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SOME CHARACTERIZATIONS OF BLOCH FUNCTIONS

ON STRONGLY PSEUDOCONVEX DOMAINS

BY

JIANWEN Z HAN G (GUANGZHOU)

1. Introduction. Bloch functions have been studied deeply and sys-
tematically for a long time. S. Axler [1] gave some new characterizations of
Bloch functions on the unit disk U . They are:

(i) ‖f‖B(U) < ∞;

(ii) sup
{

∫

U(q,r)

|f(z) − f(q)|pdA(z)/|U(q, r)|
}

< ∞;

(iii) sup
{

∫

U(q,r)

|f(z) − fU(q,r)|
pdA(z)/|U(q, r)|

}

< ∞;

(iv) sup{dist(f |U(q,r),H
∞(U(q, r))} < ∞;

(v) sup{area(f(U(q, r)))} < ∞;

(vi) sup
{

∫

U(q,r)

|f ′(z)|2 dA(z)
}

< ∞.

Here 0 < r < 1 ≤ p, Sq(z) = (q−z)/(1−qz), U(q, r) = Sq({z : |z| < r}),
fU(q,r) = |U(q, r)|−1

∫

U(q,r)
f(z) dA(z), A is the usual area measure on C,

|K| is the measure of a set K ⊂ C with respect to dA, f is an analytic
function on U , and all the suprema are taken over q ∈ U .

Z. J. Hu proved that similar results hold on bounded symmetric domains
(see the graduation papers of Hangzhou University). Axler’s and Hu’s proofs
depend strongly on the homogeneity and Bergman kernels of bounded sym-
metric domains. Since strongly pseudoconvex domains are not necessarily
homogeneous, we have to search for another method. We use mainly the
boundary value estimate of the Kobayashi metric.

In Section 2, some preliminaries are given. In Section 3, we describe a
kind of polydisk which will play a key role in proving the main results of
this paper. In Section 4, we generalize some results of Axler. Furthermore,
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the condition (vi) is extended to all p > 0 and a weight |̺(z)|p−n−1. In Sec-
tion 5, we give another characterization of Bloch functions on some bounded
domains in C

n.

2. Preliminaries. First, we give some definitions:

Definition 2.1 (cf. [5]). Let f be an analytic function on the unit disk
U . Then f is called a Bloch function on U if

‖f‖B(U) = sup{|f ′(z)|(1 − |z|2) : z ∈ U} < ∞ .

Definition 2.2 (cf. [6]). Let D be a bounded homogeneous domain in
C

n, let Hz(x, x) be the Bergman metric on D and f a holomorphic function
on D. Write

Qf (z) = sup{|∇f(z) · x|/Hz(x, x)1/2 : x ∈ C
n \ {0}} < ∞ ,

‖f‖B(D) = sup{Qf (z) : z ∈ D} .

If ‖f‖B(D) < ∞, then f is called a Bloch function on D. Here ∇f(q) =

( ∂f
∂z1

(q), . . . , ∂f
∂zn

(q)),∇f(z) · x =
∑n

j=1
∂f
∂zj

(z) · xj .

Before we introduce Bloch functions on strongly pseudoconvex domains,
we define the Kobayashi metric.

Definition 2.3 (cf. [3]). Let D be a strongly pseudoconvex domain in
C

n. The Kobayashi metric for D at z in the direction x is defined as

FD
K (z, x) = inf{c : there is f ∈ D(U) with f(z) = 0, f ′(z) = x/c, c > 0} ,

where U is the unit disk and D(U) is the set of all holomorphic mappings
which map U into D.

Definition 2.4 (cf. [2]). Let D be a strongly pseudoconvex domain in
C

n, and let FD
K (z, x) be the Kobayashi metric. A holomorphic function f

on D is called a Bloch function if

‖f‖B(D) = sup{|f∗(z) · x|/FD
K (z, x) : z ∈ D and x ∈ C

n \ {0}} < ∞ .

Here f∗(z) is the mapping from Tz(D) to Tf(z)(C) induced by f .

