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1. For an additively written finite abelian group G, Davenport’s constant
D(G) is defined as the maximal length d of a sequence (g1, . . . , gd) in G such
that

∑d
j=1 gj = 0, and

∑
j∈J gj 6= 0 for all ∅ 6= J  {1, . . . , d}. It has the

following arithmetical meaning:
Let K be an algebraic number field, R its ring of integers and G the

ideal class group of R. Then D(G) is the maximal number of prime ideals
(counted with multiplicity) which can divide an irreducible element of R.
This fact was first observed by H. Davenport (1966) and worked out by
W. Narkiewicz [8] and A. Geroldinger [4].

For a subset Z ⊂ R and x > 1 we denote by Z(x) the number of
principal ideals (α) of R with α ∈ Z and (R : (α)) ≤ x. If M denotes the
set of irreducible integers of R, then it was proved by P. Rémond [12] that,
as x →∞,

M(x) ∼ Cx(log x)−1(log log x)D(G)−1 ,

where C > 0 depends on K; the error term in this asymptotic formula was
investigated by J. Kaczorowski [7].

If an element α ∈ R \ (R× ∪{0}) has a factorization α = u1 · . . . · ur into
irreducible elements uj ∈ R, we call r the length of that factorization and
denote by L(α) the set of all lengths of factorizations of α. For k ≥ 1, we
define sets Mk and M ′

k (depending on K) as follows:
Mk consists of all α ∈ R \ (R× ∪ {0}) for which max L(α) ≤ k (i.e., α

has no factorization of length r > k);
M ′

k consists of all α ∈ R \ (R×∪{0}) for which minL(α) ≤ k (i.e., α has
a factorization of length r ≤ k).

If G = {0}, then Mk = M ′
k for all k; in the general case, we have

M1 = M ′
1 = M and Mk ⊂ M ′

k for all k.
In this paper, we generalize the results of Rémond and Kaczorowski and

obtain asymptotic formulas for Mk(x) and M ′
k(x). To do this, we shall

define a sequence of combinatorial constants Dk(G) (k ≥ 1) generalizing
D(G) = D1(G), and we shall obtain the following result.
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Theorem. For x ≥ ee and q ∈ Z, 0 ≤ q ≤ c0

√
log x

log log x
, we have

Mk(x) =
x

log x

[ q∑
µ=0

Wµ(log log x)
(log x)µ

+ O

(
(c1q)q (log log x)Dk(G)

(log x)q+1

)]
and

M ′
k(x) =

x

log x

[ q∑
µ=0

W ′
µ(log log x)
(log x)µ

+ O

(
(c1q)q (log log x)kD(G)

(log x)q+1

)]
,

where c0, c1 are positive constants, and Wµ,W ′
µ ∈ C[X] are polynomials such

that deg Wµ ≤ Dk(G), deg W ′
µ ≤ kD(G), deg W0 = Dk(G) − 1, deg W ′

0 =
kD(G)− 1, and W0, W ′

0 have positive leading coefficients.

R e m a r k s. 1) For k = 1, this is [7, Theorem 1].
2) For G = {0}, we shall see that Dk(G) = k, and we rediscover [9,

Ch. IX, § 1, Corollary 1].
3) In another context, the number M ′

k(x) was studied in [6].

The main part of this paper is devoted to the definition and the investi-
gation of the invariants Dk(G) and is of purely combinatorial nature. Only
in the final section shall we present a proof of the above Theorem using the
work of Kaczorowski.

2. Let G be an additively written finite abelian group. We denote by
F(G) the (multiplicatively written) free abelian semigroup with basis G. In
F(G), we use the concept of divisibility in the usual way: S′ | S if S = S′S′′

for some S′′ ∈ F(G). Every S ∈ F(G) has a unique representation

S =
∏
g∈G

gvg(S)

with vg(S) ∈ N0; we call

σ(S) =
∑
g∈G

vg(S) ∈ N0

the size and
ι(S) =

∑
g∈G

vg(S) · g ∈ G

the content of S. The semigroup

B(G) = {B ∈ F(G) | ι(B) = 0} ⊂ F(G)

is called the block semigroup of G; we set B(G)′ = B(G) \ {1} where
1 ∈ F(G) denotes the unit element. Every B ∈ B(G)′ has a factorization
B = B1 ·. . .·Br into irreducible blocks Bi ∈ B(G)′; again, we call r the length



GENERALIZATION OF DAVENPORT’S CONSTANT 205

of the factorization and denote by L(B) the set of all lengths of factoriza-
tions of B in B(G). Obviously, B is irreducible if and only if L(B) = {1},
and D(G) = max{σ(B) | B ∈ B(G)′ is irreducible}.

