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MULTILINEAR PROOFS FOR TWO THEOREMS

ON CIRCULAR AVERAGES

BY

DANIEL M. O BERL IN (TALLAHASSEE, FLORIDA)

Let λ be Lebesgue measure on the unit circle in R
2 and, for small δ > 0,

let A(δ) be the annulus {1 − δ ≤ |x| ≤ 1 + δ} in R
2. Denote by ‖f‖p the

norm of a function f in Lp(R2) and by f̂ the Fourier transform of f . The
purpose of this note is to present new proofs for two known results:

Theorem 1. There is a constant C such that

‖λ ∗ f‖3 ≤ C‖f‖3/2

for f ∈ L3/2(R2).

Theorem 2. There is a constant C such that

‖f̂ ‖L4/3(A(δ)) ≤ Cδ3/4|log δ|1/4‖f‖4/3

for f ∈ L4/3(R2).

Theorem 1 is a special case of a result of Strichartz [S] while Theorem 2
is due to Tomas [T]. The ground common to the statements of Theorems 1
and 2 is that they both deal with circular (or annular) averages. The simi-
larity between the proofs we give is that both are effected with multilinear
interpolation. The proof presented here for Theorem 1 utilizes a device of
Christ [C], while the original proof is based on interpolation with an ana-
lytic family of operators. Our proof of Theorem 2 rests on the multilinear
Riesz–Thorin theorem and seems a little simpler than the original argument.

In what follows, C denotes a positive constant which may vary from line
to line.

P r o o f o f T h e o r e m 1. An argument analogous to that on pp. 227–
228 of [C] shows that it is enough to establish the estimate

(1)
∣∣∣
∫

R
2

λ ∗ f1(x)λ ∗ f2(x)λ ∗ f3(x) dx
∣∣∣ ≤ C‖f1‖1‖f2‖2,1‖f3‖2,1
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for functions fi on R
2. Here ‖ · ‖2,1 denotes a Lorentz norm. It is really

enough to establish (1) when f1 is replaced by a point mass at an arbitrary
point in R

2 and f2 , f3 are characteristic functions of measurable subsets
of R

2. Using the notations eiθ for (cos θ , sin θ) and |E| for the Lebesgue
measure of a measurable E ⊆ R

2, we see then that it suffices to show that

2π∫
0

λ ∗ 1E1
(eiθ)λ ∗ 1E2

(eiθ) dθ ≤ C|E1|
1/2|E2|

1/2 if E1 , E2 ⊆ R
2 ,

or that
( 2π∫

0

[λ ∗ 1E(eiθ)]2dθ
)1/2

≤ C|E|1/2 if E ⊆ R
2 .

This, in turn, is equivalent to establishing the estimate

(2)
∣∣∣

2π∫
0

λ ∗ 1E(eiθ)g(θ) dθ
∣∣∣ ≤ C|E|1/2‖g‖L2(dθ)

for E ⊂ R
2 and functions g on [0, 2π).

The transformation T : (θ, φ) 7→ eiθ + eiφ is essentially a two-to-one
mapping of [0, 2π) × [0, 2π) onto {|x| ≤ 2}. Thus the change of variables
formula gives

2π∫
0

λ ∗ 1E(eiθ)g(θ) dθ =
2π∫
0

2π∫
0

1E(eiθ + eiφ)g(θ) dφ dθ

=
∫

|x|≤2

1E(x)[ g̃1(x)ω1(x) + g̃2(x)ω2(x)] dx

where if (θ1 , φ1) and (θ2 , φ2) are the inverse images of x under T , chosen
so that 0 ≤ θ1 < π, say, then

g̃i(x) = g(θi), ωi(x) = |sin(θi − φi)|
−1 for i = 1, 2 .

Thus (2) will follow from

(3) ‖g̃iωi‖L2,∞(R2) ≤ C‖g‖L2(dθ) .

But, for s > 0,

|{x : g̃i(x)ωi(x) > s| ≤
∫ ∫

{|g(θ)|>s|sin(θ−φ)|}

|sin(θ−φ)| dφ dθ ≤ Cs−2‖g‖2
L2(dθ) .

This establishes (3) and completes the proof of Theorem 1.

P r o o f o f T h e o r e m 2. By duality it is enough to show that if f is
supported on A(δ), then

(4) ‖f̂‖4 ≤ Cδ3/4|log δ|1/4‖f‖4 .
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And it will actually suffice to establish (4) under the assumption that f is
supported in

Ã(δ)
.
= {reiθ : 1 − δ ≤ r ≤ 1 + δ, 0 ≤ θ ≤ 1/8}

and that 0 < δ < 1/8. Using the Plancherel theorem in the usual way to

express ‖f̂ ‖4 in terms of f , we see that (4) is a consequence of

(5)
∣∣∣
∫ ∫ ∫

f1(x − y)f2(y)f3(x − z)f4(z) dx dy dz
∣∣∣ ≤ Cδ3|log δ|

4∏

i=1

‖fi‖4

for functions fi supported on Ã(δ). But (5) will follow from the multi-
linear Riesz–Thorin theorem and the four estimates obtained by replacing∏4

i=1 ‖fi‖4 in (5) with ‖fj‖1

∏
i 6=j ‖fi‖∞ . The case j = 1 is typical, so we

will show that

(6)
∣∣∣
∫ ∫ ∫

f1(x − y)f2(y)f3(x − z)f4(z) dx dy dz
∣∣∣

≤ Cδ3|log δ| ‖f1‖1

4∏

i=2

‖fi‖∞ .

It is enough to establish (6) when f1 is replaced by a point mass at some

x0 ∈ Ã(δ) and when each ‖fi‖∞ = 1. Then the LHS of (6) will be largest

when each fi is the characteristic function of Ã(δ). Writing A for Ã(δ), we
see that (6) reduces to

(7)
∫ ∫

1A(x − x0)1A(x − z)1A(z) dx dz ≤ Cδ3|log δ| if x0 ∈ A .

Assume for a moment that

(8)
∫

1A(x − x0)1A(x − z) dx ≤ C min{δ, δ2/|x0 − z|} if x0, z ∈ A .

Then the LHS of (7) is bounded by a multiple of

δ
∫

|x0−z|<10δ

dz + δ2
∫

|x0−z|≥10δ

1A(z)
dz

|x0 − z|
≤ Cδ3|log δ|.

Thus Theorem 2 will be proved as soon as (8) is established. But (8) follows
from

(9) |x1 + A(δ) ∩ x2 + A(δ)| ≤ C
δ2

|x1 − x2|
if, say, 10δ ≤ |x1 − x2| ≤

1

2
.

Here x1 +A(δ) is the translate of A(δ) by x1 ∈ R
2 and | · | denotes Lebesgue

measure on R
2. Under the assumptions on x1 and x2 ,

x1 + A(δ) ∩ x2 + A(δ)
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is a union of two sets, each of which is a rigid motion of the set in Figure 1.

Fig. 1

Trigonometry shows that the segment AC has length 4δ/|x1 − x2| and
BD has length

[(1 + δ)2 − |x1 − x2|
2/4]1/2 − [(1 − δ)2 − |x1 − x2|

2/4]1/2.

This last expression is bounded by Cδ since 0 < δ < 1/8 and since |x1−x2| ≤
1/2. Thus (9) follows and the proof of Theorem 2 is complete.
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