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PSEUDOCOMPACTNESS — FROM COMPACTIFICATIONS
TO MULTIPLICATION OF BOREL SETS

BY

ELIZA WAJCH (LODZ)

0. Introduction. All the spaces considered below are assumed to
be completely regular and Hausdorff. For a space X, denote by K(X)
the family of all compactifications of X; X stands for the Cech-Stone
compactification. If aX € K(X), let C,(X) stand for the set of those
functions f € C*(X) which are continuously extendable over aX. For
f € Cu(X), let f* be the continuous extension of f over aX and, for
FCCuX),let F* ={f*: f e F}.

Suppose that F' C C*(X). Define Zp(X) as the family of all sets of the
form ﬂil U;Lz::l fijjl([ai,j; b@j]) where fiyj € F and Qi j < bi,j (am-, bi,j S R)
fori € Nand j = 1,...,n; (n; € N). Denote by Bp(X) the smallest
o-algebra of subsets of X, containing Zp(X). Let Sp(X) stand for the
collection of all sets that are obtained from Zr(X) by the Souslin operation
(cf. [11]). For aX € K(X), put Z,(X) = Zp(X), Bo(X) = Bp(X) and
Sa(X) = Sp(X) with F = C,(X).

Let £(X) be the family of all F' € C*(X) such that the diagonal mapping
er = Ajerpf is a homeomorphic embedding. If F' € £(X), then the closure
of er(X) in Rl is a compactification of X called generated by F and
denoted by erX. By a slight modification of the proof of Theorem 6 of [13]
we get

0.1. THEOREM. F C C*(X) is in E(X) if and only if Zp(X) is a closed
base for X.

In the light of 0.1, if X € K(X) and F' C C*(X) are such that Zp(X) =
Za(X), then F' € £(X). Unfortunately, from Zp(X) = Z,(X) we cannot
deduce that aX is generated by F. For instance, if X is Lindelof, we have
Zo(X) = Zg(X) for any aX € K(X) (cf. [12, 3.10]). However, it was shown
in [12, 3.4] that any compactification aX of a pseudocompact space X is the
Wallman-type compactification which arises from the normal base Z,(X).
This yields

0.2. THEOREM. For any compactifications aX and vX of a pseudocom-
pact space X, we have: aX <~X if and only if Z,(X) C Z,(X).
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The major portion of our work deals with describing, in terms of Zp(X)
and Bp(X), as well as of Sp(X), all the sets ' C C*(X) which generate
a fixed compactification of X. Our methods lead us to the problem of
multiplying Borel sets. Namely, let B(X) denote the smallest o-algebra
containing all open subsets of X. For o-algebras Ax and Ay of subsets
of spaces X and Y, respectively, let Ax X Ay be the smallest o-algebra of
subsets of X x Y which contains all rectangles C x D with C € Ax and
DeAy. If B(X xY)=B(X) x B(Y), then we say that the Borel sets of
X and Y multiply. We shall finish the paper with answering the question
when the Borel sets of perfectly normal pseudocompact spaces multiply.

1. Subsets of C*(X) generating compactifications

1.1. LEMMA. For any aX € K(X) and F € £(X) with ep X = aX, we
have Zp(X) = Zo(X).

Proof. It suffices to show that if A = f~1(0) where f € C,(X) then
A€ Zp(X). It follows from [13, Prop. 2 and Thm. 2] that, for any i € N,
there exist f; ;, € F and real numbers a; 5, < b; jx < Cijx < dijr (J =
1,...,m;; k=1,...,n;) such that
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f 1([— ir 1 z—l—l]) CB;= U m fi,jl,k([bi,j,k;ciajvk])v
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Then A = (1,2, B;, hence A € Zp(X) because B; € Zp(X) for i € N.

1.2. LEMMA. Let F C C*(X) and A C X. Suppose that either A is
pseudocompact, or X is pseudocompact and A € Zg(X). Then X \ A €
Sp(X) if and only if A € Zp(X).

Proof. Assume that W = X \ A has the Souslin representation of the
form W = U, cyw Nne1 A(o|n) with A(o|n) € Zp(X) forallo € N¥ and n €
N (cf. [11]). Since any z-filter in a pseudocompact space has the countable
intersection property (cf. [8, 5H]), for any o € N* there exists m € N such
that ("_, A(c|n) € W. Put n(c) = min{m € N: (\_, A(c|n) C W} and
T, = {0 € N :n(oc) =m} for c € N and m € N. Let M = {m € N:
Ty # 0}. Then

w=U U ﬁA(am).

meM oc€Ty, n=1
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This implies that W is a countable union of members of Zp(X). Let

co oo Mg,y

W= N U fiisloiisbisl)

i=1j=1k=1

with fi,j,k € F and Qi 5.k < bi,j,k (aiyj,k,bm’k € R) Using the countable
intersection property of z-filters in pseudocompact spaces we deduce that
for any 7 € N, there exists m; € N with

my; Mi,5 my 1 1
en= U O &b 1)

Then A = (2, A;, s0 A € Zp(X).

