COLLOQUIUM MATHEMATICUM

VOL. LXIII

1992

FASC. 2

MULTILINEAR PROOFS FOR TWO THEOREMS ON CIRCULAR AVERAGES

 $_{\rm BY}$

DANIEL M. OBERLIN (TALLAHASSEE, FLORIDA)

Let λ be Lebesgue measure on the unit circle in \mathbb{R}^2 and, for small $\delta > 0$, let $A(\delta)$ be the annulus $\{1 - \delta \le |x| \le 1 + \delta\}$ in \mathbb{R}^2 . Denote by $||f||_p$ the norm of a function f in $L^p(\mathbb{R}^2)$ and by \hat{f} the Fourier transform of f. The purpose of this note is to present new proofs for two known results:

THEOREM 1. There is a constant C such that

$$\|\lambda * f\|_3 \le C \|f\|_{3/2}$$

for $f \in L^{3/2}(\mathbb{R}^2)$.

THEOREM 2. There is a constant C such that

$$\|\hat{f}\|_{L^{4/3}(A(\delta))} \le C\delta^{3/4} |\log \delta|^{1/4} \|f\|_{4/3}$$

for $f \in L^{4/3}(\mathbb{R}^2)$.

Theorem 1 is a special case of a result of Strichartz [S] while Theorem 2 is due to Tomas [T]. The ground common to the statements of Theorems 1 and 2 is that they both deal with circular (or annular) averages. The similarity between the proofs we give is that both are effected with multilinear interpolation. The proof presented here for Theorem 1 utilizes a device of Christ [C], while the original proof is based on interpolation with an analytic family of operators. Our proof of Theorem 2 rests on the multilinear Riesz-Thorin theorem and seems a little simpler than the original argument.

In what follows, ${\cal C}$ denotes a positive constant which may vary from line to line.

Proof of Theorem 1. An argument analogous to that on pp. 227–228 of [C] shows that it is enough to establish the estimate

(1)
$$\left| \int_{\mathbb{R}^2} \lambda * f_1(x) \lambda * f_2(x) \lambda * f_3(x) \, dx \right| \le C \|f_1\|_1 \|f_2\|_{2,1} \|f_3\|_{2,1}$$

Research partially supported by a grant from the National Science Foundation.

for functions f_i on \mathbb{R}^2 . Here $\|\cdot\|_{2,1}$ denotes a Lorentz norm. It is really enough to establish (1) when f_1 is replaced by a point mass at an arbitrary point in \mathbb{R}^2 and f_2 , f_3 are characteristic functions of measurable subsets of \mathbb{R}^2 . Using the notations $e^{i\theta}$ for $(\cos \theta, \sin \theta)$ and |E| for the Lebesgue measure of a measurable $E \subseteq \mathbb{R}^2$, we see then that it suffices to show that

$$\int_{0}^{2\pi} \lambda * \mathbf{1}_{E_{1}}(e^{i\theta}) \lambda * \mathbf{1}_{E_{2}}(e^{i\theta}) d\theta \le C|E_{1}|^{1/2}|E_{2}|^{1/2} \quad \text{if } E_{1}, E_{2} \subseteq \mathbb{R}^{2},$$

or that

$$\left(\int_{0}^{2\pi} [\lambda * \mathbf{1}_{E}(e^{i\theta})]^{2} d\theta\right)^{1/2} \leq C|E|^{1/2} \quad \text{if } E \subseteq \mathbb{R}^{2} \,.$$

This, in turn, is equivalent to establishing the estimate

(2)
$$\left| \int_{0}^{2\pi} \lambda * \mathbf{1}_{E}(e^{i\theta})g(\theta) \, d\theta \right| \leq C|E|^{1/2} ||g||_{L^{2}(d\theta)}$$

for $E \subset \mathbb{R}^2$ and functions g on $[0, 2\pi)$.

The transformation $T : (\theta, \phi) \mapsto e^{i\theta} + e^{i\phi}$ is essentially a two-to-one mapping of $[0, 2\pi) \times [0, 2\pi)$ onto $\{|x| \leq 2\}$. Thus the change of variables formula gives

$$\int_{0}^{2\pi} \lambda * \mathbf{1}_{E}(e^{i\theta})g(\theta) \, d\theta = \int_{0}^{2\pi} \int_{0}^{2\pi} \mathbf{1}_{E}(e^{i\theta} + e^{i\phi})g(\theta) \, d\phi \, d\theta$$
$$= \int_{|x| \le 2} \mathbf{1}_{E}(x) [\widetilde{g}_{1}(x)\omega_{1}(x) + \widetilde{g}_{2}(x)\omega_{2}(x)] \, dx$$

where if (θ_1, ϕ_1) and (θ_2, ϕ_2) are the inverse images of x under T, chosen so that $0 \le \theta_1 < \pi$, say, then

$$\widetilde{g}_i(x) = g(\theta_i), \quad \omega_i(x) = |\sin(\theta_i - \phi_i)|^{-1} \quad \text{for } i = 1, 2.$$

Thus (2) will follow from

(3)
$$\|\widetilde{g}_i\omega_i\|_{L^{2,\infty}(\mathbb{R}^2)} \le C\|g\|_{L^2(d\theta)}.$$

But, for s > 0,

$$|\{x: \tilde{g}_i(x)\omega_i(x) > s| \le \iint_{\{|g(\theta)| > s|\sin(\theta - \phi)|\}} |\sin(\theta - \phi)| \, d\phi \, d\theta \le Cs^{-2} ||g||_{L^2(d\theta)}^2.$$

This establishes (3) and completes the proof of Theorem 1.

