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by the n-connectedness of the Whitney levels
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Abstract. Let X be a continuum. Let C(X) denote the hyperspace of all subcontinua
of X. In this paper we prove that the following assertions are equivalent: (a) X is a
dendroid, (b) each positive Whitney level in C(X) is 2-connected, and (c) each positive
Whitney level in C(X) is ∞-connected (n-connected for each n ≥ 0).

Introduction. Throughout this paper X will denote a continuum (i.e.,
a compact connected metric space) with metric d. Let C(X) be the hyper-
space of all subcontinua of X with the Hausdorff metric H. A Whitney map
for C(X) is a continuous function µ : C(X) → R satisfying: (a) µ({x}) = 0
for each x ∈ X, (b) if A,B ∈ C(X) and A  B, then µ(A) < µ(B), and
(c) µ(X) = 1. A (positive) Whitney level is a set of the form µ−1(t) where
0 ≤ t ≤ 1 (resp. 0 < t ≤ 1). Sn denotes the n-sphere. A space Y is n-
connected if, for every 0 ≤ i ≤ n, each map f : Si → Y is null homotopic;
Y is ∞-connected if it is n-connected for each n. A topological property P
is a Whitney property provided whenever a continuum X has property P, so
does every positive Whitney level in C(X). A map is a continuous function.
The unit closed interval is denoted by I, and the set of positive integers
by N.

Positive Whitney levels are continua [1]. Answering questions by J. Kra-
sinkiewicz and S. B. Nadler, Jr., in [9] A. Petrus showed that if D is a 2-
cell, then there exists a Whitney level A in C(D) which is not contractible,
in fact A has non-trivial fundamental group and non-trivial first singular
homology group.

The main theorem in this paper is:

Theorem. The following assertions are equivalent :

(i) X is a dendroid ,
(ii) Each positive Whitney level in C(X) is 2-connected.
(iii) Each positive Whitney level in C(X) is ∞-connected.
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We divide the proof into two independent sections. In the first section
we prove that (ii)⇒(i), and in the second one we prove that (i)⇒(iii).

1. 2-connectedness of Whitney levels implies that X is a den-
droid. We will need the following lemma.

1.1. Lemma. Let µ : C(X) → R be a Whitney map. Let t0 ∈ I. Let
Y be a continuum such that C(Y ) is contractible. Then every map f :
Y → µ−1([0, t0]) is homotopic to a map g : Y → µ−1([0, t0]) such that
Im g ⊂ µ−1(t0).

P r o o f. Take a map f : Y → µ−1([0, t0]). Since C(Y ) is contractible, by
[12, Thm. 16.7] there exists a map F : Y × I → C(Y ) such that, for every
y ∈ Y , F (y, 0) = {y}, F (y, 1) = Y and s ≤ t implies that F (y, s) ⊂ F (y, t).

We distinguish two cases:

(a) µ(
⋃

f(Y )) = µ(
⋃
{f(y) ∈ C(X) : y ∈ Y }) ≥ t0. Define G : Y × I →

C(X) by G(y, t) =
⋃

f(F (y, t)) =
⋃
{f(v) ∈ C(X) : v ∈ F (y, t)} Then G

is a map such that G(y, 0) = f(y) and G(y, 1) =
⋃

f(Y ) for every y ∈ Y .
Define K : Y × I → µ−1([0, t0]) by

K(y, t) =
{

G(y, t) if µ(G(y, t)) ≤ t0,
G(y, s) if µ(G(y, t)) ≥ t0,

where s ∈ [0, t0] is chosen in such a way that µ(G(y, s)) = t0.
Then K(y, 0) = f(y) and K(y, 1) ∈ µ−1(t0), and we define g : Y →

µ−1([0, t0]) by g(y) = K(y, 1) for every y ∈ Y .
(b) µ(

⋃
f(Y )) ≤ t0. Defining G as in (a), we see that f is homotopic

(within µ−1([0, t0])) to the constant map y →
⋃

f(Y ). Since
⋃

f(Y ) ∈
µ−1([0, t0]), there exists an ordered arc ([12, Thm. 1.8]) joining

⋃
f(Y ) to

an element A0 ∈ µ−1(t0) (within µ−1([0, t0])). Then we complete the proof
of the lemma by defining g(y) = A0 for every y ∈ Y .

We will use the following notions related to Whitney levels:
The space of Whitney levels, N(X), of X is defined by N(X) = {A ∈

C(C(X)) : A is a Whitney level in C(X)}. This space was introduced in
[5]–[7]. In [7, Lemma 2.2] it was proved that an equivalent metric for N(X)
is H∗(A,B) = max{H(A,B) : A ∈ A, B ∈ B and A ⊂ B}. A partial order
for N(X) is defined in [5] by A ≤ B if and only if for each B ∈ B, there
exists A ∈ A such that A ⊂ B. If A ⊂ N(X) is compact and γ is an
ordered arc in C(X) beginning with a singleton and ending with X, then
([5]) Aγ =

⋂
{A ∈ γ : there exists A ∈ A such that A ∈ A} ∈ γ ∩ B for

some B ∈ A. Finally, in [5] it is shown that inf(A) = {Aγ ∈ C(X) : γ is
an ordered arc in C(X) beginning with a singleton and ending with X} is
a Whitney level which is the infimum, in (N(X),≤), of the set A.
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Conventions. Rn denotes the Euclidean n-dimensional space. e : R→
S1 denotes the exponential map defined by e(t) = (cos t, sin t). D2 is the
unit disk in R2. If Y is a topological space, a map f : Y → S1 can be lifted
(f ' 1) if there exists a map g : Y → R such that e ◦ g = f (equivalently,
if f is null homotopic, see [10, Lemma 5]). If A ∈ C(X) and ε > 0 then
N(ε, A) denotes the set {x ∈ X : there exists y ∈ A such that d(x, y) < ε}
and B(A, ε) denotes the set {B ∈ C(X) : H(A,B) < ε}. 2X denotes the
hyperspace of all closed nonempty connected subsets of X.

From now on, in this section, we will suppose that if A is a positive
Whitney level in C(X), then every map f : Si → A is null homotopic for
i = 1, 2 (we are not supposing yet that A is pathwise connected).

1.2. Theorem. X is hereditarily unicoherent.

P r o o f. Suppose, on the contrary, that there exist A1, B1 ∈ C(X) such
that A1 ∩B1 is not connected. Let H,K ∈ 2X be such that H ∩K = ∅ and
A1 ∩B1 = H ∪K. We will construct:

(a) A Whitney map ω for C(X),
(b) A number t0 ∈ (0, 1],
(c) Two open subsets V1 and V2 in ω−1([0, t0]),
(d) A map λ : S1 → V1 ∩ V2 and
(e) A map h1 : V1 ∩ V2 → S1

such that ω−1([0, t0]) = V1∪V2, h1◦λ is not homotopic to a constant and, for
i = 1, 2, λ : S1 → Vi can be extended to the disk D2. Then, using Lemma
1.1 and a Mayer–Vietoris type sequence we will obtain a contradiction. The
construction of these elements is divided into a sequence of steps.

A. There exists A0 ∈ C(X) such that A0 ⊂ A1, A0 ∩H 6= ∅, A0 ∩K 6= ∅
and A0 is minimal with these properties.

To construct A0, choose a Whitney map µ for C(X). Let t1 = min{µ(A)
∈ I : A ⊂ A1, A ∩ H 6= ∅ and A ∩ K 6= ∅}. Take A0 ∈ C(X) such that
µ(A0) = t1.