In ‖f‖B(D), FD
K (z, x), we shall omit D or K or both when no confusion

can arise.
If γ : [0, 1] → D is a C1 curve, the Kobayashi length of γ is lK(γ) =

∫ 1

0
FK(γ(t), γ′(t)) dt. If both z1 and z2 are in D, then the Kobayashi distance

between them is

dK(z1, z2) = inf{lK(γ) : γ(0) = z1, γ(1) = z2} .

The Kobayashi ball is BK(q, r) = {z ∈ D : dK(q, z) < r}, where q ∈ D and
r > 0.

The Kobayashi metric has the following properties (cf. [3]):
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(a) FK(z, cx) = |c|FK(z, x) for all z ∈ D and x ∈ C
n.

(b) Let D ⊂ C
n, D′ ⊂ C

m be strongly pseudoconvex domains and let
g : D → D′ be a holomorphic mapping. Then

FD′

K (g(z), g∗(x)) ≤ FD
K (z, x) for all z ∈ D and x ∈ C

n

where g∗(x) is the mapping from Tx(D) to Tg(x)(C
m) induced by g.

(c) If ̺(z) is a defining function for a strongly pseudoconvex domain D
in C

n, and if z is sufficiently near ∂D, from [6] we have

FD
K (z, x) ≈ |xN||̺(z)|−1 + |xT||̺(z)|−1/2 for all z ∈ D ,

where x = xN + xT is the decomposition of x into the complex normal and
complex tangential pieces at z.

If dw(z) denotes the Euclidean volume element of C
n, then the Kobayashi

volume element dD(z) is equivalent to |̺(z)|−n−1 dw(z) (see p. 59 in [4]).
Thus when r > 0 is fixed, the Kobayashi volume of BK(q, r) is compara-
ble to that of some polydisk. In order to describe the polydisk explicitly,
assume that the complex normal direction at q is the z1 direction, the vec-
tor v = (1, 0, . . . , 0) is the complex outward normal direction at q, and
z2, z3, . . . , zn are the complex tangential directions at q. Denote by d(q) the
distance between q and the boundary of D. Then BK(q, r) is comparable to
the following polydisk:

Pq,r = {z ∈ D : |z1 − q′1| < c1d(q), |z2 − q2| < c2d(q)1/2, . . .

. . . , |zn − qn| < c2d(q)1/2} ;

here c1, c2 depend on r (but not on q—in particular, not on d(q)) and q′1 =
q1 + c3v with c3 depending on r and d(q).

Finally, we give three equivalent conditions for Bloch functions on
strongly pseudoconvex domains (see [2]):

Proposition 2.5 (cf. [2]). Let D ⊂ C
n be a strongly pseudoconvex

domain, and let ̺(z) be a defining function for D. If f is a holomorphic

function on D, then the following statements are equivalent :

(i) ‖f‖B(D) < ∞.

(ii) The radii of schlicht disks in the range of f are bounded above.

(iii) sup{|∇νf(z)| · |̺(z)| : z ∈ D} < ∞.

Here ∇ν is the normal derivative.

3. Some lemmas. In this section, D always denotes a strongly pseu-
doconvex domain in C

n.

Lemma 3.1. For any q′ ∈ ∂D, if v(q′) is the unit complex outward normal

vector at q′, then there exists a unique ball B(q′) such that
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(i) B(q′) is tangent to ∂D from the inside and q′ is one of the tangency

points.

(ii) B(q′) does not intersect the boundary of D.

(iii) B(q′) is the largest ball which satisfies (i) and (ii).

The proof is trivial.

Lemma 3.2. There exists a positive constant c0 depending on D and a

neighbourhood G of ∂D which depends on c0 and D such that for any q ∈ G,
there exists a ball B(q′) (as in Lemma 3.1) such that P (q, r) = {z ∈ D :
|z1 − q1| < c0d(q), |zj − qj | < c0d(q)1/2, 2 ≤ j ≤ n} ⊂ B(q′).

P r o o f. For r(q′) the radius of B(q′), let r′ be the infimum of r(q′) as q′

runs through ∂D. Since ∂D is compact and r(q′) is continuous with respect
to q′ on ∂D, r′ is positive.

∂D

B(q′) O = q′ − r(q′)v(q′)

P (q, r) OQ ≤ OL

Q
q′

O v

L

Take
c0 = r′/(n + r′) ,

G = {q ∈ D : d(q) < min{r′, (n − 1)c2
0/(1 − c0)

2}} .