1.3. THEOREM. Let X be a pseudocompact space and let F' € £(X). For
any G C C(X) the following conditions are equivalent:

(i) Ge&(X) and ep X < egX;
(i) Zr(X) C Za(X);
(iii) Bp(X) C Ba(X);
(iv) Sp(X) C Sa(X).

Proof. That (iv)=(ii) follows from 1.2. To show that (i)<(ii), it suffices
apply 0.1, 0.2 and 1.1.

1.4. DEFINITION. We shall say that sets C, D C X are separated by a
family A of subsets of X if there exists A € A such that either C C A C X\D
orDCAcCX\C.

1.5. THEOREM. Let X be a pseudocompact space and let F € E£(X).
A function f € C(X) is continuously extendable over ep X if and only if,
for any real numbers ¢ < d, the sets C = f~((—o0;c]) and D = f~1([d; 0))
are separated by Sp(X).

Proof. Suppose that A € Sp(X) and C C A C X\D. Arguing similarly
to the proof of 1.2, we can show that there exist functions f; ;, € F and
real numbers a; ;1 < b; j 1 such that

oo o0 My,j

¢c U ﬂ U fijjl,k([ai,j,k;bi,j,k]) CX\D.

i=1j=1 k=1

Since any z-filter in X has the countable intersection property, there exist
positive integers n; and p such that

n; Mij ng 1 1
CCUHU ﬂf,]kqai,j,k RN +1D

i=1j5=1k=1n=1
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pong Mij ny 1 1
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j
Theorem 4 of [4] completes the proof.

1.6. COROLLARY. Suppose that X is pseudocompact, F € E(X) and
G C C(X). Then the following conditions are equivalent:

(i) Ge&(X) and ep X < egX;
(ii) any two disjoint members of Zp(X) are separated by Sg(X);
(iii) for any function f € F and real numbers ¢ < d, the sets f~((—o0; c])
and f~1([d;0)) are separated by Sg(X).

Proof. It suffices to apply 1.5 and [13, Thm. 2]

1.7. THEOREM. Let X be pseudocompact. Then a set F' C C(X) belongs
to E(X) if and only if, for any closed set A C X and any z € X \ A, the
sets {x} and A are separated by Sp(X).

Proof. Consider any zero-set A C X and any z € X \ A. If A and {x}
are separated by Sg(X) then arguing similarly to the proof of 1.5, we can
show that there exists Z € Zp(X) with A C Z C X \ {z}. Now use 0.1.

1.8. THEOREM. A Tikhonov space X is pseudocompact if and only if
Zo(X) # Z3(X) for any aX € K(X) with aX # 5X.

Proof. Suppose that X is not pseudocompact. In view of [7, 3.10E]
there exists a nonempty zero-set Z in X with Z C gX \ X. If aX is
obtained from SX by identifying the set Z with a point, then Z,(X) =
Z3(X). Theorem 0.2 concludes the proof.

It was noticed in [12, 3.10] that Z,(X) = Zg(X) for any aX € K(X) if
and only if either |fX \ X| < 1 or X is Lindel6f. Let us give an example
of a locally compact space X that is neither Lindelof nor almost compact
(cf. [8, 6J]) but B, (X) = Bg(X) for any aX € K(X).

1.9. ExaAMPLE. Consider the interval (—2; —1] with the usual topology
and the space of ordinals [0;w;) with the order topology. Let X be their
free union. Then B, (X) = Bg(X) with wX standing for the one-point
compactification.

For aX € K(X), we denote by w(S,(X)) the smallest infinite cardi-
nal s for which there exists a family A C S,(X) such that |A| < k and
any member of S, (X) is obtained from A by the Souslin operation. Let
w(B, (X)) stand for the smallest infinite cardinal x for which there exists
A C B,(X) such that |A| < k and B,(X) is the o-algebra generated by
A. Finally, let w(Z,(X)) be the smallest infinite cardinal x for which there
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exists A C Z,(X) such that |A] < k and Z,(X) is the smallest family
containing 4 and closed under finite unions and countable intersections.

