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by the n-connectedness of the Whitney levels
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Abstract. Let X be a continuum. Let C(X) denote the hyperspace of all subcontinua
of X. In this paper we prove that the following assertions are equivalent: (a) X is a
dendroid, (b) each positive Whitney level in C(X) is 2-connected, and (c) each positive
Whitney level in C'(X) is co-connected (n-connected for each n > 0).

Introduction. Throughout this paper X will denote a continuum (i.e.,
a compact connected metric space) with metric d. Let C(X) be the hyper-
space of all subcontinua of X with the Hausdorff metric H. A Whitney map
for C(X) is a continuous function p : C(X) — R satisfying: (a) pu({z}) =0
for each z € X, (b) if A,B € C(X) and A & B, then u(A) < u(B), and
(c) u(X) = 1. A (positive) Whitney level is a set of the form pu~'(t) where
0 <t<1(resp. 0 <t <1). S™ denotes the n-sphere. A space Y is n-
connected if, for every 0 < i < n, each map f : S* — Y is null homotopic;
Y is oco-connected if it is n-connected for each n. A topological property P
is a Whitney property provided whenever a continuum X has property P, so
does every positive Whitney level in C(X). A map is a continuous function.
The unit closed interval is denoted by I, and the set of positive integers
by N.

Positive Whitney levels are continua [1]. Answering questions by J. Kra-
sinkiewicz and S. B. Nadler, Jr., in [9] A. Petrus showed that if D is a 2-
cell, then there exists a Whitney level A in C'(D) which is not contractible,
in fact A has non-trivial fundamental group and non-trivial first singular
homology group.

The main theorem in this paper is:

THEOREM. The following assertions are equivalent:

(i) X is a dendroid,
(ii) Each positive Whitney level in C(X) is 2-connected.
(iii) Each positive Whitney level in C(X) is co-connected.
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We divide the proof into two independent sections. In the first section
we prove that (ii)=-(i), and in the second one we prove that (i)=-(iii).

1. 2-connectedness of Whitney levels implies that X is a den-
droid. We will need the following lemma.

1.1. LEMMA. Let p : C(X) — R be a Whitney map. Let to € I. Let
Y be a continuum such that C(Y') is contractible. Then every map f :
Y — p=([0,t0]) is homotopic to a map g : Y — pu~1([0,t0]) such that
Img C p~'(to)-

Proof. Take amap f:Y — u=1([0,%]). Since C(Y) is contractible, by
[12, Thm. 16.7] there exists a map F': Y x I — C(Y') such that, for every
yeY, F(y,0) ={y}, F(y,1) =Y and s <t implies that F(y,s) C F(y,t).

We distinguish two cases:

() U f(Y)) =wU{f(y) € C(X):y €Y}) > to. Define G:Y x I —
C(X) by G(y,t) = Uf(F(y,t)) = U{f(v) € C(X) : v € F(y,t)} Then G
is a map such that G(y,0) = f(y) and G(y,1) = |J f(Y) for every y € Y.
Define K : Y x I — p~1([0,10]) by

_ Gy, 1) if p(G(y, 1)) <to
Kt ={ G0 e = o
where s € [0, to] is chosen in such a way that u(G(y, s)

Then K(y,0) = f(y) and K(y,1) € pu~'(to), and w
([0, t0]) by g(y) = K(y,1) for every y 6 Y.

(b) u(Jf(Y)) < to. Defining G as in (a), we see that f is homotopic
(within z=%([0,%0])) to the constant map y — (Jf(Y). Since |Jf(Y) €
1~ 1([0,t0]), there exists an ordered arc ([12, Thm. 1.8]) joining |J f(Y) to
an element Ag € p~1(ty) (within x=1([0,%0])). Then we complete the proof
of the lemma by defining g(y) = Ay for every y € Y.

) to.
e define g : ¥ —

We will use the following notions related to Whitney levels:

The space of Whitney levels, N(X), of X is defined by N(X) = {A €
C(C(X)) : A is a Whitney level in C(X)}. This space was introduced in
[5]-[7]. In [7, Lemma 2.2] it was proved that an equivalent metric for N(X)
is H*(A,B) = max{H(A,B): A€ A, B € Band A C B}. A partial order
for N(X) is defined in [5] by A < B if and only if for each B € B, there
exists A € A such that A C B. If A C N(X) is compact and 7 is an
ordered arc in C'(X) beginning with a singleton and ending with X, then
([5])) Ay = N{A € 7 : there exists A € A such that A € A} € yN B for
some B € A. Finally, in [5] it is shown that inf(A) = {2, € C(X) : v is
an ordered arc in C'(X) beginning with a singleton and ending with X} is
a Whitney level which is the infimum, in (N (X), <), of the set 2.
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CONVENTIONS. R™ denotes the Fuclidean n-dimensional space. e : R —
St denotes the exponential map defined by e(t) = (cost,sint). D? is the
unit disk in R2. If Y is a topological space, a map f:Y — S can be lifted
(f ~ 1) if there exists a map ¢g : ¥ — R such that eo g = f (equivalently,
if f is null homotopic, see [10, Lemma 5]). If A € C(X) and € > 0 then
N (e, A) denotes the set {x € X : there exists y € A such that d(z,y) < €}
and B(A,¢) denotes the set {B € C(X) : H(A, B) < €}. 2% denotes the
hyperspace of all closed nonempty connected subsets of X.

From now on, in this section, we will suppose that if A is a positive
Whitney level in C(X), then every map f : S* — A is null homotopic for
i = 1,2 (we are not supposing yet that A is pathwise connected).

1.2. THEOREM. X is hereditarily unicoherent.

Proof. Suppose, on the contrary, that there exist Ay, By € C(X) such
that A; N By is not connected. Let H, K € 2% be such that HN K = () and
AN By = HUK. We will construct:

(a) A Whitney map w for C'(X),

(b) A number ¢, € (0,1],

(c) Two open subsets V; and Vy in w™1([0,¢0]),
(d) A map A: St — V; NV, and

(e) Amap h1 :V]_HVQ*)SI

such that w=1([0,¢0]) = V1 UV, hio\ is not homotopic to a constant and, for
i=1,2, A:S' = V; can be extended to the disk D?. Then, using Lemma
1.1 and a Mayer—Vietoris type sequence we will obtain a contradiction. The
construction of these elements is divided into a sequence of steps.

A. There exists Ag € C(X) such that Ag C A1, AgNH #0, AgNK #0
and Ag is minimal with these properties.

To construct Ay, choose a Whitney map p for C'(X). Let t1 = min{pu(A)
el:ACA,ANH # () and ANK # (}. Take Ag € C(X) such that
1(Ao) = t1.