B. Let H1 = A0 ∩H and K1 = A0 ∩K. Then there exists B0 ∈ C(X)
such that B0 ⊂ B1, B0∩H1 6= ∅, B0∩K1 6= ∅ and B0 is minimal with these
properties. Define H0 = H1∩B0 and K0 = K1∩B0. Then A0∩B0 = H0∪K0,
H0 ∩ K0 = ∅ and H0,K0 ∈ 2X . Furthermore, if A (resp. B) is a proper
subcontinuum of A0 (resp. B0), then A ∩ H0 = ∅ (resp. B ∩ H0 = ∅) or
A ∩K0 = ∅ (resp. B ∩K0 = ∅).

C. Let E = A0 ∪ B0. Let S+ = {(x, y) ∈ S1 : y ≥ 0} and S− =
{(x, y) ∈ S1 : y ≤ 0}. Since X is metric, Tietze’s Theorem implies that there
exists a map f0 : E → S1 such that H0 = f−1

0 ((−1, 0)), K0 = f−1
0 ((1, 0)),

f0(A0) ⊂ S+ and f0(B0) ⊂ S−. Since S1 is an ANR (metric), there exists
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an open subset U in X and a map f : U → S1 such that E ⊂ U and
f |E = f0. Then the Unique Lifting Theorem implies that f |E cannot be
lifted.

D. If A is a proper subcontinuum of E, then f |A ' 1.
To see this, suppose, for example, that A0 is not contained in A. Let

AH =
⋃
{L ∈ C(X) : L is a component of A ∩ A0 and L ∩H0 6= ∅} and let

AK =
⋃
{L ∈ C(X) : L is a component of A ∩ A0 and L ∩H0 = ∅}. Then

AH is closed in X. We will prove that AK is closed. If A ⊂ A0, then either
AK = A or AK = ∅. Suppose then that A is not contained in A0. If L is
a component of A ∩ A0, then ([12, Thm. 20.2]) L intersects either H0 or
K0 but not both of them. If x ∈ Cl(AK) then x = lim xn where (xn)n is a
sequence such that, for each n, xn ∈ Ln for some component Ln of A0 ∩ A
such that Ln ∩H0 = ∅ (then Ln ∩K0 6= ∅). Therefore the component L of
A0∩A which contains x intersects K0. Hence L∩H0 = ∅ and x ∈ AK . The
minimality of A0 implies that AH ∩K0 = ∅. Notice that AH ∩AK = ∅ and
AK ∩H0 = ∅.

Thus A = AH ∪ AK ∪ (A ∩ B0). Since AH , AK ⊂ A0 = f−1(S+) and
A ∩ B0 ⊂ B0 = f−1(S−), we find that f |AH , f |AK and f |(A ∩ B0) can be
lifted. Since AH ∩ A ∩ B0 ⊂ H0 = f−1((−1, 0)), AK ∩ A ∩ B0 ⊂ K0 =
f−1((1, 0)) and AH ∩AK = ∅, it follows that f |A can be lifted.

E. There exists an open subset V of C(X) such that C(E) − {E} ⊂ V
and for each A ∈ V, A ⊂ U and f |A ' 1.

Indeed, let A ∈ C(E) − {E}, f |A ' 1. Then ([2]) there exists an open
subset UA of U containing A such that f |UA ' 1. Therefore there exists
εA > 0 such that if H(A,B) < εA, then f |B ' 1. Define V = {B ∈ C(X) :
H(A,B) < εA for some A ∈ C(E)− {E}}.

F. Fix a Whitney map ν0 : 2X → I. Let ν = ν0|C(X). Define
t∗ = ν(E) > 0 and define h : C(X) × I × (0, t∗) → R by h(A, t, s) =
min{ν(A)t∗/s, ν0(A ∪ E) + t(ν(A) − ν(E))}. Then h is continuous and
h(E, t, s) = t∗ for every t ∈ I and s ∈ (0, t∗). Fix t ∈ (0, 1] and s ∈ (0, t∗).
Then the map A → h(A, t, s)/h(X, t, s) from C(X) to I is a Whitney map.

G. If 0 < s1 < s2 < t∗, then there exists r ∈ (0, 1] such that if 0 < t ≤ r,
A ∈ ν−1([s1, s2]) and h(A, t, s1) < t∗, then A ∈ V.

Indeed, otherwise we can choose sequences (tn)n ⊂ (0, 1] and (Dn)n ⊂
ν−1([s1, s2]) such that tn → 0 and h(Dn, tn, s1) < t∗ and Dn 6∈ V for all
n. We may suppose that Dn → A for some A ∈ ν−1([s1, s2]). Then A 6∈ V
and ν(A) ≤ s2 < ν(E). Thus A is not contained in E and ν0(A ∪ E) > t∗.
Since tn(ν(Dn) − ν(E)) + ν0(Dn ∪ E) → ν0(A ∪ E) and ν(Dn)t∗/s1 ≥ t∗,
we conclude that there exists n ∈ N such that h(Dn, tn, s1) ≥ t∗. This
contradiction completes the proof of G.
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H. Choose a sequence (sn)n ⊂ (0, t∗) such that sn → t∗ and 0 < s1 <
s2 < . . . Let (tn)n ⊂ (0, 1] be a sequence such that tn → 0, t1 > t2 > . . .
and, for each n, if A ∈ ν−1([sn, sn+1]) and h(A, tn, sn) < t∗, then A ∈ V.

I. Let A = ν−1(t∗). For each n, define An = {A ∈ C(X) : h(A, tn, sn) =
t∗}. Then E ∈ An, An is a positive Whitney level, ν−1(sn) ≤ An ≤ A and
An → A.

To see this, let A ∈ An; then t∗ ≤ ν(A)t∗/sn. Thus sn ≤ ν(A).
Then there exists B ∈ ν−1(sn) such that B ⊂ A. Hence ν−1(sn) ≤ An.
Now, let A ∈ A. Then h(A, tn, sn) = min{ν0(A ∪ E), (t∗)2/sn}. Therefore
h(A, tn, sn) ≥ t∗, so that there exists B ∈ C(X) such that B ⊂ A and
h(B, tn, sn) = t∗. Thus An ≤ A.

By [7, Lemma 2.2(b)], H∗(An,A) ≤ H∗(ν−1(sn), ν−1(t∗)) → 0. Hence
An → A.

J. Define B = inf({A}∪{An : n ≥ 1}). Then B is a Whitney level. Thus
there exists t0 ∈ I and a Whitney map µ for C(X) such that B = µ−1(t0).
Since E ∈ A and E ∈ An for all n, it follows that E ∈ B and t0 > 0.

K. The set W = ν−1((s1, t
∗)) ∩ µ−1([0, t0)) is contained in V.

Indeed, let A ∈ W. Then there exists N such that A ∈ ν−1([sN , sN+1]).
By H, we must show that h(A, tN , sN ) < t∗. Suppose, on the contrary,
that h(A, tN , sN ) ≥ t∗. Then there exists a subcontinuum A∗ of A such
that h(A∗, tN , sN ) = t∗. Choose a point a ∈ A∗. Let γ be an ordered
arc in C(X) joining {a} to X such that A∗, A ∈ γ. Let A2 be the unique
element in γ ∩ B. Since µ(A) < t0 = µ(A2), we find that A  A2. Thus
A  A2 =

⋂
{B ∈ C(X) : B ∈ γ ∩ ({A} ∩ {An : n ∈ N})} ⊂ A∗. This

contradiction proves that A ∈ V.

L. Choose a Whitney map µ : 2X → I which extends µ (see [14, Cor.
3.3]). Define ω : C(X) → I by ω(A) = (µ(A ∪ E)µ(A))1/2. Then ω is a
Whitney map such that ω(E) = µ(E) = t0, ω−1(t0) − {E} ⊂ µ−1([0, t0))
and ν−1((s1, 1]) ∩ ω−1(t0) ⊂ V ∪ {E}.