Proof of Theorem 2. By duality it is enough to show that if f is supported on $A(\delta)$, then

(4)
$$\|\widehat{f}\|_4 \le C\delta^{3/4} |\log \delta|^{1/4} \|f\|_4.$$

And it will actually suffice to establish (4) under the assumption that f is supported in

$$\widetilde{A}(\delta) \doteq \{ re^{i\theta} : 1 - \delta \le r \le 1 + \delta, \ 0 \le \theta \le 1/8 \}$$

and that $0 < \delta < 1/8$. Using the Plancherel theorem in the usual way to express $\|\hat{f}\|_4$ in terms of f, we see that (4) is a consequence of

(5)
$$\left| \int \int \int f_1(x-y) f_2(y) f_3(x-z) f_4(z) \, dx \, dy \, dz \right| \le C \delta^3 |\log \delta| \prod_{i=1}^4 \|f_i\|_4$$

for functions f_i supported on $\widetilde{A}(\delta)$. But (5) will follow from the multilinear Riesz–Thorin theorem and the four estimates obtained by replacing $\prod_{i=1}^{4} \|f_i\|_4$ in (5) with $\|f_j\|_1 \prod_{i \neq j} \|f_i\|_{\infty}$. The case j = 1 is typical, so we will show that

(6)
$$\left| \int \int \int f_1(x-y) f_2(y) f_3(x-z) f_4(z) \, dx \, dy \, dz \right|$$

 $\leq C \delta^3 |\log \delta| \, \|f_1\|_1 \prod_{i=2}^4 \|f_i\|_{\infty} \, .$

It is enough to establish (6) when f_1 is replaced by a point mass at some $x_0 \in \widetilde{A}(\delta)$ and when each $||f_i||_{\infty} = 1$. Then the LHS of (6) will be largest when each f_i is the characteristic function of $\widetilde{A}(\delta)$. Writing A for $\widetilde{A}(\delta)$, we see that (6) reduces to

(7)
$$\int \int \mathbf{1}_A(x-x_0) \mathbf{1}_A(x-z) \mathbf{1}_A(z) \, dx \, dz \le C\delta^3 |\log \delta| \quad \text{if } x_0 \in A \, .$$

Assume for a moment that

(8)
$$\int \mathbf{1}_A(x-x_0) \, \mathbf{1}_A(x-z) \, dx \le C \min\{\delta, \delta^2 / |x_0-z|\} \quad \text{if } x_0, z \in A.$$

Then the LHS of (7) is bounded by a multiple of

$$\delta \int_{|x_0-z|<10\delta} dz + \delta^2 \int_{|x_0-z|\ge 10\delta} \mathbf{1}_A(z) \frac{dz}{|x_0-z|} \le C\delta^3 |\log \delta|.$$

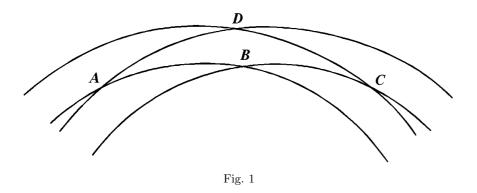
Thus Theorem 2 will be proved as soon as (8) is established. But (8) follows from

(9)
$$|x_1 + A(\delta) \cap x_2 + A(\delta)| \le C \frac{\delta^2}{|x_1 - x_2|}$$
 if, say, $10\delta \le |x_1 - x_2| \le \frac{1}{2}$.

Here $x_1 + A(\delta)$ is the translate of $A(\delta)$ by $x_1 \in \mathbb{R}^2$ and $|\cdot|$ denotes Lebesgue measure on \mathbb{R}^2 . Under the assumptions on x_1 and x_2 ,

$$x_1 + A(\delta) \cap x_2 + A(\delta)$$

is a union of two sets, each of which is a rigid motion of the set in Figure 1.



Trigonometry shows that the segment AC has length $4\delta/|x_1 - x_2|$ and BD has length

 $[(1+\delta)^2 - |x_1 - x_2|^2/4]^{1/2} - [(1-\delta)^2 - |x_1 - x_2|^2/4]^{1/2}.$

This last expression is bounded by $C\delta$ since $0 < \delta < 1/8$ and since $|x_1-x_2| \le 1/2$. Thus (9) follows and the proof of Theorem 2 is complete.

REFERENCES

- [C] M. Christ, On the restriction of the Fourier transform to curves: endpoint results and the degenerate case, Trans. Amer. Math. Soc. 287 (1985), 223–228.
- [S] R. Strichartz, Convolutions with kernels having singularities on a sphere, ibid. 148 (1970), 461–471.
- [T] P. Tomas, A note on restriction, Indiana Univ. J. Math. 29 (1980), 287–292.

DEPARTMENT OF MATHEMATICS THE FLORIDA STATE UNIVERSITY TALLAHASSEE, FLORIDA 32306 U.S.A.

Reçu par la Rédaction le 4.1.1991

190