B. Let Hy = AgN H and K7 = Ay N K. Then there exists By € C(X)
such that By C By, BoNHy # 0, BN K; # () and By is minimal with these
properties. Define Hy = H1NBy and Ky = K1NBy. Then AgNBy = HyUKj,
HoN Ko = 0 and Hy, Ky € 2%X. Furthermore, if A (resp. B) is a proper
subcontinuum of Ag (resp. By), then AN Hy = () (resp. BN Hy = 0) or
ANKy=0 (resp. BN Ky = 0).

C. Let E = AgU By. Let ST = {(z,y) € S : y > 0} and S~ =
{(x,y) € S : y < 0}. Since X is metric, Tietze’s Theorem implies that there
exists a map fo : E — S' such that Hy = f; *((—1,0)), Ko = f5 *((1,0)),
fo(Ag) € ST and fo(Bg) C S~. Since St is an ANR (metric), there exists
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an open subset U in X and a map f : U — S! such that E C U and
fIE = fo. Then the Unique Lifting Theorem implies that f|E cannot be
lifted.

D. If A is a proper subcontinuum of E, then f|A ~ 1.

To see this, suppose, for example, that Ag is not contained in A. Let
Ag =U{L € C(X) : L is a component of AN Ay and L N Hy # 0} and let
A =U{L € C(X) : L is a component of AN Ay and L N Hy = @}. Then
Ap is closed in X. We will prove that Ag is closed. If A C Ag, then either
Axg = A or A = (. Suppose then that A is not contained in Agy. If L is
a component of AN Ay, then ([12, Thm. 20.2]) L intersects either Hy or
Ky but not both of them. If z € Cl(Ax) then x = limz,, where (z,), is a
sequence such that, for each n, x, € L, for some component L, of AgN A
such that L, N Hy = 0 (then L,, N Ky # (). Therefore the component L of
ApN A which contains z intersects K. Hence LN Hy = ) and = € Ag. The
minimality of Ay implies that Ay N Ky = (). Notice that Ay N Ax = () and
AK N H[] = @

Thus A = Ay U A U (AN By). Since Ay, Ax C Ag = f~1(ST) and
AN By C By = f~1(S7), we find that f|Ag, f|Ax and f|(AN Bp) can be
lifted. Since Ay N AN By C Hy = f_1<(—170)), Ag NANBy C Ky =
f71((1,0)) and Ay N Ax = 0, it follows that f|A can be lifted.

E. There exists an open subset V of C'(X) such that C(E) — {E} C V
and for each A€V, ACU and f|A ~1.

Indeed, let A € C(E) — {E}, f|[A ~ 1. Then ([2]) there exists an open
subset Uy of U containing A such that f|Uy ~ 1. Therefore there exists
e4 > 0 such that if H(A, B) < €4, then f|B ~ 1. Define V = {B € C(X) :
H(A, B) < g4 for some A € C(F)—{E}}.

F. Fix a Whitney map vy : 2¥ — I. Let v = 1|C(X). Define
t* = v(E) > 0 and define h : C(X) x I x (0,t*) — R by h(A,t,s) =
min{v(A)t*/s,vy(A U E) + t(v(A) — v(E))}. Then h is continuous and
h(E,t,s) = t* for every t € I and s € (0,t*). Fix t € (0,1] and s € (0,t*).
Then the map A — h(A,t,s)/h(X,t,s) from C(X) to I is a Whitney map.

G. If 0 < s1 < s2 < t*, then there exists r € (0,1] such that if 0 <t <,
A€ v1([s1,s2]) and h(A,t,s1) < t*, then A € V.

Indeed, otherwise we can choose sequences (), C (0,1] and (D), C
v=1([s1,82]) such that t, — 0 and h(D,,t,,s1) < t* and D,, ¢ V for all
n. We may suppose that D,, — A for some A € v~!([s1,s2]). Then A &V
and v(A) < s9 < v(E). Thus A is not contained in E and vo(AU E) > t*.
Since t,(v(Dy) — v(E)) + vo(Dy U E) — 19(AU E) and v(Dy)t* /sy > t*,
we conclude that there exists n € N such that h(D,,t,,s1) > t*. This
contradiction completes the proof of G.
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H. Choose a sequence (s,)n, C (0,t*) such that s,, — t* and 0 < 51 <
sy < ... Let (tp)n C (0,1] be a sequence such that ¢, — 0, t1 > t2 > ...
and, for each n, if A € v=([s,,, 5,41]) and h(A,t,,s,) < t*, then A € V.

I. Let A =v~1(t*). For each n, define A, = {4 € C(X) : h(A,tn,s,) =
t*}. Then E € A, A, is a positive Whitney level, v~ !(s,) < A, < A and
A, — A.

To see this, let A € A,; then t* < v(A)t*/s,. Thus s, < v(A).
Then there exists B € v~!(s,) such that B C A. Hence v 1(s,) < A,.
Now, let A € A. Then h(A,t,,s,) = min{ry(AU E), (t*)?/s,}. Therefore
h(A,tn,s,) > t*, so that there exists B € C(X) such that B C A and
h(B,tp,sn) =t*. Thus A, < A.

By [7, Lemma 2.2(b)], H*(Ap, A) < H*(v~ (sy,), v (t*)) — 0. Hence
A, — A.

J. Define B = inf({ A} U{A,, : n > 1}). Then B is a Whitney level. Thus
there exists ty € I and a Whitney map u for C(X) such that B = p=1(t).
Since E € A and E € A,, for all n, it follows that E € B and tg > 0.

K. The set W = v=1((s1,t*)) N u~1([0,¢0)) is contained in V.

Indeed, let A € W. Then there exists N such that A € v=!([sn, sy11])-
By H, we must show that h(A,tx,sny) < t*. Suppose, on the contrary,
that h(A,ty,sny) > t*. Then there exists a subcontinuum A* of A such
that h(A*,tny,sny) = t*. Choose a point a € A*. Let v be an ordered
arc in C(X) joining {a} to X such that A* A € v. Let Az be the unique
element in v N B. Since p(A) < to = p(Az2), we find that A ¢ A,. Thus
AG A =({BeCX):Beyn({A}n{A, : n € N})} C A*. This
contradiction proves that A € V.