To prove this, let A ∈ (ν−1((s1, 1]) ∩ ω−1(t0)) − {E}. By K, to show
that A ∈ V, it is enough to prove that ν(A) < t∗. Suppose that ν(A) ≥ t∗.
Then there exists A∗ ∈ ν−1(t∗) such that A∗ ⊂ A. Since B ≤ ν−1(t∗), there
exists B ∈ B such that B ⊂ A∗. Since E is not contained in A, we have
t0 = ω(A) ≥ ω(B) > µ(B) = t0. This contradiction proves that A ∈ V.

M. There exists ε > 0 such that B(E, ε) ⊂ ν−1((s1, 1]) and if H(A,E) <
ε, A ⊂ B and B ∈ ω−1(t0), then B ∈ V ∪ {E}.

Indeed, let ε1 > 0 be such that if H(E,A) < ε1 then A ∈ ν−1((s1, 1]).
Let δ > 0 be such that A ⊂ B and |ω(A)−ω(B)| < δ imply that H(A,B) <
ε1/2 (see [12, Lemma 1.28]). Choose r0 ∈ [0, t0) such that t0 − r0 < δ.
Finally, choose ε > 0 such that ε < ε1/2 and H(A,E) < ε imply that
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A ∈ ω−1((r0, 1]).

N. Define V1 = B(E, ε)∩ω−1([0, t0]) and V2 = ω−1([0, t0])−{E}. Then
V1 and V2 are open subsets of ω−1([0, t0]) such that ω−1([0, t0]) = V1 ∪ V2

and if A ∈ V1 ∩ V2, then f |A ' 1.

O. Define h1 : V1∩V2 → S1 in the following way: Given A ∈ V1∩V2, take
a map gA : A → R such that e ◦ gA = f |A. Define h1(A) = e(min gA(A)).
Then h1 is well defined and continuous.

Indeed, it is easy to prove that h1 is well defined. To prove that h1 is
continuous, take a sequence (Dn)n in V1 ∩ V2 such that Dn → A ∈ V1 ∩ V2.
Let gA : A → R be a map such that e◦gA = f |A. Let U1 be an open subset of
X such that A ⊂ U1 ⊂ U and f |U1 ' 1. Let g : U1 → R be a map such that
e◦g = f |U1. Since Dn → A, there exists N such that Dn ⊂ U1 for all n ≥ N .
Then, for all n ≥ N , h1(Dn) = e(min g(Dn)) → e(min g(A)) = h1(A).

P. Choose δ > 0 such that A ⊂ B and |ω(A) − ω(B)| < δ imply that
H(A,B) < ε. Choose s∗ ∈ (0, t0) such that t0 − s∗ < δ and ω(A0), ω(B0) <
s∗. Choose p0 ∈ H0 and q0 ∈ K0. Finally, choose maps α1, α2, β1 and
β2 from I to C(X) such that α1(0) = {p0} = β1(0), α2(0) = {q0} =
β2(0), α1(1) = A0 = α2(1), β1(1) = B0 = β2(1) and, for i = 1, 2, s < t
implies that αi(s) (resp. βi(s)) is properly contained in αi(t) (resp. βi(t))
(see [12, Thm. 1.8]).

Q. Choose r1 ∈ I such that ω(B0∪α2(r1)) = s∗. Define γ : [0, 4] → C(X)
by

γ =


α2((1− t)r1 + t) ∪ β2(w(t)) if t ∈ [0, 1],
β2((2− t)(w(1))) ∪A0 ∪ β1(x(t)) if t ∈ [1, 2],
β1((3− t)(x(2)) + t− 2) ∪ α1(y(t)) if t ∈ [2, 3],
α1((4− t)y(3)) ∪B0 ∪ α2(z(t)) if t ∈ [3, 4].

Here w(t), x(t), y(t), z(t) ∈ I, for t in the respective intervals, are consecu-
tively chosen in such a way that ω(γ(t)) = s∗ for all t ∈ [0, 4]. Then γ is
well defined, continuous, γ(0) = γ(4) and γ(t) ∈ ω−1(s∗) ∩ C(E) ∩ V1 ∩ V2

for every t ∈ [0, 4].

R. Define λ : S1 → ω−1(s∗)∩V1 ∩V2 by λ(cos t, sin t) = γ(2(t + π)/π) if
t ∈ [−π, π]. Then λ is well defined, continuous and h1 ◦ λ is not homotopic
to a constant.

To see that h1 ◦ λ cannot be lifted, we first show that, for each z ∈ S−,
there exists a map gz : λ(z) → [−π, 2π) such that e ◦ gz = f |λ(z) and
0 ∈ Im gz. Set z = (cos t, sin t) with t ∈ [−π, 0]. If t ∈ [−π,−π/2], then
s = 2(t + π)/π ∈ [0, 1] and λ(z) = γ(s) = α2((1 − s)r1 + s) ∪ β2(w(s)).
If β2(w(s)) = B0, then α2((1 − s)r1 + s) is a proper subset of A0 since
s∗ < t0. The minimality of A0 implies that α2((1 − s)r1 + s) ∩ H0 = ∅.
Thus f(α2((1− s)r1 + s)) is a compact subset of S+ − {(−1, 0)} and, since
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f(β2(w(s))) is contained in S−, there exists a map gz : λ(z) → [−π, π) such
that f |λ(z) = e ◦ gz. Since (1, 0) = f(q0) ∈ f(λ(z)), we have 0 ∈ Im gz.
If β2(w(s)) is a proper subset of B0, the minimality of B0 implies that
β2(w(s))∩H0 = ∅, so that f(β2(w(s))) is a compact subset of S−−{(−1, 0)}.
Thus there exists a map gz : λ(z) → (−π, π] such that e ◦ gz = f |λ(z). In
the case that t ∈ [−π/2, 0], similar considerations lead to the existence of
gz.

Similarly, for each z ∈ S+, there exists a map gz : λ(z) → [0, 3π) such
that e ◦ gz = f |λ(z) and π ∈ Im gz.

If z ∈ S−, then h1(λ(z)) = e(min gz(λ(z))) ∈ e([−π, 0]) = S−, so
h1(λ(z)) ∈ S− for each z ∈ S−. Since λ((−1, 0)) = γ(0) = α2(r1) ∪
β2(w(0)) = α2(r1) ∪ B0 and f(p0) = (−1, 0), it follows that −π is in the
image of the map g(−1,0) : λ((−1, 0)) → [−π, π). Then h1(λ((−1, 0))) =
e(−π) = (−1, 0). Similarly h1(λ((1, 0))) = (1, 0).

Thus h1 ◦ λ is a map from S1 to S1 sending S+ into S+, S− into
S−, (−1, 0) into (−1, 0) and (1, 0) into (1, 0). This implies that h1 ◦λ cannot
be lifted.

S. λ : S1 → V1 can be extended to a map λ : D2 → V1.
To see this, let F : S1 × I → C(S1) (= D2) be a map such that,

for each x ∈ S1, F (x, 0) = {x}, F (x, 1) = S1 and s ≤ t implies that
F (x, s) ⊂ F (x, t). Define λ : S1 × I → C(X) by λ(x, s) =

⋃
{λ(z) ∈

C(X) : z ∈ F (x, s)}. Then λ is continuous, λ(x, 0) = λ(x) and λ(x, 1) =⋃
{λ(z) ∈ C(X) : z ∈ S1} = E for all x ∈ S1. Identifying D2 with

(S1× I)/(S1×{1}), we deduce that λ is an extension of λ to D2. If x ∈ S1

and s ∈ I, λ(x) = λ(x, 0) ⊂ λ(x, s) ⊂ E, then H(λ(x, s), E) ≤ H(λ(x), E) <
ε and so λ(x, s) ∈ ω−1([0, t0]). Thus λ(x, s) ∈ V1 for every x ∈ S1 and s ∈ I.