For any q ∈ G, there exists a unique ball B(q′) such that q is in {q′ −
tr(q′)v(q′) : 0 ≤ t ≤ 1} (v(q′) is the unit complex outward normal at q′).
The distance dist(q′ − r(q′)v(q′), Q) between q′ − r(q′)v(q′) and any point
Q ∈ P (q, r) is less than or equal to [(r(q′)−(1−c0)d(q))2 +(n−1)c2

0d(q)]1/2,
thus

r(q′) − [(r(q′)−(1 − c0)d(q))2 + (n − 1)c2
0d(q)]1/2

=
[2(1 − c0)r(q

′) − (n − 1)c2
0 − (1 − c0)

2d(q)]d(q)

r(q′) + ((r(q′) − (1 − c0)d(q))2 + (n − 1)c2
0d(q))1/2

> 2(1 − c0)r(q
′) − (n − 1)c2

0 − (1 − c0)
2d(q)

> 2(1 − c0)r
′ − 2(n − 1)c0 ≥ 0 .

This means that dist(q′ − r(q′)v(q′), Q) < r(q′), and thus P (q, r) ⊂ B(q′).
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Lemma 3.3. There exist positive constants c and N , which depend on r, q
and D, such that

Nd(q) ≤ d(z) for all q ∈ D and z ∈ P (q, r) .

P r o o f. Without loss of generality, we only have to prove this lemma in
some neighbourhood of ∂D. Take q ∈ D such that P (q, r) is the polydisk of
Lemma 3.2. We may assume that c ≤ min{1/2, c0}, where c0 satisfies the
conclusion of Lemma 3.2. For r(q′) and B(q′) as in the proof of Lemma 3.2,
q ∈ {q′ − tr(q′)v(q′) : 0 ≤ t ≤ 1}. For any z ∈ P (q, r),

d(z) = dist(z, ∂D) ≥ r(q′) − [(r(q′) − (1 − c0) d(q))2 + c2
0(n − 1) d(q)]1/2 .

When n = 1,

d(z) ≥ (1 − c0) d(q) > d(q)/2 .

When n > 1,

d(z) ≥
[2(1 − c0)r(q

′) − (n − 1)c2
0 − (1 − c0)

2 d(q)] d(q)

r(q′) + [r(q′) − (1 − c0) d(q)]2 + (n − 1)c2
0 d(q))1/2

.

Choose c and d(q) such that

c2 = min{c2
0, 1/4, r(q

′)/[4(n − 1)]} ,

d(q) < min{r(q′)/4, (n − 1)c2
0/(1 − c0)

2} .

It is not difficult to obtain d(z) ≥ d(q)/6. Thus we may choose

c = inf{min{c2
0, r(q

′)/(4n), 1/4} : q′ ∈ ∂D} ,

R = inf{min{r(q′)/4, (n − 1)c2
0/(1 − c0)

2} : q′ ∈ ∂D} ,

G = {z ∈ D : d(z) < R} .

Because of the compactness of ∂D and the continuity of c and r(q′) with
respect to q′, it is easy to show that the assertion of the lemma holds.

Lemma 3.4. There exist two positive constants c and M , which depend

only on D (and not on r, q and z), such that

d(z) ≤ Md(q) for all q ∈ D and z ∈ P (q, r) .

P r o o f. To prove this lemma, we have to improve the ball B(q′) of
Lemma 3.1 as follows:

(i) B(q′) is tangent from the inside to ∂D at q′.
(ii) B(q′) and the ball symmetric to it with respect to T (q′) do not

intersect D. Here T (q′) is the complex tangent plane to D at q′.
(iii) B(q′) is the largest ball which satisfies (i) and (ii).

For any q′ ∈ ∂D, we can always find such a ball B(q′). From the proof of
Lemma 3.2, there exist some positive constant c and some neighbourhood
G of ∂D such that for any q ∈ G and any fixed positive r, there exists a
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corresponding B(q′) which satisfies P (q, r) ⊂ B(q′) and the above conditions
(i)–(iii).