L. Choose a Whitney map i : 2¥ — I which extends p (see [14, Cor.
3.3]). Define w : C(X) — I by w(A) = (a(A U E)fi(A))*/2. Then w is a
Whitney map such that w(E) = u(E) = tg, w™(to) — {E} C p=1([0,10))
and v~ 1((s1,1]) Nw™(ty) C VU{E}.

To prove this, let A € (v~((s1,1]) Nw™(tg)) — {E}. By K, to show
that A € V, it is enough to prove that v(A) < t*. Suppose that v(A) > t*.
Then there exists A* € v~1(¢*) such that A* C A. Since B < v~1(¢*), there
exists B € B such that B C A*. Since E is not contained in A, we have
to = w(A) > w(B) > u(B) = ty. This contradiction proves that A € V.

M. There exists ¢ > 0 such that B(E,e) C v=1((s1,1]) and if H(A, E) <
e, AC B and B € w™!(ty), then B € VU {E}.

Indeed, let &1 > 0 be such that if H(E, A) < &; then A € v=1((s1,1]).
Let § > 0 be such that A C B and |w(A) —w(B)| < ¢ imply that H(A, B) <
£1/2 (see [12, Lemma 1.28]). Choose 1y € [0,%y) such that to — 9 < 0.
Finally, choose ¢ > 0 such that ¢ < £1/2 and H(A, E) < ¢ imply that
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A€ w1 ((ro,1]).

N. Define V; = B(E,¢) Nw™([0,%]) and V2 = w™1([0,%9]) — {E}. Then
V1 and V, are open subsets of w™1([0,¢0]) such that w™1([0,]) = V1 U Vs
and if A € V; N Vs, then f|A ~ 1.

O. Define hy : V1NV, — St in the following way: Given A € V1 NVs, take
amap g4 : A — R such that eo g4 = f|A. Define hy(A) = e(minga(A4)).
Then h; is well defined and continuous.

Indeed, it is easy to prove that h; is well defined. To prove that h; is
continuous, take a sequence (D,,), in Vi N Vs such that D,, — A € V; N Vs.
Let g4 : A — R be a map such that eogy = f|A. Let U be an open subset of
X such that A C U; C U and f|U; ~ 1. Let g : U; — R be a map such that
eog = f|U;. Since D,, — A, there exists N such that D,, C U; foralln > N.
Then, for all n > N, hy(D,,) = e(ming(D,,)) — e(ming(A4)) = hi(A).

P. Choose § > 0 such that A C B and |w(A) — w(B)| < ¢ imply that
H(A, B) < e. Choose s* € (0,tp) such that to — s* < § and w(Ap),w(By) <
s*. Choose pg € Hp and gy € Ky. Finally, choose maps a1, as, 31 and
B2 from I to C(X) such that a1(0) = {po} = £1(0),a2(0) = {g} =
ﬂg(O),al(l) = Ay = ag(l),ﬁl(l) = By = 52(1) and, for i = 1,2, s < t
implies that «;(s) (resp. Bi(s)) is properly contained in «;(t) (resp. 3;(t))
(see [12, Thm. 1.8]).

Q. Choose r; € I such that w(ByUaz(r1)) = s*. Define v : [0,4] — C(X)

by
2((1—t)7’1 t)U,BQ('LU(t)) ifte [0, 1],
Y= 2((2—t) w(1)))U Ao U Br(x(t) ifte(l,2],
Bi((3—t)(2(2)) +t—2)Uaa(y(t) ifte(2,3],
a1((4 = 1)y(3)) U Bo U az(2(t)) ift € [3,4].

Here w(t),z(t),y(t), z(t) € I, for ¢ in the respective intervals, are consecu-
tively chosen in such a way that w(y(t)) = s* for all t € [0,4]. Then ~ is
well defined, continuous, v(0) = v(4) and () € w1 (s*) NC(E)N V1 N Vs
for every t € [0,4].

R. Define A : ST — w™(s*) N V1 NV, by A(cost,sint) = y(2(t + ) /7) if
t € [-m,m]. Then A is well defined, continuous and hy o A is not homotopic
to a constant.

To see that hq o A cannot be lifted, we first show that, for each z € 57,
there exists a map g, : A(z) — [—m,27) such that eo g, = f|\(z) and
0 € Img,. Set z = (cost,sint) with t € [—m,0]. If ¢t € [-m, —7/2], then
s =2(t+m)/m € [0,1] and A(z) = v(s) = a2((1 — s)r1 + s) U Ba(w(s)).
If Ba(w(s)) = Bo, then as((1 — s)r1 + s) is a proper subset of Ay since
s* < tp. The minimality of Ay implies that as((1 — s)r1 +s) N Hy = 0.
Thus f(ag((1 — s)r; + s)) is a compact subset of ST — {(—1,0)} and, since
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f(B2(w(s))) is contained in S, there exists a map g, : A(z) — [—m,7) such
that fIA(z) = eog,. Since (1,0) = f(qo) € f(A(2)), we have 0 € Img,.
If Ba(w(s)) is a proper subset of By, the minimality of By implies that
Ba(w(s))NHy = 0, so that f(B2(w(s))) is a compact subset of S~™—{(—1,0)}.
Thus there exists a map g, : A(z) — (—m, 7| such that eo g, = f|A(z). In
the case that t € [—m/2,0], similar considerations lead to the existence of
9z-

Similarly, for each z € ST, there exists a map g, : A\(z) — [0,37) such
that eo g, = fI\(z) and 7w € Im g,.

If z € S7, then hy1(A(2)) = e(ming.(A(2))) € e([-m,0]) = S, so
hi(A(z)) € S~ for each z € S~. Since A\((—1,0)) = v(0) = as(r;) U
B2(w(0)) = as(r1) U By and f(pg) = (—1,0), it follows that —m is in the
image of the map g1,y : A((=1,0)) — [ m,m). Then hi(A((—1,0))) =
e(—m) = (=1,0). Similarly h;(A((1,0))) = (1,0).

Thus h; o A is a map from S' to S! sending St into S*,S~ into
S7,(—1,0) into (—1,0) and (1,0) into (1,0). This implies that h; o A cannot
be lifted.

S. A : S' — V; can be extended to a map A : D? — V.

To see this, let F : S' x I — C(S') (= D?) be a map such that,
for each x € S', F(x,0) = {z}, F(z,1) = S' and s < t implies that
F(z,s) C F(z,t). Define A : S* x I — C(X) by Az,s) = U{\z) €
C(X) :z € F(x,s)}. Then X is continuous, A(x,0) = A\(z) and A(z,1) =
U{Nz) € C(X) : z € S'} = E for all x € S'. Identifying D? with
(§' x I)/(S' x {1}), we deduce that X is an extension of X to D?. If z € S*
and s € I, \(z) = X\(x,0) C A(a,s) C E, then H(\(z,s), F) < H(\(z), E) <
e and so A(z, s) € w™1([0,%]). Thus A(x,s) € V; for every z € S* and s € I.