T. λ : S1 → V2 can be extended to a map λ′ : D2 → V2.
This follows from the fact that Im λ ⊂ ω−1(s∗) ⊂ V2 and every map

from S1 into ω−1(t1) is homotopic to a constant.

This completes the construction of ω, t0,V1,V2, λ and h1. Now we con-
sider the Mayer–Vietoris sequences for the triads (V1 ∪ V2, V1, V2) and (S2,
S2

+, S2
−) where S2

+ = {(x, y, z) ∈ S2 : z ≥ 0} and S2
− = {(x, y, z) ∈ S2 : z ≤

0}. Consider the diagram

0 = H2(S2
+)⊕H2(S2

−) −→ H2(S2) ∂0−→ H1(S1) −→ 0yΛ∗

yλ∗

H2(V1)⊕H2(V2) −→ H2(V1 ∪ V2)
∂−→ H1(V1 ∩ V2)

where Λ : S2 → V1 ∪ V2 = ω−1([0, t0]) is defined in such a way that Λ|S1 =
λ, Λ|S2

+ = λ and Λ|S2
− = λ′.
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By Lemma 1.1, Λ is homotopic to a map Λ0 : S2 → ω−1([0, t0]) such
that Im Λ0 ⊂ ω−1(t0). Since ω−1(t0) is a positive Whitney level, Λ0 is
homotopic to a constant. Therefore Λ∗ is the zero homomorphism. This
implies that so is λ∗, and hence also the composition h1∗ ◦ λ∗ = (h1 ◦ λ)∗.
This is a contradiction since h1◦λ : S1 → S1 is not homotopic to a constant.
Therefore X is hereditarily unicoherent.

R e m a r k. If Y is a hereditarily indecomposable continuum then every
Whitney level A in C(Y ) is hereditarily indecomposable (see [12, Thm.
14.1]); thus every map from Sn into A is constant for each n ∈ N. Therefore
it is not enough to suppose that the maps from n-spheres (n ≥ 1) into
positive Whitney levels in C(X) are null homotopic to conclude that X
is a dendroid. On the other hand [11, Example 3], it is not enough to
suppose that every positive Whitney level A in C(Z) is pathwise connected
to conclude that Z is pathwise connected. However, as shown below, it
suffices to add the assumption that Z is hereditarily unicoherent.

1.3. Lemma. Suppose that Z is a hereditarily unicoherent continuum with
the following property : If p, q ∈ Z and ε > 0, then there exist n ∈ N and
A1, . . . , An ∈ C(Z) such that p ∈ A1, q ∈ An, A1∩A2 6= ∅, . . . , An−1∩An 6=
∅ and diam(Ai) < ε for each i. Then Z is pathwise connected.

P r o o f. Let p and q be two different points in Z and let A =
⋂
{B ∈

C(Z) : p, q ∈ B}. Since Z is hereditarily unicoherent, we have A ∈ C(Z).
We will prove that A is connected im kleinen at each point. Let a ∈ A and
let ε > 0. Take A1, . . . , An ∈ C(Z) such that p ∈ A1, q ∈ An, A1 ∩ A2 6=
∅, . . . , An−1 ∩An 6= ∅ and diam(Ai) < ε for each i. Let D =

⋃
{Ai : a ∈ Ai}

and let W = A−
⋃
{Ai : a 6∈ Ai}. Then D ∈ C(Z), A ⊂ A1 ∪ . . . ∪ An, W

is an open subset of A and a ∈ W ⊂ D ⊂ B({a}, ε). Hence A is connected
im kleinen at a. Therefore A is a locally connected continuum. Thus A
is pathwise connected (in fact, this implies that A is an arc). Hence Z is
pathwise connected.

1.4. Theorem. If Z is hereditarily unicoherent and all its positive Whit-
ney levels are pathwise connected , then Z is pathwise connected.

P r o o f. Let p, q ∈ Z and let ε > 0. Fix a Whitney map µ for C(Z). Let
0 < δ < 1 be such that if A,B ∈ C(Z), |µ(A)− µ(B)| < δ and A ⊂ B, then
H(A,B) < ε. Let 0 < t ≤ δ/2. Choose A,B ∈ µ−1(t) such that p ∈ A and
q ∈ B. Let α : I → µ−1(t) be a map such that α(0) = A and α(1) = B.
Let λ > 0 be such that |t − s| < λ implies that H(α(t), α(s)) < ε/3. Let
0 = t0 < t1 < . . . < tn = 1 be a partition of I such that ti − ti−1 < δ
for all i ≥ 1. For i ≥ 1, define Ai =

⋃
{α(t) : ti−1 ≤ t ≤ ti}. Then

A1, . . . , An ∈ C(Z),diam(Ai) < ε for all i, p ∈ A1, q ∈ An and A1 ∩ A2 6=
∅, . . . , An−1 ∩An 6= ∅. Therefore Z is pathwise connected.
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1.5. Theorem. If each positive Whitney level in C(X) is 2-connected ,
then X is a dendroid.

1.6. Corollary. If every positive Whitney level in C(X) is contractibile,
then X is a dendroid.

2. If X is a dendroid then every positive Whitney level in C(X)
is ∞-connected. In [12, Thm. 14.8], it was shown that if X is pathwise
connected then every Whitney level for C(X) is also pathwise connected. So
we concentrate our attention on the null homotopy of maps from n-spheres
(n ≥ 1) into positive Whitney levels.

Throughout this section we will suppose that X is a dendroid. Fix a
Whitney map µ, a number t0 ∈ (0, 1] and an integer N ∈ N. We will show
that every map G : SN → µ−1(t0) is null homotopic. To do this, we will
need to define a strong form of convergence in C(X).

2.1. Definition. Given x 6= y ∈ X, the unique arc joining x and y
in X will be denoted by xy. The set {x} will be denoted by xx. Define
L : C(X)×X → C(X) by L(A, x) = ax where a is the unique element in A
such that ax ∩ A = {a}. Given a sequence (An)n in C(X) and an element
A ∈ C(X), we say that (An)n strongly converges to A (An

s→ A) if An → A
and L(An, a) → {a} for each a ∈ A.

The following lemma is easy to prove.

2.2. Lemma. (a) If An
s→ A, Bn

s→ B and An ∩Bn 6= ∅ for each n, then
An ∪Bn

s→ A ∪B.
(b) Let (An)n ⊂ C(X) and A ∈ C(X) be such that , for each infinite

subset S of N , there exists a subsequence (Ank
)k such that nk ∈ S for every

k and Ank

s→ A. Then An
s→ A.

Define J : C(X)× C(X) → C(X) by

J(A,B) =
{

A ∩B if A ∩B 6= ∅,
{b} if A ∩B = ∅,

where b is the unique point in B such that ab ∩B = {b} for each a ∈ A.

2.3. Lemma. If An
s→ A and Bn

s→ B, then J(An, Bn) s→ J(A,B).