The set of the intersection points of {z + tv(q′) : z ∈ P (q, r) and t ∈ C}
and ∂D near q′ is included in {sQ + (1 − s)Q′ : 0 ≤ s ≤ 1, Q ∈ P (q, r), Q′

is symmetric to Q with respect to T (q′)}. We obtain

d(z) ≤ 2(1 + c)d(q) for all z ∈ P (q, r) .

The remainder is similar to the proof of Lemma 3.3.

Lemma 3.5. There exists a positive number c, which is independent of

q but may depend on r (fixed r > 0), such that P (q, r) is included in the

Kobayashi ball BK(q, r) for q sufficiently near ∂D.

P r o o f. Because |̺(z)| is equivalent to d(z) from Section 2, we obtain

FK(z, x) ≈ |xN|/d(z) + |xT|/d(z)1/2 .

Here xN and xT are the components of x ∈ C
n \ {0} at z.

Assume the constant c′ to be the constant c as in Lemma 3.3. There
exists a positive constant M ′ depending on D such that

dK(q, z) ≤
1
∫

0

FK(q + t(z − q), z − q) dt

≤ M ′
1
∫

0

|(z − q)N| dt/d(q + t(z − q))

+ M ′
1
∫

0

|(z − q)T| dt/d(q + t(z − q))1/2 .

By Lemma 3.3,

dK(q, z) ≤ M ′
1
∫

0

|(z − q)N| dt/[Nd(q)] + M ′
1
∫

0

|(z − q)T|dt/[Nd(q)]1/2 .

From the proof of Lemma 3.4 and the definition of P (q, r), we have

|(z − q)N| ≤ c′d(q) and |(z − q)T| ≤ c′(n − 1) d(q)1/2 .

Thus dK(q, z) < r by taking c = min{c′, rN/(nM ′)}, i.e. P (q, r) ⊂ BK(q, r).

R e m a r k. The point q may be any point in D, provided that a suitable
decomposition of x is given whenever q is away from ∂D.

Lemma 3.6. Let P (q, r) be as in Lemma 3.5. Then |P (q, r)| ≈ |BK(q, r)|.

The proof is trivial.



BLOCH FUNCTIONS 225

4. The main theorem and its proof

Theorem 4.1. Let D be a strongly pseudoconvex domain in C
n and let

̺(z) be a defining function for D. For 0 < r, p < ∞, the following conditions

are equivalent :

(i) ‖f‖B(D) < ∞;

(ii) sup
{[

∫

BK(q,r)

|f(z) − f(q)|p dw(z)/|BK(q, r)|
]1/p}

< ∞;

(iii) sup
{[

∫

BK(q,r)

|f(z) − fBK(q,r)|
p dw(z)/|BK(q, r)|

]1/p}

< ∞;

(iv) sup{dist[f̄ |BK(q,r),H
∞(BK(q, r))]} < ∞;

(v) sup{area[f(BK(q, r))]} < ∞;

(vi) sup
{

∫

BK(q,r)

|∇f(z)|p|̺(z)|p−n−1 dw(z)
}

< ∞.

Here BK(q, r) is a Kobayashi metric ball ,

fBK(q,r) =
∫

BK(q,r)

f(z) dw(z)/|BK(q, r)|

and the suprema are taken over q ∈ D.

P r o o f. Since a strongly pseudoconvex domain has C2 boundary, there
exists a neighbourhood G in D such that for any g ∈ G there exists a unique
q′ ∈ ∂D which satisfies d(q) = |q − q′|.

From the conditions of Theorem 4.1 we can see that it is sufficient to
prove this theorem for some G. Thus we shall not make any distinction
between q ∈ D and q ∈ G in the following proof. It is worth pointing out
that the constants c may be different at every occurrence. Unless otherwise
stated, they will not depend on q in BK(q, r) but may depend on r.

For any q ∈ G, let v1 be the unit complex outward normal vector at q
and let v2, v3, . . . , vn be orthonormal complex tangential vectors at q. Write
z = q +

∑n
j=1 zjvj for all z ∈ D. We choose a positive constant c = c(r)

such that

P (q, r) = {z ∈ D : |z1| < cd(q), |zj | < cd(q)1/2, 2 ≤ j ≤ n}

satisfies the conditions of Lemmas 3.3 and 3.6. This can be done by the
proof of the above lemmas.