Now we define, for k ≥ 1,

Dk(G) = sup{σ(B) | B ∈ B(G)′, max L(B) ≤ k} .

Obviously, D1(G) = D(G), and we shall see in a moment that Dk(G) < ∞
for all k ≥ 1.

Proposition 1. Let G be a finite abelian group and k ∈ N.

(i) kD(G) = max{σ(B) | B ∈ B(G)′, minL(B) ≤ k}
= max{σ(B) | B ∈ B(G)′, k ∈ L(B)}.

(ii) Dk(G) ≤ kD(G) < ∞.
(iii) Dk(G) = max{σ(B) | B ∈ B(G)′, max L(B) = k}.
(iv) Dk(G) is the smallest number d ∈ N with the property that , for every

S ∈ F(G) with σ(S) ≥ d, there exist blocks B1, . . . , Bk ∈ B(G)′ such that
B1 · . . . ·Bk | S.

(v) If B ∈ B(G) is a block satisfying σ(B) > kD(G), then there exist
blocks B1, . . . , Bk+1 ∈ B(G)′ such that B = B1 · . . . ·Bk+1.

(vi) If G1  G is a proper subgroup, then Dk(G1) < Dk(G).

P r o o f. (i) If B ∈ B(G)′ is a block such that minL(B) ≤ k, then there
exists a factorization B = B1 · . . . ·Bl into irreducible blocks Bj ∈ B(G)′ of
length l ≤ k, and therefore

σ(B) =
l∑

j=1

σ(Bj) ≤ D(G) ≤ kD(G) .

Hence it is sufficient to prove that there exists a block B ∈ B(G) such that
σ(B) = kD(G) and k ∈ L(B). But if B0 ∈ B(G)′ is an irreducible block
with σ(B0) = D(G), then B = Bk

0 has the required property.
(ii) follows immediately from (i) and the definition of Dk(G).
(iii) Let l be the maximal length of a factorization of a block B ∈ B(G)′

with max L(B) ≤ k and σ(B) = Dk(G). If l < k, then the block B = B · 0
satisfies σ(B) = Dk(G) + 1 and max L(B) = l + 1 ≤ k, which contradicts
the definition of Dk(G).

(iv) In order to prove that Dk(G) has the indicated property, let S ∈
F(G) be such that σ(S) ≥ Dk(G), set g = −ι(S) ∈ G and consider the
block Sg ∈ B(G)′. Since σ(Sg) > Dk(G), the block Sg has a factorization
of length ν > k, say Sg = B1 · . . . · Bν with irreducible Bj ∈ B(G)′ and
vg(Bν) > 0. This implies B1 · . . . ·Bk | S, as asserted.

In order to prove that Dk(G) is minimal with this property, let B ∈
B(G) be a block satisfying σ(B) = Dk(G) and max L(B) = k, according to
(iii). If B =

∏Dk(G)
j=1 gj and d < Dk(G), then the element Sd =

∏d
j=1 gj ∈
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F(G) cannot be divisible by a product of k blocks, for this would imply
max L(B) ≥ k + 1.

(v) If B = g1 · . . . · gν with ν > kD(G) then, by (iv), there exist blocks
B1, . . . , Bk ∈ B(G)′ such that B1 · . . . ·Bk | g1 · . . . · gν−1, and therefore the
assertion follows.

(vi) By (iii), there exists a block B = g1 · . . . · gN ∈ B(G1) such that
N = σ(B) = Dk(G1) and maxL(B) = k. We pick an element g ∈ G \ G1

and assume that Dk(G1) ≥ Dk(G). By (iv), there exist blocks B1, . . . , Bk ∈
B(G)′ such that B1 ·. . .·Bk | g1 ·. . .·gN−1g; this implies B1, . . . , Bk ∈ B(G1)′,
and therefore there exists a block Bk+1 ∈ B(G1)′ such that B = B1 · . . .
. . . ·BkBk+1, a contradiction.

3. The precise value of D(G) is known only for some special types of
abelian groups [2], [3]; see [5] for a survey. In the following proposition we
collate those results which we shall either use or generalize in the sequel.

For n ≥ 1, let Cn be the cyclic group of order n.

Proposition 2. Let G =
⊕d

i=1 Cni be a finite abelian group with 1 <
nd | nd−1 | . . . | n1, and set

M(G) = n1 +
d∑

i=2

(ni − 1) .

(i) M(G) ≤ D(G) ≤ #G.
(ii) If either d ≤ 2 or G is a p-group, then M(G) = D(G).