P r o o f. C a s e 1: A∩B = ∅. Then there exists M such that An∩Bn = ∅
for all n ≥ M . Let {a} = J(B,A) and {b} = J(A,B). For each n ≥ M ,
let {an} = J(Bn, An), {bn} = J(An, Bn) and let cn ∈ An and dn ∈ Bn be
such that acn = L(An, a) and bdn = L(Bn, b). Since the set cna ∪ ab ∪ bdn

is connected and intersects An and Bn, it contains anbn. In particular,
bn ∈ cna ∪ ab ∪ bdn → ab. Thus the limit points of the sequence (bn)n

are in ab ∩ B = {b}. Therefore bn → b. Hence J(An, Bn) → J(A,B).
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Since cna → {a}, there exists M1 ≥ M such that bn 6∈ cna for every n ≥
M1. Thus bn ∈ ab ∪ bdn for all n ≥ M1. It follows that bnb → {b}. So
L(J(An, Bn), b) → {b}. Thus J(An, Bn) s→ J(A,B).

C a s e 2: A ∩ B 6= ∅. First we will prove that lim sup J(An, Bn) ⊂
J(A,B). Let x ∈ lim sup J(An, Bn). Then there exists a subsequence (nk)k

of (n)n and, for each k, there exists xk ∈ J(Ank
, Bnk

) such that xk → x. If
Ank

∩Bnk
6= ∅ for an infinite number of k’s, then x ∈ A ∩B = J(A,B) (in

this case). Thus we may suppose that Ank
∩Bnk

= ∅ for every k.
If there exist z, y ∈ A∩B such that z 6= y, choose p ∈ zy−{z, y}. For each

k ∈ N, let ak, ck ∈ Ank
be such that L(Ank

, z) = akz and L(Ank
, y) = cky.

Since akz → {z} and cky → {y}, there exists K ∈ N such that, for all
k ≥ K, akz ∩ cky = ∅, akz ∩ py = ∅ and pz ∩ cky = ∅. Given k ≥ K,
akck ⊂ Ank

∩ (akz ∪ zp ∪ py ∪ yck) and (akz ∪ zp) ∩ (py ∩ yck) = {p}.
Therefore p ∈ akck. Hence p ∈ Ank

for all k ≥ K. Similarly, there exists
K1 such that p ∈ Bnk

for all k ≥ K1. This contradicts our assumption.
Therefore A ∩B consists of a single point a0.

For each k ∈ N, let ak ∈ Ank
and bk ∈ Bnk

be such that akbk ∩ Ank
=

{ak} and akbk ∩ Bnk
= {bk}. Then {bk} = J(Ank

, Bnk
). So xk = bk.

Suppose that L(Ank
, a0) = cka0 and L(Bnk

, a0) = dka0 with ck ∈ Ank
and

dk ∈ Bnk
. Then xk ∈ akbk ⊂ cka0 ∪ a0dk → {a0}. Therefore x = a0 ∈

A ∩B = J(A,B). Hence lim supJ(An, Bn) ⊂ J(A,B).
Now take a point x ∈ J(A,B) = A ∩ B. For each n, let an ∈ An and

bn ∈ Bn be such that L(An, x) = anx and L(Bn, x) = bnx. If An ∩Bn 6= ∅,
then anbn ⊂ An ∪Bn. Thus anbn ∩An ∩Bn 6= ∅. Hence (anx∪ xbn)∩An ∩
Bn 6= ∅. This implies that L(An ∩ Bn, x) ⊂ anx ∪ xbn. If An ∩ Bn = ∅, let
{dn} = J(An, Bn). Then dn ∈ anx ∪ xbn and L(J(An, Bn), x) ⊂ anx ∪ xbn.
Therefore L(J(An, Bn), x) ⊂ anx∪xbn for all n. Since anx∪xbn → {x}, we
have L(J(An, Bn), x) → {x}. Thus x ∈ lim inf J(An, Bn) and we conclude
that J(An, Bn) s→ J(A,B).

In order to give a “uniform” parametrization of the arcs in X, we define,
for a, b ∈ X, the function γ(a, b) : I → ab by γ(a, b)(t) = x if µ(ax) = tµ(ab)
and x ∈ ab. Then we have:

2.4. Lemma. For each a, b ∈ X, γ(a, b) is a map, γ(a, b)(0) = a, γ(a, b)(1)
= b and , if a 6= b, then γ(a, b) is injective.

2.5. Lemma. If {an}
s→ {a}, {bn}

s→ {b}, rn → r and tn → t, then
γ(an, bn)(rn)γ(an, bn)(tn) s→ γ(a, b)(r)γ(a, b)(t) and {γ(an, bn)(rn)} s→
{γ(a, b)(r)}.

P r o o f. Let γn = γ(an, bn) and γ = γ(a, b). Since anbn ⊂ ana∪ ab∪ bbn

and ab ⊂ aan ∪ anbn ∪ bnb, we have anbn → ab. First, we will show that
{γn(rn)} s→ {γ(r)}.
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If r = 0 or a = b, then anγn(rn) → a, since µ(anγn(rn)) = rnµ(anbn) →
0 and an → a. Since L({γn(rn)}, γ(r)) = aγn(rn) ⊂ aan ∪ anγn(rn) → {a},
we have {γn(rn)} s→ {γ(r)}.

If r = 1 and a 6= b, then for p ∈ ab−{a, b}, anγn(rn) ⊂ ana∪ap∪pb∪bbn.
Since µ(ana ∪ ap) → µ(ap) < µ(ab) and µ(anγn(rn)) = rnµ(anbn) → µ(ab),
there exists M such that γn(rn) 6∈ ana ∪ ap for all n ≥ M . Thus γn(rn) ∈
pb ∪ pbn for all n ≥ M . This implies that {γn(rn)} s→ {γ(r)}.

If 0 < r < 1 and a 6= b, then for p ∈ aγ(r)−{γ(r)} and q ∈ γ(r)b−{γ(r)},
anγn(rn) ⊂ ana ∪ ap ∪ pq ∪ qb ∪ bbn. Proceeding as above, there exists M
such that γn(rn) 6∈ ana ∪ ap for all n ≥ M . If there exists a subsequence
(γnk

(rnk
))k of (γn(rn))n such that γnk

(rnk
) ∈ qb∪bbnk

, we may suppose that
γnk

(rnk
) → x for some x ∈ qb and ank

γnk
(rnk

) → A for some A ∈ C(X).
Then a, x ∈ A, µ(ank

γnk
(rnk

)) → rµ(ab) = µ(aγ(r)) < µ(aq) ≤ µ(ax) ≤
µ(A) = lim µ(ank

γnk
(rnk

)). This contradiction proves that there exists M ∈
N such that γn(rn) ∈ pq for all n ≥ M . It follows that {γn(rn)} s→ {γ(r)}.

Now we will prove that γn(rn)γn(tn) s→ γ(r)γ(t). Notice that
γn(rn)γn(tn) → γ(r)γ(t). Given p = γ(s) ∈ γ(r)γ(t), there exists a se-
quence (sn)n ⊂ I such that sn → s and sn is between rn and tn. Then
γ(sn) s→ γ(s). Since L(γn(rn)γn(tn), γ(s)) ⊂ γn(sn)γn(s) → {γ(s)}, we
obtain γn(rn)γn(tn) s→ γ(r)γ(t).

Define A = {(A,B) ∈ C(X) × C(X) : A ⊂ B} and F : A × I → C(X)
by F (A,B, t) =

⋃
{ax ∈ C(X) : a ∈ A, x ∈ B and µ(ax) ≤ t}.

2.6. Lemma. (a) F is well defined.
(b) F |{(A,B)} × I is continuous for every (A,B) ∈ A.
(c) F (A,B, 0) = A and F (A,B, 1) = B.
(d) If s ≤ t, then F (A,B, s) ⊂ F (A,B, t).