T. A: S' — Vs can be extended to a map \ : D? — Vs.
This follows from the fact that ImXA C w™!(s*) C V, and every map
from S* into w™!(¢;) is homotopic to a constant.

This completes the construction of w,tg, V1, Vs, A and h;. Now we con-
sider the Mayer—Vietoris sequences for the triads (V3 U Vo, Vi, V3) and (52,
52,8%) where ST = {(z,y,2) € $*: 2 > 0} and 52 = {(z,y,2) € 5? : 2 <
0}. Consider the diagram

0=Hy(S2)® Hy(S?) —  Hy(S?) 2  H(SYH) — 0

lA* p*
H,(Vi) & Hy(Va) — Hy(WV1UV,) -5 Hi(VinW)

where A : 8% — V1 UVs = w!([0,%]) is defined in such a way that A|S* =
A\ AlSE = X and A]S% = ).
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By Lemma 1.1, A is homotopic to a map Ag : S? — w=1([0,%0]) such
that TmAg C w™(¢y). Since w™1(ty) is a positive Whitney level, Aq is
homotopic to a constant. Therefore A, is the zero homomorphism. This
implies that so is A, and hence also the composition hi, o A, = (h1 0 A),.
This is a contradiction since hjo\ : S' — S is not homotopic to a constant.
Therefore X is hereditarily unicoherent.

Remark. If Y is a hereditarily indecomposable continuum then every
Whitney level A in C(Y) is hereditarily indecomposable (see [12, Thm.
14.1]); thus every map from S into A is constant for each n € N. Therefore
it is not enough to suppose that the maps from n-spheres (n > 1) into
positive Whitney levels in C'(X) are null homotopic to conclude that X
is a dendroid. On the other hand [11, Example 3|, it is not enough to
suppose that every positive Whitney level A in C(Z) is pathwise connected
to conclude that Z is pathwise connected. However, as shown below, it
suffices to add the assumption that Z is hereditarily unicoherent.

1.3. LEMMA. Suppose that Z is a hereditarily unicoherent continuum with
the following property: If p,q € Z and ¢ > 0, then there exist n € N and
Ai,..., A, € C(Z) such thatp € Ay, q€ Ay, AiNAs £0,...,A,_1NA, #
0 and diam(A;) < € for each i. Then Z is pathwise connected.

Proof. Let p and g be two different points in Z and let A = ({B €
C(Z) : p,q € B}. Since Z is hereditarily unicoherent, we have A € C(Z).
We will prove that A is connected im kleinen at each point. Let a € A and
let ¢ > 0. Take A;,..., A, € C(Z) such that p € A1, ¢ € A,, A1 N Ay #
0,...,A,_1NA, # 0 and diam(A4;) < € for each i. Let D = J{A4; : a € A;}
and let W=A—-J{A;:a ¢ A;}. Then De C(Z), AC A U...UA,, W
is an open subset of A and a € W C D C B({a},¢). Hence A is connected
im kleinen at a. Therefore A is a locally connected continuum. Thus A
is pathwise connected (in fact, this implies that A is an arc). Hence Z is
pathwise connected.

1.4. THEOREM. If Z is hereditarily unicoherent and all its positive Whit-
ney levels are pathwise connected, then Z is pathwise connected.

Proof. Let p,q € Z and let € > 0. Fix a Whitney map p for C(Z). Let
0 <6 <1 besuch that if A, B € C(Z), |u(A) — pu(B)| < 6 and A C B, then
H(A,B) <e. Let 0 <t <§/2. Choose A, B € u~'(t) such that p € A and
q € B. Let a: I — p~%(t) be a map such that a(0) = A and a(1) = B.
Let A > 0 be such that |t — s| < A implies that H(a(t),a(s)) < /3. Let
0=ty <t; <...<t, =1 be a partition of I such that ¢t;, —t;_1 < ¢
for all ¢ > 1. For i > 1, define A; = [J{a(t) : t;=1 < t < t;}. Then
Ai,... A, € C(Z),diam(A;) < € for all i, p € Ay, g € A, and A; N Ay #
0,...,A,_1 N A, #0. Therefore Z is pathwise connected.
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1.5. THEOREM. If each positive Whitney level in C(X) is 2-connected,
then X s a dendroid.

1.6. COROLLARY. If every positive Whitney level in C'(X) is contractibile,
then X is a dendroid.

2. If X is a dendroid then every positive Whitney level in C'(X)
is co-connected. In [12, Thm. 14.8], it was shown that if X is pathwise
connected then every Whitney level for C'(X) is also pathwise connected. So
we concentrate our attention on the null homotopy of maps from n-spheres
(n > 1) into positive Whitney levels.

Throughout this section we will suppose that X is a dendroid. Fix a
Whitney map p, a number to € (0,1] and an integer N € N. We will show
that every map G : SN — u~1(t() is null homotopic. To do this, we will
need to define a strong form of convergence in C(X).

2.1. DEFINITION. Given & # y € X, the unique arc joining x and y
in X will be denoted by Ty. The set {x} will be denoted by zz. Define
L:C(X)xX — C(X) by L(A, z) = az where a is the unique element in A
such that az N A = {a}. Given a sequence (A,), in C(X) and an element
A € C(X), we say that (A,), strongly converges to A (A, = A)if A, — A
and L(A,,a) — {a} for each a € A.

The following lemma, is easy to prove.

2.2. LEMMA. (a) If A, > A, B, > B and A, N\ B, # 0 for each n, then
A,UB, > AUB.

(b) Let (Ap)n C C(X) and A € C(X) be such that, for each infinite
subset S of N | there exists a subsequence (A, )i such that ny € S for every
k and A, > A. Then A, > A.

Define J : C(X) x C(X) — C(X) by

_[ANB ifANB#0,
J(A, B) = {{b} it ANB =0,

where b is the unique point in B such that abN B = {b} for each a € A.
2.3. LEMMA. If A,, > A and B, > B, then J(A,, B,) > J(A, B).