1.10. THEOREM. For any compactification aX of a pseudocompact space
X, we have w(aX) = w(Se (X)) = w(Ba(X)) = w(Z4(X)).

Proof. By [2, 4.2], there exists F' € £(X) with |F| < w(aX) and
erX = aX. According to 1.1, w(Z, (X)) < |F| +w = w(aX). For k > w,
let A C S, (X) with |A| < k be such that each member of S, (X) is obtained
from A by the Souslin operation. For A € A, choose a collection H4 =
{Ha(o|n) : 0 € N¥ and n € N} C Zo(X) with A = J, ey Mooy Ha(o|n).
To each H € 'H4 assign some g4y € Co(X) such that H = g, %(0).
The collection G = {ga,g : A € Aand H € Ha} satisfies |G| < % and
Sa(X) = S4(X). In view of 1.3, G € £(X) and e X = aX. Hence
w(aX) < w(S4(X)). The obvious inequalities w(Sq (X)) < w(By(X)) <
w(Z (X)) complete the proof.

2. Multiplication of Borel sets. Let X and Y be Tikhonov spaces.
For aX € K(X) and 7Y € K(Y), denote by axy(X xY) the compactifica-
tion aX x7Y of X xY. If f € C(X) and g € C(Y'), we put fx(z,y) = f(x)
and gy (2,) = g(y) for any (z,y) € X x Y.

2.1. LEMMA. If F € £(X) generates aX and G € E(Y') generates VY,
then H={fx : f € F}U{gy : g € G} generates aX x 7Y .

Proof. By [3, 2.3], it suffices to observe that H C Cpx(X x Y), and
H**Y separates points of aX x 7Y

2.2. THEOREM. For any aX € K(X) and~Y € K(Y), we have B, (X) X
B, (Y) = Bax~y(X xY).

Proof. Note that, in the light of 1.1 and 2.1, the g-algebra By x~(X X Y)
is generated by all the sets f5'(0) N gy (0) = £71(0) x g~ *(0) with f €
Co(X) and g € C4(Y).

It was shown in [1] that if X xY is either Lindel6f or pseudocompact, then
Bp(X) x Bg(Y) = Bg(X x Y). Observe that this fact follows immediately
from Glicksberg’s theorem (cf. [7, 3.12.20(c)]), Theorem 3.10 of [12] and our
Theorem 2.2.

2.3. THEOREM. Suppose that X is a countably compact space such that
B(X) C S3(X). Then X is perfectly normal.

Proof. In view of 1.2, each closed subset of X is a zero-set, which
implies the perfect normality of X.

2.4. THEOREM. Let X andY be perfectly normal pseudocompact spaces.
Then B(X) x B(Y) = B(X xY) if and only if X XY is perfectly normal.
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Proof. Since X is first-countable, the space X xY is countably compact
(cf. [7, 3.10.15]). It follows from 2.2 and Glicksberg’s theorem that B(X) x
B(Y) = Bg(X x Y'). Therefore our proposition is a consequence of 2.3.

It is well known that every countably compact Hausdorff space with
diagonal of type G is metrizable (cf. [5]); however, a pseudocompact perfect
space with a G5 diagonal need not be metrizable (cf. [8, 5I]). In the case of
pseudocompactness we get the following metrization theorem:

2.5. THEOREM. A pseudocompact space X is metrizable if and only if
X x X\ A€ S3(X x X), where A= {(z,y) € X x X :z =y}.

Proof. Let X x X \ A € Sp(X x X). It follows from 1.2 that A is a
zero-set in X x X; thus X is first-countable. Hence X x X is pseudocompact
(cf. [7, 3.10.28]). Consequently, A € Zg,3(X x X). By 1.1 and 2.1, A =
Nz Ui fijjl(()) X g;]vl(()) for some f;;,9;; € C(X). Then the family
H={fij gij:1€N,7e{l,...,n;}} separates points of X, which implies
the metrizability of X.

2.6. COROLLARY. Let X be a perfectly normal pseudocompact space.
Then B(X x X) = B(X) x B(X) if and only if X is metrizable.

Denote by P(Y') the collection of all subsets of Y. There exists a pseu-
docompact space Z such that |Z| = 2%, B(Z) = P(Z) and B(Z x Z) =
P(Z x Z), any subset of Z is of type G but Z fails to be countably compact
(cf. [8, 5I]). If we assume CH then B(Z x Z) = B(Z) x B(Z) (cf. [9, Thm.
12.5(ii), p. 73] or [10, Thm. 2]). Under the assumption of the negation of CH,
it depends on one’s set theory whether B(Zx Z) = B(Z)xB(Z) (cf. [9, Thm.
12.8, p. 76] and [6]). The above remarks show that, in Corollary 2.6, the
assumption of perfect normality cannot be weakened to perfectness.
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