Now we prove (iii)⇒(i). Without loss of generality, assume P (q, r) ⊂ G.
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By Cauchy’s integral formula, for any z ∈ P (q, r) we have

f(z) = (2π)−n
∫

T n

f(cd(q)x1, cd(q)1/2x2, . . . , cd(q)1/2xn)

× (1 − z1x1/[cd(q)])−1
n

∏

j=2

(1 − zjxj/[cd(q)1/2])−1 dθ(x1) dθ(x2) . . . dθ(xn) .

Calculating directly and taking z = q, we get

∂f

∂z1
(q) = ((2π)−n/[cd(q)])

∫

T n

x1f(cd(q)x1, cd(q)1/2x2, . . . , cd(q)1/2xn)

× dθ(x1) dθ(x2) . . . dθ(xn)

= cd(q)−1
2π
∫

0

[

d(q)−2
cd(q)
∫

0

r dr
]

2π
∫

0

[

d(q)−1
cd(q)1/2

∫

0

r dr
]

. . .

×
2π
∫

0

[

d(q)−1

cd(q)1/2

∫

0

r dr
]

× f(cd(q)x1, cd(q)1/2x2, . . . , cd(q)1/2xn) dθ(x1)dθ(x2) . . . dθ(xn)

= cd(q)−n−2
∫

|y1|≤cd(q)

∫

|y2|≤cd(q)1/2

. . .
∫

|yn|≤cd(q)1/2

f(y1, y2, . . . , yn)

× dA(y1) dA(y2) . . . dA(yn) .

So Fubini’s Theorem gives
∣

∣

∣

∣

∂f

∂z1
(q)

∣

∣

∣

∣

≤ cd(q)−n−2
∫

P (q,r)

|f(z)| dw(z) .

Similarly we have
∣

∣

∣

∣

∂f

∂zj
(q)

∣

∣

∣

∣

≤ cd(q)−n−1d(q)−1/2
∫

P (q,r)

|f(z)| dw(z), 2 ≤ j ≤ n .

Thus

|∇f(q)| ≤ cd(q)−n−2
∫

P (q,r)

|f(z)| dw(z) .

By Lemmas 3.5 and 3.6,

|∇f(q)|d(q) ≤ c
∫

BK(q,r)

|f(z)| dw(z)/|BK(q, r)| .
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Since |f(z)| is a plurisubharmornic function,

|f(q)| ≤
[

∫

P (q,r)

|f(z)|p dw(z)/|P (q, r)|
]1/p

≤
[

∫

BK(q,r)

|f(z)|p dw(z)/|BK(q, r)|
]1/p

,

that is,

|∇f(q)|d(q) ≤ c sup
{[

∫

BK(q,r)

|f(z)|p dw(z)/|BK(q, r)|
]1/p}

.

We replace f(z) with f(z) − fBK(q,r) to get

|∇f(q)|d(q) ≤ c sup
{[

∫

BK(q,r)

|f(z) − fBK(q,r)|
p dw(z)/|BK(q, r)|

]1/p}

.

Since |̺(z)| ≈ d(z), we have

|∇f(q) · v1||̺(q)| ≤ c|∇f(q)| d(q)

≤ c sup
{[

∫

BK(q,r)

|f(z) − fBK(q,r)|
p dw(z)/|BK(q, r)|

]1/p}

.

According to the assumption and Proposition 2.5, the quantity in (i) is
bounded by a multiple of the quantity in (iii).

Let γ : [0, 1] → D be a C1 curve and γ(0) = z, γ(1) = q. Then

∫

BK(q,r)

|f(z) − f(q)|p dw(z)/|BK(q, r)|

≤
∫

BK(q,r)

[
1
∫

0

|∇f(γ(t)) · γ′(t)| dt
]

dw(z)/|BK(q, r)|

≤ ‖f‖p
B(D)

∫

BK(q,r)

[
1
∫

0

FK(γ(t), γ′(t)) dt
]

dw(γ(0))/|BK(q, r)| .

The infimum of the right-hand side over all C1 curves γ as above is ≤
‖f‖p

Brp. This shows that the quantity in (ii) is bounded by a multiple of
that in (i).

It is trivial that (ii)⇒(iii).

The proof that (v)⇒(iv) is similar to that in [1].