Proof Casel: ANB = (). Then there exists M such that A,NB,, =0
for all n > M. Let {a} = J(B,A) and {b} = J(A, B). For each n > M,
let {an} = J(Bn, 4y), {bn} = J(A,, By,) and let ¢, € A,, and d,, € B,, be
such that ae, = L(A,,a) and bd,, = L(B,,b). Since the set ¢,a U ab U bd,,
is connected and intersects A, and B,, it contains a,b,. In particular,
b, € ¢,aUabU bd, — ab. Thus the limit points of the sequence (by)n
are in ab N B = {b}. Therefore b, — b. Hence J(A,,B,) — J(A,B).
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Since ¢,a — {a}ihe@xists M; > M such that b, ¢ c,a for every n >
M;. Thus b, € abUbd,, for all n > M;. It follows that b,b — {b}. So

L(J(An, Bn),b) — {b}. Thus J(A,, B,) > J(A, B).

Case 22 AN B # (. First we will prove that limsup J(A,, B,) C
J(A, B). Let x € limsup J(A,, By,). Then there exists a subsequence (ng)g
of (n), and, for each k, there exists xi, € J(Ay, , By, ) such that z;, — x. If
A, N B, # 0 for an infinite number of k’s, then x € AN B = J(A4, B) (in
this case). Thus we may suppose that A,, N B,, = 0 for every k.

If there exist z,y € ANB such that z # y, choose p € Zy—{z,y}. For each
k € N, let ai,cr € A, be such that L(A,,,z) = axz and L(A,,,y) = Y.
Since apz — {z} and ¢y — {y}, there exists K € N such that, for all
k>K,arzNecgy = 0, arzNpy = 0 and pzNcgy = 0. Given k > K,
akCe C An, N (axz Uzp U py Uyck) and (axz U zp) N (py Nycx) = {p}-
Therefore p € aicy. Hence p € A, for all £ > K. Similarly, there exists
K such that p € B, for all £ > K;. This contradicts our assumption.
Therefore A N B consists of a single point ag.

For each k € N, let a;, € A,, and b, € B, be such that aibp N A, =
{ak} and MQ Bnk = {bk} Then {bk} = J(Ank,Bnk). So zp = by.
Suppose that L(A,, ,ao) = ¢xao and L(By,,a0) = drao with ¢, € A, and
di € By,. Then x € aib, C ¢rao U apdr, — {ao}. Therefore z = ag €
AN B=J(A,B). Hence limsup J(A,, B,) C J(A, B).

Now take a point =z € J(A,B) = AN B. For each n, let a, € A, and
b, € B, be such that L(A,,,z) = a,z and L(B,,z) = b,z. If A, N B, # 0,
then a,b, C A, UB,. Thus a,b, N A, N B, # (. Hence (a,zUxb,)N A, N
B,, # 0. This implies that L(A, N B,,x) C @,z Uxb,. If A, N B, =0, let
{d,} = J(A,, B,). Then d,, € @,z Uxb, and L(J(A,, B,),r) C @,z U xb,.
Therefore L(J(A,, By),z) C @,z Uxb, for all n. Since @,z Uzb, — {z}, we
have L(J(Ay, Bn),z) — {z}. Thus = € liminf J(A,, B,) and we conclude
that J(A,, B,) > J(A, B).

In order to give a “uniform” parametrization of the arcs in X, we define,
for a,b € X, the function v(a,b) : I — ab by v(a,b)(t) = = if u(az) = tu(ab)
and z € ab. Then we have:

2.4. LEMMA. For each a,b € X, v(a,b) is a map, y(a,b)(0) = a, y(a,b)(1)
=b and, if a # b, then y(a,b) is injective.

2.5. LEMMA. If {a,} = {a}, {b,} = {b}, rn — 7 and t, — t, then
V(@n, bn) (ra)¥(an, ba)(ta) = A(a,b)(r)v(a,0)(t) and {y(an,bn)(rs)} -
{~(a,b)(r)}.

Proof. Let 7y, = ¥(an,b,) and v = v(a,b). Since a,b, C @p,aUabUbb,

and ab C aa, U apb, U b,b, we have a,b, — ab. First, we will show that

{mm(rn)} = {7(n)}
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If r =0 or a =b, then a,y,(r,) — a, since p(anyn(rs)) = ropu(ayb,) —

0 and a,, — a. Since L({’Yn(rn)}af)/(r)) = a’}’n(rn) Caap, U an’}/n(rn) - {a},
we have {7, (rn)} = {7(r)}. o o
If r =1 and a # b, then for p € ab—{a, b}, anyn(rn) C a,aUapUpbUbb,,.

Since u(anaUap) — u(ap) < (@) and j(ann(ra)) = rnfi(anbn) — p(ab),
there exists M such that v, (r,) & a,a Uap for all n > M. Thus v, (r,) €
pbUpb, for all n > M. This implies that {7, (r,)} = {v(r)}.

If0 < r < 1landa # b, then forp € ay(r)—{vy(r)} and ¢ € v(r)b—{~(r)},
anYn(rn) C ana Uap Upg U gb U bb,. Proceeding as above, there exists M
such that v, (r,) € a,a Uap for all n > M. If there exists a subsequence
(Vny, (Pny, )k Of (Y (7)) n such that vy, (7, ) € ¢bUbb,, , we may suppose that
Y (Tny ) — @ for some x € gb and a,, Vn, (rn,) — A for some A € C(X).
Then a,2 € A, i(ang 1o (7)) — 71(a8) = (@ (7)) < pu(ag) < pu(aw) <
w(A) = lim p(an, Yn, (rn, ). This contradiction proves that there exists M €
N such that v, (r,) € pg for all n > M. It follows that {v,(r,)} = {v(r)}.

Now we will prove that v,(r,)vn(t.) — ~(r)y(t). Notice that
Y (P )Yn (tn) — (r)y(t). Given p = ~(s) € ~(r)y(t), there exists a se-
quence (s,)n, C I such that s, — s and s, is between r, and ¢,. Then
Y(sn) = (s). Since L(yn(ra)n(tn);7(s)) € Yulsn)m(s) — {7(s)}, we
obtain . (rn)yn (tn) = 7(r)7(t).

Define A = {(A,B) e C(X) xC(X): AC B} and F: A x [ — C(X)
by F(A,B,t)=J{az € C(X):a € A, x € B and pu(ax) < t}.

2.6. LEMMA. (a) F' is well defined.

(b) FI{(A, B)} x I is continuous for every (A, B) € 2.
(c) F(A,B,0) = A and F(A,B,1) = B.

(d) If s <'t, then F(A,B,s) C F(A, B,t).