P r o o f. [10], [11]; see also [1].

Proposition 3. Let G be a finite abelian group and k ∈ N.

(i) If G = G′ ⊕G′′, then Dk(G) ≥ Dk(G′) + D(G′′)− 1.
(ii) If G =

⊕d
i=1 Cni with 1 < nd |nd−1 | . . . |n1, then Dk(G) ≥ kn1 +∑d

i=2(ni − 1).
(iii) Dk(Cn) = kn.

P r o o f. (i) By Proposition 1(iv), there exist elements S′ ∈ F(G′) and
S′′ ∈ F(G′′) such that σ(S′) = Dk(G′)− 1, S′ is not divisible by a product
of k blocks from B(G′)′ and σ(S′′) = D(G′′) − 1, S′′ is not divisible by a
block of B(G′′)′. If S′ =

∏Dk(G′)−1
j=1 g′j and S′′ =

∏D(G′′)−1
j=1 g′′j , then the

element

S =
Dk(G′)−1∏

j=1

(g′j , 0) ·
D(G′′)−1∏

j=1

(0, g′′j ) ∈ F(G)

is not divisible by a product of k blocks of B(G)′, whence

Dk(G) > σ(S) = Dk(G′) + D(G′′)− 2 ,
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by Proposition 1(iv), as asserted.
(ii) If G = 〈g1, . . . , gd〉 and ord(gi) = ni, then the block

B = gkn1−1
1 · (g1 + . . . + gd) ·

d∏
j=2

g
nj−1
j ∈ B(G)

has a unique factorization into irreducible blocks of length k, given by B =
Bk−1

1 B0, where B1 = gn1
1 and B0 = (g1+ . . .+gd) ·

∏d
j=1 g

nj−1
j . This implies

Dk(G) ≥ σ(B) = kn1 +
∑d

j=2(nj − 1).
(iii) By Propositions 1 and 2, we have Dk(Cn) ≤ kD(Cn) = kn, whereas,

by (ii), Dk(Cn) ≥ kn.

4. In this section we generalize the result on groups of rank 2.

Proposition 4. Let G = G1 ⊕G2 be a finite abelian group, #Gi = ni,
n2 | n1 and k ∈ N. Then

Dk(Cn) ≤ kn1 + n2 − 1 .

For the proof of Proposition 4 we need two technical lemmas.

Lemma 1. Let G be a finite abelian group, m ∈ N, D(G) < 2m and
D(G ⊕ Cm) < 3m. Let t ∈ N and S ∈ F(G) be such that σ(S) ≥ D(G ⊕
Cm) + (t − 1)m. Then there exist blocks B1, . . . , Bt ∈ B(G)′ such that
B1 · . . . ·Bt | S and σ(Bi) ≤ m for all i ∈ {1, . . . , t}.

P r o o f. It suffices to consider the case t = 1, for then the general case
follows by a trivial induction argument.

Set N = D(G⊕Cm) < 3m, and let S = g1 · . . . ·gν ∈ F(G) be an element
with ν = σ(S) ≥ N . Let em be a generator of Cm, and consider the element

S′ =
N∏

j=1

(gj , em) ∈ F(G⊕ Cm) ;

by Proposition 1(iv) there exists an irreducible block S′0 ∈ B(G⊕Cm)′ such
that S′0 | S′, and we may assume that S′0 =

∏N0
j=1(gj , em) for some N0 ≤ N .

Since

ι(S′0) =
( N0∑

j=1

gj , N0em

)
= (0, 0) ∈ G⊕ Cm ,

we obtain S0 =
∏N0

j=1 gj ∈ B(G) and m | N0, whence m = N0 or 2m = N0.
If m = N0, the assertion follows with B = S0; if 2m = N0 > D(G), then S0

has a decomposition S0 = BB′ with B, B′ ∈ B(G) and σ(B) ≤ m, which
again implies the assertion.
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Lemma 2. Let p be a prime, t ∈ N and B ∈ B(Cp⊕Cp) a block satisfying
σ(B) ≥ tp. Then there exist blocks B1, . . . , Bt ∈ B(Cp ⊕ Cp)′ such that
B = B1 · . . . ·Bt.