P r o o f. We only prove (b). Let (A,B) ∈ A and let ε > 0. Let δ > 0 be
such that if A1 ⊂ B1 and |µ(A1) − µ(B1)| < δ, then H(A1, B1) < ε. It is
easy to check that if |s − t| < δ, then H(F (A,B, t), F (A,B, s)) < ε. Thus
F |{(A,B)} × I is continuous.

2.7. Lemma. If An
s→ A, Bn

s→ B and tn → t with (An, Bn) ∈ A for
each n, then F (An, Bn, tn) s→ F (A,B, t).

P r o o f. Take x ∈ lim sup F (An, Bn, tn). Then x = lim xk where xk ∈
F (Ank

, Bnk
, tnk

) and (nk)k is a subsequence of (n)n. For each k, there exists
ak ∈ Ank

and bk ∈ Bnk
such that xk ∈ akbk and µ(akbk) ≤ tnk

. We may
suppose that ak → a for some a ∈ A and akbk → C for some C ∈ C(X).
Then ax ⊂ C ⊂ B and µ(ax) ≤ µ(C) ≤ t. Hence x ∈ F (A,B, t). Therefore
lim sup F (An, Bn, tn) ⊂ F (A,B, t).



168 A. Il lanes

Now take x ∈ F (A,B, t). Then x ∈ B and there exists a ∈ A such
that µ(ax) ≤ t. Let s = µ(ax). Then there exists a sequence (sn)n with
0 ≤ sn ≤ tn for all n and sn → s. For each n ∈ N, let an ∈ An and xn ∈ Bn

be such that L(An, a) = ana and L(Bn, x) = xnx. Let yn ∈ F (An, Bn, tn)
be such that L(F (An, Bn, tn), x) = ynx. If µ(anxn) ≤ sn, define zn = xn. If
µ(anxn) ≥ sn, let zn be the unique element in anxn such that µ(anzn) = sn.
Then zn ∈ F (An, Bn, tn).

If x = a, then L(F (An, Bn, tn), x) = yna ⊂ ana → {a}. Therefore
L(F (An, Bn, tn), x) → {x}. Now suppose that x 6= a. Given p ∈ ax−{a, x},
zn ∈ anxn ⊂ ana ∪ ap ∪ px ∪ xxn. Since µ(ana ∪ ap) → µ(ap) < s, there
exists M such that zn ∈ px ∪ xxn for all n ≥ M . This implies that znx →
{x}. Since ynx ⊂ znx, we have L(F (An, Bn, tn), x) → {z}. It follows that
F (An, Bn, tn) s→ F (A,B, t).

Now we “uniformize” the map F . Define G : A × I → C(X) by
G(A,B, t) = F (A,B, s) where s is chosen in such a way that µ(G(A,B, t)) =
µ(A) + t(µ(B)− µ(A)).

2.8. Lemma. (a) G(A,B, 0) = A and G(A,B, 1) = B.
(b) If s ≤ t, then G(A,B, s) ⊂ G(A,B, t).
(c) If An

s→ A, Bn
s→ B and tn → t with (An, Bn) ∈ A for each n, then

G(An, Bn, tn) s→ G(A,B, t).
(d) G|{(A,B)} × I is continuous for every (A,B) ∈ A.

P r o o f. We only prove (c). We will use Lemma 2.2(b). Let S be an
infinite subset of N. For each n ∈ S, let G(An, Bn, tn) = F (An, Bn, sn)
with sn ∈ I. Let G(A,B, t) = F (A,B, s). Take a subsequence (nk)k of
(n)n such that nk ∈ S for all k and snk

→ s∗ for some s∗ ∈ I. Then
G(Ank

, Bnk
, tnk

) s→ F (A,B, s∗). This yields µ(F (A,B, s∗)) = lim(µ(Ank
)+

tnk
(µ(Bnk

) − µ(Ank
))) = µ(G(A,B, t)) = µ(F (A,B, s)). It follows that

F (A,B, s∗) = F (A,B, s). Hence G(Ank
, Bnk

, tnk
) s→ G(A,B, t). Therefore

G(An, Bn, tn) s→ G(A,B, t).

Now we define “standard” arcs joining elements in µ−1(t0). Define α :
µ−1(t0)× µ−1(t0)× I → µ−1(t0) in the following way:

A. If A ∩B = ∅, let {a} = J(B,A), {b} = J(A,B) and γ = γ(a, b).
A.1. If µ(ab) ≤ t0, let s0 be the unique number in I such that µ(ab ∪

G({a}, A, s0)) = t0 then define

α(A,B, t) =


aγ(3t) ∪G({a}, A, s) if 0 ≤ t ≤ 1/3,
G({a}, A, (2− 3t)s0) ∪ ab ∪G({b}, B, s) if 1/3 ≤ t ≤ 2/3,
γ(3t− 2)b ∪G({b}, B, s) if 2/3 ≤ t ≤ 1.
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In the three cases the element s ∈ I is chosen in such a way that µ(α(A,B, t))
= t0.

A.2. If µ(ab) ≥ t0, let s0 and r0 be the unique elements in I such that
µ(aγ(s0)) = t0 = µ(γ(r0)b). Then define

α(A,B, t) =


aγ(3ts0) ∪G({a}, A, s) if 0 ≤ t ≤ 1/3,
γ(s)γ((2− 3t)s0 + 3t− 1)

where s ∈ [0, (2− 3t)s0 + 3t− 1] if 1/3 ≤ t ≤ 2/3,
γ(3t− 2 + (3− 3t)r0)b ∪G({b}, B, s) if 2/3 ≤ t ≤ 1,

with s chosen as above.
B. If A ∩B 6= ∅, define

α(A,B, t) =

 A if 0 ≤ t ≤ 1/3,
G(A ∩B,A, 2− 3t) ∪G(A ∩B,B, s) if 1/3 ≤ t ≤ 2/3,
B if 2/3 ≤ t ≤ 1,

with s chosen in the same way.

It is easy to check that α is well defined, α(A,B, 0) = A and α(A,B, 1) =
B for all (A,B) ∈ µ−1(t0) × µ−1(t0) and if A,B ⊂ A0 ∈ C(X), then
α(A,B, t) ⊂ A0 for each t ∈ I.

2.9. Lemma. If An
s→ A, Bn

s→ B and tn → t, then α(An, Bn, tn) s→
α(A,B, t) (An, Bn, A and B in µ−1(t0)).

P r o o f. We will use Lemma 2.2(b). Let S be an infinite subset of N.
We need to analyze several cases.

1. A ∩B 6= ∅.
1.1. Ank

∩ Bnk
= ∅ for infinitely many elements n1 < n2 < . . . in

S. For each k, let {ank
} = J(Bnk

, Ank
) and {bnk

} = J(Ank
, Bnk

). Since
{bnk

} = J(Ank
, Bnk

) s→ J(A,B) = A ∩ B, A ∩ B consists of a single point
a0. Then {ank

} = J(Bnk
, Ank

) s→ {a0}. For each k, let γk = γ(ank
, bnk

). It
follows that, for all sequences (rk)k and (mk)k in I, γk(rk)γk(mk) s→ {a0}.