Proof. We only prove (b). Let (4, B) € A and let £ > 0. Let 6 > 0 be
such that if A7 C By and |u(A;) — pu(B1)| < 6, then H(A1, By) < e. It is
easy to check that if |s — ¢| < §, then H(F(A, B,t),F (A, B,s)) < . Thus
F|{(A,B)} x I is continuous.

2.7. LEMMA. If A, > A, B, > B and t,, — t with (A,, B,) € 2 for
each n, then F(Ay, By, t,) ~ F(A, B,t).

Proof. Take z € limsup F(A,, By, t,). Then x = limz; where zj, €
F(A,,, By, tn,) and (ng)y is a subsequence of (n),,. For each k, there exists
ar € Ay, and by € B, such that xp € apby and p(agby) < t,,. We may
suppose that ax — a for some a € A and axb, — C for some C € C(X).
Then az C C C B and p(az) < pu(C) <t. Hence x € F(A, B,t). Therefore
limsup F(A,, B,,t,) C F(A, B,t).
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Now take x € F(A,B,t). Then z € B and there exists a € A such
that p(az) < t. Let s = u(az). Then there exists a sequence (s,), with
0<s,<t,forallnand s, — s. Foreachn € N, let a,, € A, and z,, € B,
be such that L(A4,,a) = a,a and L(B,,x) = T,z. Let y, € F(Ay,, Bp,ty)
be such that L(F(A,, By, tn),x) = ynx. If p(@nz,) < sy, define z, = z,,. If
w(@nZyn) > Sp, let z, be the unique element in @, ,, such that u(a,z,) = sp.
Then z, € F(A,, By, ty).

If x = a, then L(F(A,, By, tn),z) = Ypa C ana — {a}. Therefore
L(F(A,, By, tn),z) — {z}. Now suppose that z # a. Given p € az—{a,z},
Zn € Aniy, C apaUap U pz UTT,. Since p(a,a Uap) — p(ap) < s, there
exists M such that z, € px U Zx, for all n > M. This implies that z,z —
{z}. Since y,= C zZ,x, we have L(F(A,, By, t,),xz) — {z}. It follows that
F(A,, By, t,) > F(A, B,t).

Now we “uniformize” the map F. Define G : A x I — C(X) by
G(A, B,t) = F(A, B, s) where s is chosen in such a way that u(G(A4, B,t)) =
p(A) + t(p(B) — u(A)).

2.8. LEMMA. (a) G(A, B,0) = A and G(A, B,1) = B.

(b) If s <'t, then G(A, B,s) C G(A, B,t).

(c) If A, > A, B, > B and t,, — t with (A, B,) € 2 for each n, then
G(Apn, By, tn) > G(A, B,t).

(d) GI{(A, B)} x I is continuous for every (A, B) € 2.

Proof. We only prove (c). We will use Lemma 2.2(b). Let S be an
infinite subset of N. For each n € S, let G(A,, Bn,t,) = F(A,, By, spn)
with s, € I. Let G(A,B,t) = F(A, B,s). Take a subsequence (ny); of
(n)p such that ny € S for all k£ and s,, — s* for some s* € I. Then
G(Apn,,Bn,,tn,) ~ F(A, B,s*). This yields u(F(A, B, s*)) = lim(u(A,, )+
tny, (1W(Bny) — 1(An,))) = w(G(A, B,t)) = u(F(A,B,s)). It follows that
F(A,B,s*) = F(A,B,s). Hence G(A,,, Bn,,tn,) — G(A, B,t). Therefore
G(An, Bu,tn) = G(A, B,t).

Now we define “standard” arcs joining elements in ;=1 (o). Define « :
pt(to) x p=t(to) x I — p~(to) in the following way:

A MfANB=0,let {a} = J(B, A), {b} = J(A, B) and v = y(a, b).

A.1. If u(ab) < to, let so be the unique number in I such that p(abU
G({a}, A, sp)) = to then define

ay(3t)UG({a}, 4, s) if 0 <t<1/3,
a(A,B,t) = ¢ G({a}, A, (2 —-3t)sg) UabUG({b},B,s) if1/3<t<2/3,
(3t —2)bU G({b}, B, 5) if 2/3<t<1.
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In the three cases the element s € I is chosen in such a way that u(a(A, B,t))
— to.

A2, If p(ab) > to, let so and rg be the unique elements in I such that
w(ay(so)) = to = p(y(ro)b). Then define
avy(3tsg) UG({a}, A, s) if 0 <t<1/3,
2 —3t)s —
(4, B,t) = Wgzgaeié%igisg%+xﬁ—1]ifysgtgzﬂa
v(Bt =24 (3 —3t)ro)bUG({b},B,s) if2/3 <t <1,
with s chosen as above.
B. If AN B # (), define

A if0<t<1/3,
a(A,B,t)={ G(ANB,A,2-3t)UG(ANB,B,s) if1/3<t<2/3,
B if2/3<t<1,

with s chosen in the same way.

It is easy to check that a is well defined, a(A, B,0) = A and a(A, B, 1) =
B for all (A,B) € u~Y(to) x u~(to) and if A,B C Ay € C(X), then
a(A, B,t) C Ap for each t € I.

2.9. LEMMA. If A,, 5 A, B, > B and t,, — t, then a(An, Bp,t,) >
a(A, B,t) (An, Bn, A and B in u=t(tg)).

Proof. We will use Lemma 2.2(b). Let S be an infinite subset of N.
We need to analyze several cases.

1. ANB #0.

1.1. A,, N B,, = 0 for infinitely many elements n; < ny < ... in
S. For each k, let {an,} = J(Bn,,An,) and {b,, } = J(An,,Bn,). Since
{by,} = J(An,,Bn,) > J(A,B) = AN B, AN B consists of a single point
ag. Then {an, } = J(Bn,, An,) — {ao}. For each k, let v, = y(an, ,bn, ). It
follows that, for all sequences (ry)r and (mg)g in I, v (re)ve(ms) — {ao}.

1.1.1. to = 0. Then p(an,bn,) > to, so a(An, , Bn,,tn, ) is equal to either
{an,}, a point in 74 (0)x(1) = an, bn, or {bn, }. Thus a(A,,,Bn,,tn,) —
{ap} = A= B = a(A, B,t).

1.1.2. tp > 0. We may suppose that p(an,bn,) < to for every k. For
each k, let sf € I be such that p(an, bn, UG{an,}, An,,s5)) = to and
let s, be the number chosen so that u(a(An,, Bn,,tn,)) = to. We may
suppose that s; — s* for some s* € I and sf — s’ for some s’ € I.
Then agagUG({ao}, A, s*) is an element of =1 (tg) which is contained in A.
This implies that G({aop}, 4,s*) = A. But u(G({ao}, A,s*)) = p({ao}) +
s*(u(A)—p({ao})), and so s* = 1. We may suppose that one of the following
three cases holds:
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1.1.2.1. t,, €10,1/3] for every k. Then ¢ € [0,1/3] and «(A,, , Bn,,tn;,)
2 G({ag},A,s") = A= a(A, B,t).

