C OLLOQ UIUM MATHEMATICUM

| VOL. LXIII 1992 | FASC. 2 |
| :--- | :--- | :--- |

mULTILINEAR PROOFS FOR TWO THEOREMS on CIRCULAR AVERAGES

BY
DANIEL M. OBERLIN (TALLAHASSEE, FLORIDA)
Let λ be Lebesgue measure on the unit circle in \mathbb{R}^{2} and, for small $\delta>0$, let $A(\delta)$ be the annulus $\{1-\delta \leq|x| \leq 1+\delta\}$ in \mathbb{R}^{2}. Denote by $\|f\|_{p}$ the norm of a function f in $L^{p}\left(\mathbb{R}^{2}\right)$ and by \widehat{f} the Fourier transform of f. The purpose of this note is to present new proofs for two known results:

Theorem 1. There is a constant C such that

$$
\|\lambda * f\|_{3} \leq C\|f\|_{3 / 2}
$$

for $f \in L^{3 / 2}\left(\mathbb{R}^{2}\right)$.
Theorem 2. There is a constant C such that

$$
\|\widehat{f}\|_{L^{4 / 3}(A(\delta))} \leq C \delta^{3 / 4}|\log \delta|^{1 / 4}\|f\|_{4 / 3}
$$

for $f \in L^{4 / 3}\left(\mathbb{R}^{2}\right)$.
Theorem 1 is a special case of a result of Strichartz [S] while Theorem 2 is due to Tomas $[\mathrm{T}]$. The ground common to the statements of Theorems 1 and 2 is that they both deal with circular (or annular) averages. The similarity between the proofs we give is that both are effected with multilinear interpolation. The proof presented here for Theorem 1 utilizes a device of Christ [C], while the original proof is based on interpolation with an analytic family of operators. Our proof of Theorem 2 rests on the multilinear Riesz-Thorin theorem and seems a little simpler than the original argument.

In what follows, C denotes a positive constant which may vary from line to line.

Proof of Theorem 1. An argument analogous to that on pp. 227228 of [C] shows that it is enough to establish the estimate

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{2}} \lambda * f_{1}(x) \lambda * f_{2}(x) \lambda * f_{3}(x) d x\right| \leq C\left\|f_{1}\right\|_{1}\left\|f_{2}\right\|_{2,1}\left\|f_{3}\right\|_{2,1} \tag{1}
\end{equation*}
$$

Research partially supported by a grant from the National Science Foundation.
for functions f_{i} on \mathbb{R}^{2}. Here $\|\cdot\|_{2,1}$ denotes a Lorentz norm. It is really enough to establish (1) when f_{1} is replaced by a point mass at an arbitrary point in \mathbb{R}^{2} and f_{2}, f_{3} are characteristic functions of measurable subsets of \mathbb{R}^{2}. Using the notations $e^{i \theta}$ for $(\cos \theta, \sin \theta)$ and $|E|$ for the Lebesgue measure of a measurable $E \subseteq \mathbb{R}^{2}$, we see then that it suffices to show that

$$
\int_{0}^{2 \pi} \lambda * \mathbf{1}_{E_{1}}\left(e^{i \theta}\right) \lambda * \mathbf{1}_{E_{2}}\left(e^{i \theta}\right) d \theta \leq C\left|E_{1}\right|^{1 / 2}\left|E_{2}\right|^{1 / 2} \quad \text { if } E_{1}, E_{2} \subseteq \mathbb{R}^{2}
$$

or that

$$
\left(\int_{0}^{2 \pi}\left[\lambda * \mathbf{1}_{E}\left(e^{i \theta}\right)\right]^{2} d \theta\right)^{1 / 2} \leq C|E|^{1 / 2} \quad \text { if } E \subseteq \mathbb{R}^{2}
$$