1.1.1. t0 = 0. Then µ(ank
bnk

) ≥ t0, so α(Ank
, Bnk

, tnk
) is equal to either

{ank
}, a point in γk(0)γk(1) = ank

bnk
or {bnk

}. Thus α(Ank
, Bnk

, tnk
) s→

{a0} = A = B = α(A,B, t).
1.1.2. t0 > 0. We may suppose that µ(ank

bnk
) < t0 for every k. For

each k, let sk
0 ∈ I be such that µ(ank

bnk
∪ G({ank

}, Ank
, sk

0)) = t0 and
let sk be the number chosen so that µ(α(Ank

, Bnk
, tnk

)) = t0. We may
suppose that sk → s∗ for some s∗ ∈ I and sk

0 → s′ for some s′ ∈ I.
Then a0a0∪G({a0}, A, s∗) is an element of µ−1(t0) which is contained in A.
This implies that G({a0}, A, s∗) = A. But µ(G({a0}, A, s∗)) = µ({a0}) +
s∗(µ(A)−µ({a0})), and so s∗ = 1. We may suppose that one of the following
three cases holds:
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1.1.2.1. tnk
∈ [0, 1/3] for every k. Then t ∈ [0, 1/3] and α(Ank

, Bnk
, tnk

)
s→ G({a0}, A, s′) = A = α(A,B, t).

1.1.2.2. tnk
∈ [1/3, 2/3] for every k. Then t ∈ [1/3, 2/3] and we have

α(Ank
, Bnk

, tnk
) s→ G({a0}, A, (2−3t)s∗)∪a0a0∪G({a0}, B, s′) = α(A,B, t).

1.1.2.3. tnk
∈ [2/3, 1] for every k. Then t ∈ [2/3, 1] and α(Ank

, Bnk
, tnk

)
s→ G({a0}, B, s′) = B = α(A,B, t).

This completes Subcase 1.1.

1.2. Ank
∩ Bnk

6= ∅ for infinitely many elements n1 < n2 < . . . in S.
Then we may suppose that one of the following three cases holds:

1.2.1. tnk
∈ [0, 1/3] for all k. Then α(Ank

, Bnk
, tnk

) = Ank

s→ A =
α(A,B, t).

1.2.2. tnk
∈ [1/3, 2/3] for all k. So α(Ank

, Bnk
, tnk

) = Bnk

s→ B =
α(A,B, t).

1.2.3. tnk
∈ [2/3, 1] for every k. Then α(Ank

, Bnk
, tnk

) = G(Ank
∩

Bnk
, Ank

, 2 − 3tnk
) ∪ G(Ank

∩ Bnk
, Bnk

, sk), where sk ∈ I, and we may
suppose that sk → s′ for some s′ ∈ I. Then α(Ank

, Bnk
, tnk

) s→ G(J(A,B),
A, 2− 3t) ∪G(J(A,B), B, s′) = α(A,B, t).

This completes the proof of Case 1.

2. A ∩B = ∅. Then we may suppose that An ∩Bn = ∅ for every n ∈ S.
Here it is necessary to consider the following cases:

2.1. µ(ank
bnk

) ≥ t0 for infinitely many elements n1 < n2 < . . . in S.
2.1.1. tnk

∈ [0, 1/3] for every k.
2.1.2. tnk

∈ [1/3, 2/3] for every k.
2.1.3. tnk

∈ [2/3, 1] for every k.

2.2. µ(ank
bnk

) ≤ t0 for infinitely many elements n1 < n2 < . . . in S.
2.2.1. tnk

∈ [0, 1/3] for every k.
2.2.2. tnk

∈ [1/3, 2/3] for every k.
2.2.3. tnk

∈ [2/3, 1] for every k.

All of them can be treated similarly to Case 1.
Hence, in each one of the cases, infinitely many elements n1 < n2 < . . .

of S can be obtained such that α(Ank
, Bnk

, tnk
) s→ α(A,B, t).

Therefore α(An, Bn, tn) s→ α(A,B, t).

2.10. Construction. For each r ∈ N, let Sr = ({0, 1})r. For each
set E = {Aσ ∈ µ−1(t0) : σ ∈ SN} define fE : IN → µ−1(t0) through the
following steps:

fE(a1, σ1) = α(A(0,σ1), A(1,σ1), a1) if a1 ∈ I and σ1 ∈ SN−1.
fE(a1, a2, σ2) = α(fE(a1, 0, σ2), fE(a1, 1, σ2), a2) if a1, a2 ∈ I and σ2 ∈

SN−2.
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If 2 ≤ r < N , then fE(a1, . . . , ar, σr) = α(fE(a1, . . . , ar−1, 0, σr),
fE(a1, . . . , ar−1, 1, σr), ar) for a1, . . . , ar ∈ I and σr ∈ SN−r.

If r = N , then we set fE(a1, . . . , aN ) = α(fE(a1, . . . , aN−1, 0),
fE(a1, . . . , aN−1, 1), aN ) for a1, . . . , aN ∈ I.

The following lemma is easy to prove.

2.11. Lemma. (a) fE is well defined.
(b) If (an)n ⊂ IN and a ∈ IN are such that an → a then fE(an) s→

fE(a).
(c) If Aσ ⊂ A ∈ C(X) for each σ ∈ SN , then fE(a) ⊂ A for every

a ∈ IN .

2.12. Lemma. Let p, q ∈ {0, 1}. Let E = {Aσ : σ ∈ SN} and D = {Bσ :
σ ∈ SN} and let r ∈ {1, . . . , N} be such that A(σ1,p,σ2) = B(σ1,q,σ2) for each
σ1 ∈ Sr−1 and σ2 ∈ SN−r. Then fE(a1, p, a2) = fD(a1, q, a2) for every
a1 ∈ Ir−1 and a2 ∈ IN−r.

P r o o f. Let x = (x1, . . . , xN ), y = (y1, . . . , yN ) ∈ IN be such that
xr = p, yr = q and xi = yi for all i 6= r. We will show, by induction on k,
that if xk+1, . . . , xN , yk+1, . . . , yN ∈ {0, 1} then fE(x) = fD(y).

Suppose that k = 1. Let σ = (x2, . . . , xN ) and % = (y2, . . . , yN ) ∈ SN−1.
If r > 1, then A(0,σ) = B(0,%), A(1,σ) = B(1,%) and x1 = y1. Then fE(x) =
α(A(0,σ), A(1,σ), x1) = α(B(0,%), B(1,%), y1) = fD(y). If r = 1, then σ = %.
Notice that fE(x) = A(p,σ) and fD(y) = B(q,σ). Thus fE(x) = fD(y).

Suppose that the assertion holds for k < n. Suppose that xk+2, . . . , xN ,
yk+2, . . . , yN ∈ {0, 1}. Then fE(x) = α(fE(x1, . . . , xk, 0, xk+2, . . . , xN ),
fE(x1, . . . , xk, 1, xk+2, . . . , xN ), xk+1) = (∗). If k + 1 6= r, the induction
hypothesis implies that (∗) = fD(y), and if k + 1 = r, then fE(x) =
fE(x1, . . . , xk, p, xk+2, . . . , xN ), which, by the induction hypothesis, is equal
to fD(y1, . . . , yk, q, yk+2, . . . , yN ) = fD(y).

This completes the induction. Then the theorem follows by taking
k = N .

2.13. Construction. Let g : IN → µ−1(t0) be a map. Given m ∈
N ∪ {0} and x = (x1, . . . , xN ) ∈ ({0, 1, . . . , 10m − 1})N , define Q(x) =
[x1/10m, (x1 + 1)/10m] × . . . × [xN/10m, (xN + 1)/10m] and E(x) = {Aσ :
σ ∈ SN} where Aσ = g((x + σ)/10m) for every σ ∈ SN . Next, define
hx : Q(x) → µ−1(t0) by hx(a) = fE(x)(10m(a − x/10m)). Then hx is well
defined. Now define hm : IN → µ−1(t0) by hm(a) = hx(a) if a ∈ Q(x).
Finally, define h : IN+1 → µ−1(t0) by

h(a, t) =
{

g(a) if t = 0,
α(hm+1(a), hm(a), 2m+1(t− 1/2m+1)) if t ∈ [1/2m+1, 1/2m].