1.1.2.2. t,, € [1/3,2/3] for every k. Then t € [1/3,2/3] and we have
a(An,, Bnyytn,) — G({ao}, A, (2—3t)s*)UagagUG ({ao}, B, s') = a(A, B, t).

1.1.2.3. t,, € [2/3,1] for every k. Then ¢t € [2/3,1] and a(An,, Bny»tn)
2 G({ao},B,s') = B = a(A, B,t).

This completes Subcase 1.1.

1.2. A,, N B,, # 0 for infinitely many elements ny < ny < ... in S.
Then we may suppose that one of the following three cases holds:

1.2.1. t,, € [0,1/3] for all k. Then a(A,,,Bu, tn,) = An, — A =
a(A, B, t).

1.2.2. t,, € [1/3,2/3] for all k. So a(Ay,,,Bn,,tn,) = Bn, — B =
a(A, B,t).

1.2.3. tn, € [2/3,1] for every k. Then a(A,,,Bn, tn,) = G(An, N
B, A, ,2 — 3ty,) UG(A,, N By, ,By,,sk), where s, € I, and we may
suppose that s, — s’ for some s’ € I. Then a(A,, , Bn,,tn,) — G(J(A, B),
A2 -3t)UG(J(A,B),B,s') = a(A, B,t).

This completes the proof of Case 1.

2. AN B = (. Then we may suppose that A, N B, = for every n € S.
Here it is necessary to consider the following cases:

2.1. p(an,bn,) > to for infinitely many elements ny < ng < ... in S.
2.1.1. t,, €[0,1/3] for every k.

2.1.2. t,, €[1/3,2/3] for every k.

2.1.3. ty, € [2/3,1] for every k.

2.2. p(ap, by, ) < to for infinitely many elements n; < ng < ...in S.
2.2.1. t,, €0,1/3] for every k.

2.2.2. ty, €[1/3,2/3] for every k.

2.2.3. ty,, € [2/3,1] for every k.

All of them can be treated similarly to Case 1.

Hence, in each one of the cases, infinitely many elements ny < ngy < ...
of S can be obtained such that a(A,, , By, ,tn,) — (A, B,t).

Therefore (A, By, tn) — a(A, B,t).

2.10. CoNsTRUCTION. For each r € N, let S, = ({0,1})". For each
set E = {A, € u=t(tg) : 0 € Sy} define fr : IV — pu~Y(to) through the
following steps:

fE(al,al) = OC(A(Q’O-l),A(LO-I),al) if a1 € I and 01 € SN—I-

felar,az,09) = a(fe(a1,0,02), fe(a1,1,02),a2) if a1,a2 € I and oy €
SN_Q.
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If 2 < r < N, then fg(ay,...,a,,0.) = a(fe(ai,...,a,-1,0,0.),

fe(ai,...,ar_1,1,0.),a,) for a1,...,a, € I and o, € Sy_,-.
If » = N, then we set fg(ai,...,an) = a(fe(ai,...,an—1,0),
fE(al,...,aN,l,l),aN) for ay,...,any € 1.

The following lemma is easy to prove.

2.11. LEMMA. (a) fg is well defined.

() If (an)n € IV and a € IV are such that a, — a then fg(a,) >
fe(a).

(¢) If A, C A € C(X) for each 0 € Sy, then fg(a) C A for every
aelVN.

2.12. LEMMA. Let p,q € {0,1}. Let E ={A, :0 € Sy} and D = {B, :
o€ Sy} andletre{l,...,N} be such that Ay, p.oy) = B(oy,q,00) for each
o1 € Sr—l and o2 € SN—'I" Then fE(alvpa a2) = fD(alv(Ja a2) fOT every
ar € I" Y and ay € INT.

Proof. Let z = (z1,...,2n), ¥ = (y1,...,yn) € IV be such that
T =p, yr = q and x; = y; for all i # r. We will show, by induction on k,
that if 2xy1,..., 2N, Ykt1,---,yn € {0,1} then fr(z) = fp(y).

Suppose that k = 1. Let 0 = (x2,...,xn) and 0 = (y2,...,Yy~N) € SN—_1.
If r > 1, then A(Ojg) = B(ng), A(LJ) = B(l,g) and 1 = y;. Then fg(x) =
(40,0, A0y, 1) = a(B(o,g)s B(1,0),41) = fp(y). If 7 =1, then o = .
Notice that fr(z) = A0y and fp(y) = B(g,s). Thus fe(x) = fp(y).

Suppose that the assertion holds for k < n. Suppose that xgia,..., 2N,
Ykt2,---,yn € {0,1}. Then fr(z) = a(fe(z1,..., 7k 0, Tkt2,. .., TN),
fe(x1,. ., 2k, 1,22, ..., TN), Zkt1) = (x). If K+ 1 # r, the induction
hypothesis implies that (x) = fp(y), and if K +1 = r, then fg(x) =
fe(zi, ..., 2k, D, Tkt2,-..,2N), which, by the induction hypothesis, is equal
to fD(yla"'7yk7Q7yk+27‘ : ayN) = fD(y)

This completes the induction. Then the theorem follows by taking
k= N.

2.13. CONSTRUCTION. Let g : IV — pu~!(tg) be a map. Given m €
NU {0} and z = (z1,...,2zn5) € ({0,1,...,10m — 1}V, define Q(z) =
[£1/10™, (z1 + 1)/10™] x ... x [xn/10™, (zy + 1)/10™] and E(z) = {4, :
o € Sy} where A, = g((z + 0)/10™) for every ¢ € Sy. Next, define
hy : Q(z) — p~'(to) by he(a) = fE)(10™(a — 2/10™)). Then h, is well
defined. Now define h,, : IV — p~1(ty) by hm(a) = he(a) if a € Q(x).
Finally, define h : TN+ — 1 =1(tg) by

(a) ift =0,
et = {i<hm+l<a>,hm<a>,2m+l<t —1/2mHh) ifee [L/2m /e,
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2.14. LEMMA. For each m, hy, is well defined and, if a,, — a, then
B () = o (a).