This, in turn, is equivalent to establishing the estimate

$$
\begin{equation*}
\left|\int_{0}^{2 \pi} \lambda * \mathbf{1}_{E}\left(e^{i \theta}\right) g(\theta) d \theta\right| \leq C|E|^{1 / 2}\|g\|_{L^{2}(d \theta)} \tag{2}
\end{equation*}
$$

for $E \subset \mathbb{R}^{2}$ and functions g on $[0,2 \pi)$.
The transformation $T:(\theta, \phi) \mapsto e^{i \theta}+e^{i \phi}$ is essentially a two-to-one mapping of $[0,2 \pi) \times[0,2 \pi)$ onto $\{|x| \leq 2\}$. Thus the change of variables formula gives

$$
\begin{aligned}
\int_{0}^{2 \pi} \lambda * \mathbf{1}_{E}\left(e^{i \theta}\right) g(\theta) d \theta & =\int_{0}^{2 \pi} \int_{0}^{2 \pi} \mathbf{1}_{E}\left(e^{i \theta}+e^{i \phi}\right) g(\theta) d \phi d \theta \\
& =\int_{|x| \leq 2} \mathbf{1}_{E}(x)\left[\widetilde{g}_{1}(x) \omega_{1}(x)+\widetilde{g}_{2}(x) \omega_{2}(x)\right] d x
\end{aligned}
$$

where if $\left(\theta_{1}, \phi_{1}\right)$ and $\left(\theta_{2}, \phi_{2}\right)$ are the inverse images of x under T, chosen so that $0 \leq \theta_{1}<\pi$, say, then

$$
\widetilde{g}_{i}(x)=g\left(\theta_{i}\right), \quad \omega_{i}(x)=\left|\sin \left(\theta_{i}-\phi_{i}\right)\right|^{-1} \quad \text { for } i=1,2 .
$$

Thus (2) will follow from

$$
\begin{equation*}
\left\|\widetilde{g}_{i} \omega_{i}\right\|_{L^{2, \infty}\left(\mathbb{R}^{2}\right)} \leq C\|g\|_{L^{2}(d \theta)} \tag{3}
\end{equation*}
$$

But, for $s>0$,
$\mid\left\{x: \widetilde{g}_{i}(x) \omega_{i}(x)>s\left|\leq \int_{\{|g(\theta)|>s|\sin (\theta-\phi)|\}}\right| \sin (\theta-\phi) \mid d \phi d \theta \leq C s^{-2}\|g\|_{L^{2}(d \theta)}^{2}\right.$.
This establishes (3) and completes the proof of Theorem 1.
Proof of Theorem 2. By duality it is enough to show that if f is supported on $A(\delta)$, then

$$
\begin{equation*}
\|\widehat{f}\|_{4} \leq C \delta^{3 / 4}|\log \delta|^{1 / 4}\|f\|_{4} \tag{4}
\end{equation*}
$$

And it will actually suffice to establish (4) under the assumption that f is supported in

$$
\widetilde{A}(\delta) \doteq\left\{r e^{i \theta}: 1-\delta \leq r \leq 1+\delta, 0 \leq \theta \leq 1 / 8\right\}
$$

and that $0<\delta<1 / 8$. Using the Plancherel theorem in the usual way to express $\|\widehat{f}\|_{4}$ in terms of f, we see that (4) is a consequence of
(5) $\left|\iiint f_{1}(x-y) f_{2}(y) f_{3}(x-z) f_{4}(z) d x d y d z\right| \leq C \delta^{3}|\log \delta| \prod_{i=1}^{4}\left\|f_{i}\right\|_{4}$
for functions f_{i} supported on $\widetilde{A}(\delta)$. But (5) will follow from the multilinear Riesz-Thorin theorem and the four estimates obtained by replacing $\prod_{i=1}^{4}\left\|f_{i}\right\|_{4}$ in (5) with $\left\|f_{j}\right\|_{1} \prod_{i \neq j}\left\|f_{i}\right\|_{\infty}$. The case $j=1$ is typical, so we will show that

$$
\begin{align*}
& \mid \iiint f_{1}(x-y) f_{2}(y) f_{3}(x-z) f_{4}(z) d x d y d z \mid \tag{6}\\
& \leq C \delta^{3}|\log \delta|\left\|f_{1}\right\|_{1} \prod_{i=2}^{4}\left\|f_{i}\right\|_{\infty}
\end{align*}
$$