172 A. Il lanes

2.14. Lemma. For each m, hm is well defined and , if an → a, then
hm(an) s→ hm(a).

P r o o f. To see that hm is well defined take a point a ∈ Q(x) ∩ Q(y).
First suppose that x and y differ just in one coordinate r. Suppose that
xr < yr. Then ar10m = yr = xr + 1. Then hm(a) can be defined as
fE(x)(10m(a − x/10m)) and fE(y)(10m(a − y/10m)) where E(x) = {g((x +
σ)/10m) : σ ∈ SN} and E(y) = {g((y + σ)/10m) : σ ∈ SN}.

We will apply Lemma 2.12. Let c = 10m(a − x/10m) and d = 10m(a −
y/10m). Then cr = 1 and dr = 0. Let p = 1 and q = 0. For σ1 ∈ Sr−1

and σ2 ∈ SN−r we have g((x + (σ1, p, σ2))/10m) = g((y + (σ1, q, σ2))/10m).
Hence, by Lemma 2.12, fE(x)(c) = fF (y)(d). Thus fE(x)(10m(a−x/10m)) =
fE(y)(10m(a− y/10m)).

If x and y differ in more that one coordinate, considering the vectors
(x1, y2, . . . , yN ), (x1, x2, y3, . . . , yN ), . . . ,(x1, . . . , xN−1, yN ), we conclude
that hm is well defined.

The second part of the lemma follows from Lemma 2.11(b).

2.15. Lemma. h is well defined and continuous.

P r o o f. It is easy to check that h is well defined. From Lemma 2.13 it
follows that if (an, tn) → (a, t) and t > 0 then h(an, tn) s→ h(a, t). Thus h
is continuous at (a, t) if t > 0.

Now take a point (a, 0) ∈ IN+1; we will check that h is continuous at
this point. Let ε > 0. Consider the metric d0 in IN defined by d0(b, c) =
max{|bi − ci| : 1 ≤ i ≤ N}. Let δ > 0 be such that d0(a, b) ≤ δ implies
that H(g(a), g(b)) < ε. Let A0 = [a1 − δ, a1 + δ] × . . . × [aN − δ, aN + δ]
and let A =

⋃
{g(b) : b ∈ A0 ∩ IN}. Then A is a subcontinuum of X and

A ⊂ N(ε, g(a)). Fix M ∈ N such that 3/10M < δ.
We will prove that h(b, t) ⊂ N(ε, h(a, 0)) for (b, t) ∈ IN+1 such that

d0(a, b) ≤ 1/10M and t < 1/2M .
Given m ≥ M , let x ∈ ({0, 1, . . . , 10m − 1})N be such that b ∈ Q(x).

If σ ∈ SN , then d0(a, (x + σ)/10m) = max{|ai − (xi + σi)/10m| : 1 ≤ i ≤
N} ≤ δ. Thus g((x + σ)/10m) ⊂ A for each σ ∈ SN . By Lemma 2.11(c),
fE(x)(10m(b − x/10m)) ⊂ A. Therefore hm(b) ⊂ A for each m ≥ M . It
follows that h(b, t) ⊂ A ⊂ N(ε, h(a, 0)).

Now suppose that h is not continuous at (a, 0). Then there exists B ∈
µ−1(t0) − {h(a, 0)} and a sequence ((an, tn))n such that (an, tn) → (a, 0)
and h(an, tn) → B. By the paragraph above, for each ε > 0, there exists
K ∈ N such that h(an, tn) ⊂ N(ε, h(a, 0)) for every n ≥ K. This implies
that B ⊂ h(a, 0), so B = h(a, 0). This contradiction completes the proof of
the continuity of h.
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2.16. Lemma. Let g, g∗ : IN → µ−1(t0) be maps such that g|Fr(IN ) =
g∗|Fr(IN ). Let h, h∗ : IN+1 → µ−1(t0) be the maps constructed as in 2.13
for the maps g and g∗ respectively. Then h|Fr(IN )×I = h∗|Fr(IN )× I and
h|IN × {1} = h∗|IN × {1}.

P r o o f. Consider h∗m, E∗(x) and A∗
σ constructed as in 2.13 for the map

g∗. Let (a, t) ∈ Fr(IN )× I. If t = 0, then h(a, t) = g(a) = g∗(a) = h∗(a, t).
Now suppose that t > 0. To prove that h(a, t) = h∗(a, t), it is enough
to prove that hm(a) = h∗m(a) for every m ≥ 0. Let x = (x1, . . . , xN ) ∈
({0, 1, . . . , 10m − 1})N be such that a ∈ Q(x). We have to prove that
fE(x)(10m(a− x/10m)) = fE∗(x)(10m(a− x/10m)). Since a ∈ Fr(IN ), there
exists r ∈ {1, . . . , N} such that ar = 0 or 1.

If ar = 0, then xr = 0. We will apply Lemma 2.13 to p = q = 0. Given
σ1 ∈ Sr−1 and σ2 ∈ SN−r, A(σ1,0,σ2) = g((x + (σ1, 0, σ2))/10m) = g∗((x +
(σ1, 0, σ2))/10m) = A∗

(σ1,0,σ2)
. Thus Lemma 2.13 implies that fE(x)(10m(a−

x/10m)) = fE∗(x)(10m(a− x/10m)).
If ar = 1, then xr + 1 = 10m and ar − xr/10m = 1/10m. Set p = q = 1.

Given σ1 ∈ Sr−1 and σ2 ∈ SN−r, A(σ1,1,σ2) = g((x + (σ1, 1, σ2))/10m) =
g∗((x + (σ1, 1, σ2))/10m) = A∗

(σ1,1,σ2)
. Thus Lemma 2.13 implies that

fE(x)(10m(a − x/10m)) = fE∗(x)(10m(a − x/10m)). Hence h(a, t) =
h∗(a, t).

Now take a ∈ IN . We will prove that h(a, 1) = h∗(a, 1). Notice that
h(a, 1) = h0(a) = fE(0)(a) and h∗(a, 1) = fE∗(0)(a). Given σ ∈ SN ⊂
Fr(IN ), we have Aσ = g(σ) = g∗(σ) = A∗

σ. Thus fE(0) = fE∗(0). Therefore
h(a, 1) = h∗(a, 1).

2.17. Theorem. Every map G : SN → µ−1(t0) is null homotopic.

P r o o f. Let G : SN → µ−1(t0) be a map. Let (SN )+ and (SN )− be
the north and south hemispheres of SN respectively. Let g = G|(SN )+

and g∗ = G|(SN )−. Then g|Fr((SN )+) = g∗|Fr((SN )−). Identifying
(SN )+ and (SN )− with IN , we consider h and h∗ as in Lemma 2.16. Then
h|(Fr((SN )+)× I) ∪ ((SN )+ × {1}) = h∗|(Fr((SN )−)× I) ∪ ((SN )− × {1}).
We consider the (N + 1)-ball BN+1 as the space obtained by identify-

ing, in the disjoint union ((SN )+ × I)
◦
∪((SN )− × I), the points of the set

(Fr((SN )+)× I)∪ ((SN )+×{1}) with the points of the set h∗|(Fr((SN )−)×
I)∪ ((SN )−×{1}) in the natural way. Then there exists a map h : BN+1 →
µ−1(t0) which extends both h and h∗. Thus h is an extension of G. Hence
G is null homotopic.

R e m a r k. Related with this topic, the following question by A. Petrus
([13]) remains open: If X is a contractible dendroid, is then every Whitney
level for C(X) contractible?
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