Proof. To see that h,, is well defined take a point a € Q(z) N Q(y).
First suppose that x and y differ just in one coordinate r. Suppose that
zy < yp. Then a,.10™ = y, = =z, + 1. Then h,,(a) can be defined as
fE@) (10" (a — 2/10™)) and fg(,)(10™(a — y/10™)) where E(z) = {g((z +
0)/10™) 0 € Sy} and E(y) = {g9((y +0)/10™) : 0 € Sy }.

We will apply Lemma 2.12. Let ¢ = 10™(a — x/10™) and d = 10™(a —
y/10™). Then ¢, =1 and d, = 0. Let p =1 and ¢ = 0. For o1 € S,_3
and o9 € Sy_, we have g((z + (01,p,02))/10™) = g((y + (01, ¢,02))/10™).
Hence, by Lemma 2.12, fg(,)(c) = fry)(d). Thus fgg) (10 (a—2/10™)) =
Py (107 (a — y/10™).

If x and y differ in more that one coordinate, considering the vectors
(x1,Y2y -+ YN)s (T1,22,Y3,- .- YN)s -+ H(T1,...,ZN—1,YN), We conclude
that h,, is well defined.

The second part of the lemma follows from Lemma 2.11(b).
2.15. LEMMA. h is well defined and continuous.

Proof. It is easy to check that h is well defined. From Lemma 2.13 it
follows that if (ay,,t,) — (a,t) and t > 0 then h(ay,,t,) — h(a,t). Thus h
is continuous at (a,t) if ¢t > 0.

Now take a point (a,0) € IN*!; we will check that h is continuous at
this point. Let ¢ > 0. Consider the metric dg¢ in IV defined by do(b,c) =
max{|b; —¢;| : 1 <i < N}. Let 6 > 0 be such that do(a,b) < § implies
that H(g(a),g(b)) < e. Let Ag = [a1 — d,a1 + 0] X ... X [axy — d,an + 0]
and let A = J{g(b) : b € AgN IN}. Then A is a subcontinuum of X and
A C N(e,g(a)). Fix M € N such that 3/10™ < 6.

We will prove that h(b,t) C N(e,h(a,0)) for (b,t) € IN*! such that
do(a,b) < 1/10™ and t < 1/2M.

Given m > M, let z € ({0,1,...,10™ — 1})" be such that b € Q(=).
If o € Sy, then do(a, (z + 0)/10™) = max{|a; — (x; + 0;)/10™| : 1 < i <
N} < 4. Thus g((x + 0)/10™) C A for each 0 € Sy. By Lemma 2.11(c),
JE@) (10 (b — 2/10™)) C A. Therefore h,,(b) C A for each m > M. I
follows that h(b,t) C A C N(e, h(a,0)).

Now suppose that h is not continuous at (a,0). Then there exists B €
pt(to) — {h(a,0)} and a sequence ((an,t,))n such that (an,t,) — (a,0)
and h(an,t,) — B. By the paragraph above, for each ¢ > 0, there exists
K € N such that h(an,t,) C N(g,h(a,0)) for every n > K. This implies
that B C h(a,0), so B = h(a,0). This contradiction completes the proof of
the continuity of h.
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2.16. LEMMA. Let g,g* : IN — pu=1(to) be maps such that g|Fr(IV) =
g | Fr(IN). Let h,h* : INTY — p=1(ty) be the maps constructed as in 2.13
for the maps g and g* respectively. Then h|Fr(IV) x I = h*|Fr(IV) x I and
R|IIN x {1} = h*|TN x {1}.

Proof. Consider h},, E*(z) and A} constructed as in 2.13 for the map
g*. Let (a,t) € Fr(IN) x I. If t = 0, then h(a,t) = g(a) = g*(a) = h*(a, ).
Now suppose that ¢t > 0. To prove that h(a,t) = h*(a,t), it is enough
to prove that h,,(a) = h¥ (a) for every m > 0. Let z = (z1,...,2n) €
({0,1,...,10m — 1}) be such that a € Q(x). We have to prove that
fE@)(10™(a — 2/10™)) = fp«(z)(10™(a — x/10™)). Since a € Fr(IY), there
exists r € {1,..., N} such that a, =0 or 1.

If a, =0, then z, = 0. We will apply Lemma 2.13 to p = ¢ = 0. Given
o1 € Sy—1 and 03 € SN—r, A(sy,0,05) = 9((z + (01,0,02))/10™) = g*((z +
(01,0,02))/10™) = A7, ,,)- Thus Lemma 2.13 implies that fp(,)(10™ (a—
z/10™)) = fE+(2)(10™(a — x/10™)).

If a, =1, then z, + 1 = 10™ and a, — x,,/10™ = 1/10™. Set p = q = 1.
Given o1 € S,_1 and 03 € SN, Aoy 1,0) = 9((z + (01,1,02))/10™) =
9" ((x + (01,1,02))/10™) = Af, - Thus Lemma 2.13 implies that
[E@ (0™ (a — 2/10™)) = fg«@) (10™(a — x/10™)). Hence h(a,t) =
h*(a,t).

Now take a € IN. We will prove that h(a,1) = h*(a,1). Notice that
h(a,1) = ho(a) = fre)(a) and h*(a,1) = fg-y(a). Given 0 € Sy C
Fr(IY), we have A, = g(0) = g*(c) = A%. Thus fg) = f&+(0). Therefore
h(a,1) = h*(a,1).

2.17. THEOREM. Every map G : SN — p~1(tg) is null homotopic.

Proof. Let G : SY — pu=Y(to) be a map. Let (S™)* and (S™)~ be
the north and south hemispheres of SV respectively. Let g = G|(SN)T
and g* = G|(SY)~. Then g|Fr((SM)*) = g*|Fr((SY)7). Identifying
(S™M)* and (SV)~ with IV, we consider h and h* as in Lemma 2.16. Then
Rl (Fe((S™)F) x DU ((S™)* x {1}) = h*|(Fr((SY)7) x I) U((SY)~ x {1}).
We consider the (N + 1)-ball BN*! as the space obtained by identify-
ing, in the disjoint union ((S™)* x I)G((SN)’ x I), the points of the set
(Fr((SM)*) x 1)U ((SN)* x {1}) with the points of the set h*|(Fr((S™)™) x
IU((SN)~ x {1}) in the natural way. Then there exists a map h : BN+t —
p~1(tg) which extends both h and h*. Thus h is an extension of G. Hence
G is null homotopic.

Remark. Related with this topic, the following question by A. Petrus
([13]) remains open: If X is a contractible dendroid, is then every Whitney
level for C(X) contractible?
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