\lim _{t \rightarrow \infty} t x$. Let $y=\lim _{t \rightarrow 0} t x$. Assume that $y \notin \bigcap_{g \in \operatorname{SL}(2)} g U$. Then $\operatorname{SL}(2) y \cap(X-U) \neq \emptyset$ and it follows from Lemma 13 that there exists $b_{1} \in B^{+}$such that $b_{1} y \in X-U$. But U is open and $y \in U^{T}$, hence $\{y\}^{+} \subset U$. On the other hand, $B^{+}\{y\}^{+} \subset\{y\}^{+}$. Thus $b_{1} y \in U$ and we have obtained a contradiction. This contradiction shows that $y \in \bigcap_{g \in \operatorname{SL}(2)} g U$. Thus $\bigcap_{g \in \operatorname{SL}(2)} g U$ is saturated in U with respect to the action of T.

Corollary 14. Under the assumptions of Lemma 13, if there exists a good quotient $U \rightarrow U / / T$, then there exists a good quotient $\bigcap_{g \in \operatorname{SL}(2)} g U \rightarrow$ $\bigcap_{g \in \operatorname{SL}(2)} g U / / T$.

Proof of Theorem 9. Let U satisfy the assumptions of the theorem. It follows from Corollary 12 that U satisfies the assumptions of Lemma 13. Hence by Corollary 14, there exists a good quotient $\bigcap_{g \in \operatorname{SL}(2)} g U \rightarrow$ $\bigcap_{g \in \operatorname{SL}(2)} g U / / T$. By the Reduction Theorem (Theorem 5.1) of [BB-Ś4], we infer that there exists a good quotient $\bigcap_{g \in \mathrm{SL}(2)} g U \rightarrow \bigcap_{g \in \operatorname{SL}(2)} g U / / \mathrm{SL}(2)$.

REFERENCES

[BB-S] A. Białynicki-Birula and A. J. Sommese, Quotients by \mathbb{C}^{*} and $\operatorname{SL}(2, \mathbb{C})$ actions, Trans. Amer. Math. Soc. 279 (1983), 773-800.
[BB-Ś1] A. Białynicki-Birula and J. Świȩcicka, Complete quotients by algebraic torus actions, in: Group Actions and Vector Fields, Lecture Notes in Math. 956, Springer, 1981, 10-22.
[BB-Ś2] -, —, On complete orbit spaces of SL(2)-actions, Colloq. Math. 55 (1988), 229-243.
[BB-Ś3] -, -, Good quotients for actions of SL(2), Bull. Polish Acad. Sci. Math. 36 (1988), 375-381.
[BB-Ś4] —, —, A reduction theorem for existence of good quotients, Amer. J. Math. 113 (1991), 189-201.
[C-S] J. Carrell and A. J. Sommese, SL(2, © actions on compact Kaehler manifolds, Trans. Amer. Math. Soc. 276 (1983), 165-179.
[K] D. Knutson, Algebraic Spaces, Lecture Notes in Math. 203, Springer, 1971.
[L] D. Luna, Slices étale, Bull. Soc. Math. France Mém. 33 (1973), 81-105.
[GIT] D. Mumford, Geometric Invariant Theory, Ergeb. Math. Grenzgeb. 34, Springer, 1982.
[S] H. Sumihiro, Equivariant completions, J. Math. Kyoto Univ. 14 (1974), 1-28.

INSTITUTE OF MATHEMATICS
UNIVERSITY OF WARSAW
BANACHA 2
00-913 WARSZAWA 59, POLAND