Suppose g is any function in H∞(BK(q, r)) and f(z) is a holomorphic
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function on D. For any z ∈ P (q, r), we can write z = q +
∑n

j=1 zjvj . Then

∫

∂P (q,r)

g(z)zj dz1 dz2 . . . dzn/(z1z2 . . . zn) = 0, 1 ≤ j ≤ n ,

where ∂P (q, r) is the feature boundary of P (q, r).

By simple calculation we obtain
∫

∂P (q,r)

f(z)z1 dz1 dz2 . . . dzn/(z1z2 . . . zn)

= c
∫

|z1|=cd(q)

f(z1v1 + q)z1 dz1/z1 = cd(q)2
∂f

∂z1
(q) .

Similarly,
∫

∂P (q,r)

f(z)zj dz1 dz2 . . . dzn/(z1z2 . . . zn)

= c
∫

|zj|=cd(q)1/2

f(zjvj + q)zj dzj/zj = cd(q)
∂f

∂zj
(q), 2 ≤ j ≤ n .

Thus

|∇f(q)| ≤

n
∑

j=1

∂f

∂zj
(q)

≤ cd(q)−2
∣

∣

∣

∫

∂P (q,r)

z1(f̄ − g) dz1 dz2 . . . dzn/(z1z2 . . . zn)
∣

∣

∣

+ cd(q)−1
∣

∣

∣

∫

∂P (q,r)

n
∑

j=2

zj(f̄ − g) dz1 dz2 . . . dzn/(z1z2 . . . zn)
∣

∣

∣

≤ c{d(q)−1 + d(q)−1/2}‖f̄ − g‖H∞(BK(q,r))

≤ cd(q)−1‖f̄ − g‖H∞(BK(q,r)) .

Hence

|∇f(q) · v1||̺(q)| ≤ c|∇f(q)| d(q) ≤ c‖f̄ − g‖H∞(BK(q,r)) .

By Proposition 2.5 the quantity in (i) is bounded by a multiple of that in
(iv).

For any z in BK(q, r), and γ : [0, 1] → D a curve C1 with γ(0) = z,
γ(1) = q, we have

|f(z) − f(g)| ≤
1
∫

0

|∇f(γ(t), γ′(t)) · γ′(t)| dt ≤ ‖f‖B

1
∫

0

F (γ(t), γ′(t)) dt .
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Taking the infimum of the right-hand side over all γ, we obtain |f(z) −
f(q)| ≤ r‖f‖B , that is,

sup{area[f(BK(q, r))]} ≤ πr2‖f‖2
B .

Hence the quantity in (v) is bounded by a multiple of that in (i).

Assume (i). By Proposition 2.5,

sup{|∇f(z) · v1||̺(z)|} < ∞ .

From Theorem 2.1 of [2], we have

sup{|∇f(z) · vj ||̺(z)|1/2} < ∞ , 2 ≤ j ≤ n .

Since |̺(z)| is continuous and there exists a unit vector x ∈ C
n such that

|∇f(z)| = |∇f(z) · x|, we get

sup{|∇f(z)||̺(z)|} = sup{|∇f(z) · x||̺(z)|}

≤ sup{|∇f(z) · v1||̺(z)|}

+ sup{|̺(z)|1/2}

n
∑

j=2

sup{|∇f(z) · vj ||̺(z)|1/2} .

Now
∫

BK(q,r)
|̺(z)|−n−1dw(z) = c(r) < ∞ yields

∫

BK(q,r)

|∇f(z)|p|̺(z)|p−n−1 dw(z)

≤ sup{[|∇f(z)||̺(z)|]p}
∫

BK(q,r)

|̺(z)|−n−1 dw(z) < ∞ ,

that is,

sup
{

∫

BK(q,r)

|∇f(z)|p|̺(z)|p−n−1 dw(z)
}

< ∞ .

Hence the quantity in (vi) is bounded by that in (i).

Since |∇f(q)| is a plurisubharmonic function,

|∇f(q)|p/2 ≤
∫

P (q,r)

|∇f(z)|p/2 dw(z)/|P (q, r)| .