It is enough to establish (6) when f_{1} is replaced by a point mass at some $x_{0} \in \widetilde{A}(\delta)$ and when each $\left\|f_{i}\right\|_{\infty}=1$. Then the LHS of (6) will be largest when each f_{i} is the characteristic function of $\widetilde{A}(\delta)$. Writing A for $\widetilde{A}(\delta)$, we see that (6) reduces to

$$
\begin{equation*}
\iint \mathbf{1}_{A}\left(x-x_{0}\right) \mathbf{1}_{A}(x-z) \mathbf{1}_{A}(z) d x d z \leq C \delta^{3}|\log \delta| \quad \text { if } x_{0} \in A \tag{7}
\end{equation*}
$$

Assume for a moment that

$$
\begin{equation*}
\int \mathbf{1}_{A}\left(x-x_{0}\right) \mathbf{1}_{A}(x-z) d x \leq C \min \left\{\delta, \delta^{2} /\left|x_{0}-z\right|\right\} \quad \text { if } x_{0}, z \in A \tag{8}
\end{equation*}
$$

Then the LHS of (7) is bounded by a multiple of

$$
\delta \int_{\left|x_{0}-z\right|<10 \delta} d z+\delta^{2} \int_{\left|x_{0}-z\right| \geq 10 \delta} \mathbf{1}_{A}(z) \frac{d z}{\left|x_{0}-z\right|} \leq C \delta^{3}|\log \delta|
$$

Thus Theorem 2 will be proved as soon as (8) is established. But (8) follows from
(9) $\left|x_{1}+A(\delta) \cap x_{2}+A(\delta)\right| \leq C \frac{\delta^{2}}{\left|x_{1}-x_{2}\right|} \quad$ if, say, $10 \delta \leq\left|x_{1}-x_{2}\right| \leq \frac{1}{2}$.

Here $x_{1}+A(\delta)$ is the translate of $A(\delta)$ by $x_{1} \in \mathbb{R}^{2}$ and $|\cdot|$ denotes Lebesgue measure on \mathbb{R}^{2}. Under the assumptions on x_{1} and x_{2},

$$
x_{1}+A(\delta) \cap x_{2}+A(\delta)
$$

is a union of two sets, each of which is a rigid motion of the set in Figure 1.

Fig. 1
Trigonometry shows that the segment $A C$ has length $4 \delta /\left|x_{1}-x_{2}\right|$ and $B D$ has length

$$
\left[(1+\delta)^{2}-\left|x_{1}-x_{2}\right|^{2} / 4\right]^{1 / 2}-\left[(1-\delta)^{2}-\left|x_{1}-x_{2}\right|^{2} / 4\right]^{1 / 2}
$$

This last expression is bounded by $C \delta$ since $0<\delta<1 / 8$ and since $\left|x_{1}-x_{2}\right| \leq$ $1 / 2$. Thus (9) follows and the proof of Theorem 2 is complete.

REFERENCES

[C] M. Christ, On the restriction of the Fourier transform to curves: endpoint results and the degenerate case, Trans. Amer. Math. Soc. 287 (1985), 223-228.
[S] R. Strichartz, Convolutions with kernels having singularities on a sphere, ibid. 148 (1970), 461-471.
[T] P. Tomas, A note on restriction, Indiana Univ. J. Math. 29 (1980), 287-292.

DEPARTMENT OF MATHEMATICS
THE FLORIDA STATE UNIVERSITY
TALLAHASSEE, FLORIDA 32306
U.S.A.