P r o o f. The assertion is true for t = 1 and also for t = 2, as D(Cp⊕Cp)
= 2p − 1 < 2p. Therefore we assume that t ≥ 3 and B = g1 · . . . · gν for
some ν ≥ tp. We apply Lemma 1 with G = Cp⊕Cp, m = p and S = g1 · . . .
. . .·gtp−1. Since σ(S) = tp−1 > (3p−2)+(t−3)p = D(Cp⊕Cp⊕Cp)+(t−3)p,
there exist blocks B1, . . . , Bt−2, B′ ∈ B(G)′ such that B = B1 · . . . ·Bt−2B

′

and σ(Bj) ≤ p for all j ∈ {1, . . . , t− 2}. This implies

σ(B′) = σ(B)−
t−2∑
j=1

σ(Bj) ≥ tp− (t− 2)p = 2p > D(G) ,

whence B′ = Bt−1Bt with blocks Bt−1, Bt ∈ B(G)′.

P r o o f o f P r o p o s i t i o n 4. By induction on n2; if n2 = 1, then
Dk(G) = Dk(G1) ≤ kD(G1) ≤ kn1 by Proposition 1(ii) and Proposi-
tion 2(i).

If n2 > 1, let p be a prime with p | n2 and choose subgroups G′
i ⊂ Gi

(i = 1, 2) with (Gi : G′
i) = p. Set

t = kn1/p + n2/p ,

and assume that the assertion is true for the subgroup G′ = G′
1 ⊕G′

2 ⊂ G,
i.e., Dk(G′) ≤ t − 1. We must prove that every block B ∈ B(G) with
σ(B) = N ≥ kn1 + n2 has a factorization of length l ≥ k + 1. We set
B = g1 · . . . · gN and consider the canonical epimorphism π : G → Cp ⊕ Cp

with ker(π) = G′. The block B∗ = π(g1) · . . . · π(gN ) ∈ B(Cp ⊕ Cp) sat-
isfies σ(B∗) = N ≥ tp and therefore, by Lemma 2, B∗ is a product of
t blocks from B(Cp ⊕ Cp)′. Taking preimages in G, we obtain a decom-
position B = S1 · . . . · St with Si ∈ F(G)′ and ι(Si) = g′i ∈ G′. Since
t > Dk(G′) and g′1 · . . . ·g′t ∈ B(G′), there exist blocks B′

1, . . . , B
′
k+1 ∈ B(G′)′

with B′
1, . . . , B

′
k+1 | g′1 · . . . · g′t by Proposition 1(v). Hence there exists a

decomposition

{1, . . . , t} =
k+1⋃
ν=1

Jn (disjoint union)

such that B′
ν =

∏
j∈Jν

g′j for all ν ∈ {1, . . . , k+1}. Putting Bν =
∏

j∈Jν
Sj ∈

B(G), we obtain B1 · . . . · Bk+1 | B, and therefore B has a factorization of
length l ≥ k + 1.

Proposition 5. If G = Cn1 ⊕ Cn2 with n2 | n1, then Dk(G) = kn1 +
n2 − 1.

P r o o f. Obvious by Propositions 3 and 4.
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5. P r o o f o f t h e T h e o r e m. Let K be an algebraic number field,
R its ring of integers, G the ideal class group, I the semigroup of non-
zero ideals and H the subsemigroup of non-zero principal ideals of R. We
write G additively, and for J ∈ I we denote by [J ] ∈ G the ideal class of
J . Let θ : I → F(G) be the unique semigroup homomorphism satisfying
θ(P ) = [P ] for every maximal P of R. For J ∈ I, we have θ(J) ∈ B(G) if
and only if J ∈ H. If α ∈ R \ (R× ∪ {0}), then L(α) = L(θ((α))).

Let Mk be the set of all blocks B ∈ B(G) such that maxL(B) ≤ k, and
let M′

k be the set of all blocks B ∈ B(G) such that minL(B) ≤ k. Then

M ′
k = {α ∈ R \ (R× ∪ {0}) | θ((α)) ∈M′

k}
and, by Proposition 1,

kD(G) = max{σ(B) | B ∈M′
k} , Dk(G) = max{σ(B) | B ∈Mk} .

In particular, the sets Mk and M′
k are finite.

After these observations, the Theorem is an immediate consequence of
the following Lemma, due to Kaczorowski [7, Lemma 1].

Lemma 3. For 1 6= S ∈ F(G), x ≥ ee and q ∈ Z, 0 ≤ q ≤ c0

√
log x

log log x
,

we have

#{J ∈ I | (R : J) ≤ x, θ(J) = S}

=
x

log x

[ q∑
µ=0

Wµ(log log x)
(log x)µ

+ O

(
(c1q)q (log log x)σ(S)

(log x)q+1

)]
with constants c0, c1 ∈ R+ and polynomials Wµ ∈ C[X] such that deg Wµ ≤
σ(S), deg W0 = σ(S)− 1, and W0 has a positive leading coefficient.
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