Applying Hölder’s inequality to the right-hand side, we obtain

|∇f(q)|p/2 ≤
{

∫

P (q,r)

|∇f(z)|p|̺(z)|p−n−1 dw(z)/|P (q, r)|
}1/2

×
{

∫

P (q,r)

|̺(z)|n+1−p dw(z)/|P (q, r)|
}1/2

.
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By Lemmas 3.3 and 3.4,

|∇f(q)| ≤
{

cd(q)n+1−p
∫

P (q,r)

|∇f(z)|p|̺(z)|p−n−1 dw(z)/|P (q, r)|
}1/p

≤ cd(q)−1+(n+1)/p|P (q, r)|−1/p
{

∫

BK(q,r)

|∇f(z)|p|̺(z)|p−n−1dw(z)
}

.

This completes the proof of Theorem 4.1.

If we use the weighted volume element

dQs(z) = |̺(z)|s−n−1 dw(z) ,

with integer s > n, then the following result is obvious.

Theorem 4.2. Let D be a strongly pseudoconvex domain in C
n with

defining function ̺(z) and 0 < r, p < ∞ . Then the following conditions are

equivalent :

(a) ‖f‖B < ∞ ;

(b) sup
{[

∫

BK(q,r)

|f(z) − f(q)|p dQs(z)/Qs(BK(q, r))
]1/p}

< ∞ ;

(c) sup
{[

∫

BK(q,r)

|f(z) − fBK(q,r)|
p dQs(z)/Qs(BK(q, r))

]1/p}

< ∞ ;

(d) sup{dist[f̄ |BK(q,r) ,H∞(BK(q, r))]} < ∞ ;

(e) sup{area[f(BK(q, r))]} < ∞ ;

(f) sup
{

∫

BK(q,r)

|∇f(z)|p|̺(z)|p dQs(z)/Qs(BK(q, r))
}

< ∞ .

Here fBK(q,r) =
∫

BK(q,r)
f(z) dQs(z)/Qs(BK(q, r)), and the suprema are

taken over q ∈ D.

5. A characterization of the value distribution of Bloch func-

tions. R. M. Timoney [5] gave a characterization of the value distribution
of Bloch functions on the unit disk in C. Here we give a useful characteri-
zation on some bounded domains in C

n and a corollary. The proof of the
characterization is omitted. By the properties of the Kobayashi metric in
Section 2 and the result in [5], the proof is not difficult.

Theorem 5.1. Let D be a bounded homogeneous domain in C
n and let

f be a holomorphic function on D. Suppose there exist two holomorphic

mappings h : D → U and g : U → D, where U is the unit disk in C,
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satisfying h ◦ g = id. Let E ⊂ C. Then the radii of all disks in C \ E are

bounded above if and only if

sup{|∇f(z) · x|/Hz(x, x)1/2 : x ∈ C
n \ {0} , z ∈ f−1(E)} < ∞

implies that f is a Bloch function on D .

Theorem 5.2. Let D be a strongly pseudoconvex domain in C
n. Let

E ⊂ C , and let f be a holomorphic function on D. If there exist two

holomorphic mappings h and g as in Theorem 1, then the radii of all disks

in C \ E are bounded above if and only if

sup{|f∗(z) · x|/FK(z, x) : x ∈ C
n \ {0} , z ∈ f−1(E)} < ∞

implies that f is a Bloch function on D .

Corollary 5.3. Let D be a bounded symmetric domain in C
n, let E ⊂

C , and let f be a holomorphic function on D. Then the radii of all disks in

C \ E are bounded above if and only if

sup{|∇f(z) · x|/Hz(x, x)1/2 : x ∈ C
n \ {0} , z ∈ f−1(E)} < ∞

implies that f is a Bloch function on D .

P r o o f. Without loss of generality, we may assume that D is a circular
domain. Let P : C

n → C , P (z1, . . . , zn) = z1 . Then P (D) is a disk. Let r
denote its radius and take h = P/r and U = h(D). Thus U is a unit disk.
For any z1 on the boundary of U , take x1 = P (x), g(z) = zxx1/|x1| (for
any z ∈ U and a fixed x in the intersection of h−1(z) and the boundary of
D). So |x1| = r , and both h and g are holomorphic mappings such that
h ◦ g = id. By Theorem 5.1, the proof is complete.

This paper was finished while I was at Hangzhou University. I thank
Professor Yao Biyun and Mr. Hu Zhangjian for their help during that
time.
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