A characterization of dendroids by the *n*-connectedness of the Whitney levels

bv

Alejandro Illanes (México, D.F.)

Abstract. Let X be a continuum. Let C(X) denote the hyperspace of all subcontinua of X. In this paper we prove that the following assertions are equivalent: (a) X is a dendroid, (b) each positive Whitney level in C(X) is 2-connected, and (c) each positive Whitney level in C(X) is ∞ -connected (n-connected for each $n \geq 0$).

Introduction. Throughout this paper X will denote a continuum (i.e., a compact connected metric space) with metric d. Let C(X) be the hyperspace of all subcontinua of X with the Hausdorff metric \mathcal{H} . A Whitney map for C(X) is a continuous function $\mu:C(X)\to\mathbb{R}$ satisfying: (a) $\mu(\{x\})=0$ for each $x\in X$, (b) if $A,B\in C(X)$ and $A\subsetneq B$, then $\mu(A)<\mu(B)$, and (c) $\mu(X)=1$. A (positive) Whitney level is a set of the form $\mu^{-1}(t)$ where $0\le t\le 1$ (resp. $0< t\le 1$). S^n denotes the n-sphere. A space Y is n-connected if, for every $0\le i\le n$, each map $f:S^i\to Y$ is null homotopic; Y is ∞ -connected if it is n-connected for each n. A topological property P is a Whitney property provided whenever a continuum X has property P, so does every positive Whitney level in C(X). A map is a continuous function. The unit closed interval is denoted by I, and the set of positive integers by \mathbb{N} .

Positive Whitney levels are continua [1]. Answering questions by J. Krasinkiewicz and S. B. Nadler, Jr., in [9] A. Petrus showed that if D is a 2-cell, then there exists a Whitney level \mathcal{A} in C(D) which is not contractible, in fact \mathcal{A} has non-trivial fundamental group and non-trivial first singular homology group.

The main theorem in this paper is:

Theorem. The following assertions are equivalent:

- (i) X is a dendroid,
- (ii) Each positive Whitney level in C(X) is 2-connected.
- (iii) Each positive Whitney level in C(X) is ∞ -connected.

We divide the proof into two independent sections. In the first section we prove that (ii) \Rightarrow (i), and in the second one we prove that (i) \Rightarrow (iii).

- 1. 2-connectedness of Whitney levels implies that X is a dendroid. We will need the following lemma.
- 1.1. LEMMA. Let $\mu: C(X) \to \mathbb{R}$ be a Whitney map. Let $t_0 \in I$. Let Y be a continuum such that C(Y) is contractible. Then every map $f: Y \to \mu^{-1}([0,t_0])$ is homotopic to a map $g: Y \to \mu^{-1}([0,t_0])$ such that $\operatorname{Im} g \subset \mu^{-1}(t_0)$.

Proof. Take a map $f: Y \to \mu^{-1}([0,t_0])$. Since C(Y) is contractible, by [12, Thm. 16.7] there exists a map $F: Y \times I \to C(Y)$ such that, for every $y \in Y$, $F(y,0) = \{y\}$, F(y,1) = Y and $s \leq t$ implies that $F(y,s) \subset F(y,t)$. We distinguish two cases:

(a) $\mu(\bigcup f(Y)) = \mu(\bigcup \{f(y) \in C(X) : y \in Y\}) \ge t_0$. Define $G: Y \times I \to C(X)$ by $G(y,t) = \bigcup f(F(y,t)) = \bigcup \{f(v) \in C(X) : v \in F(y,t)\}$ Then G is a map such that G(y,0) = f(y) and $G(y,1) = \bigcup f(Y)$ for every $y \in Y$. Define $K: Y \times I \to \mu^{-1}([0,t_0])$ by

$$K(y,t) = \begin{cases} G(y,t) & \text{if } \mu(G(y,t)) \leq t_0, \\ G(y,s) & \text{if } \mu(G(y,t)) \geq t_0, \end{cases}$$

where $s \in [0, t_0]$ is chosen in such a way that $\mu(G(y, s)) = t_0$.

Then K(y,0) = f(y) and $K(y,1) \in \mu^{-1}(t_0)$, and we define $g: Y \to \mu^{-1}([0,t_0])$ by g(y) = K(y,1) for every $y \in Y$.

(b) $\mu(\bigcup f(Y)) \leq t_0$. Defining G as in (a), we see that f is homotopic (within $\mu^{-1}([0,t_0])$) to the constant map $y \to \bigcup f(Y)$. Since $\bigcup f(Y) \in \mu^{-1}([0,t_0])$, there exists an ordered arc ([12, Thm. 1.8]) joining $\bigcup f(Y)$ to an element $A_0 \in \mu^{-1}(t_0)$ (within $\mu^{-1}([0,t_0])$). Then we complete the proof of the lemma by defining $g(y) = A_0$ for every $y \in Y$.

We will use the following notions related to Whitney levels:

The space of Whitney levels, N(X), of X is defined by $N(X) = \{A \in C(C(X)) : \mathcal{A} \text{ is a Whitney level in } C(X)\}$. This space was introduced in [5]–[7]. In [7, Lemma 2.2] it was proved that an equivalent metric for N(X) is $\mathcal{H}^*(\mathcal{A},\mathcal{B}) = \max\{\mathcal{H}(A,B) : A \in \mathcal{A}, B \in \mathcal{B} \text{ and } A \subset B\}$. A partial order for N(X) is defined in [5] by $A \leq \mathcal{B}$ if and only if for each $B \in \mathcal{B}$, there exists $A \in \mathcal{A}$ such that $A \subset B$. If $\mathfrak{A} \subset N(X)$ is compact and γ is an ordered arc in C(X) beginning with a singleton and ending with X, then ([5]) $A_{\gamma} = \bigcap \{A \in \gamma : \text{there exists } \mathcal{A} \in \mathfrak{A} \text{ such that } A \in \mathcal{A}\} \in \gamma \cap \mathcal{B}$ for some $\mathcal{B} \in \mathfrak{A}$. Finally, in [5] it is shown that $\inf(\mathfrak{A}) = \{\mathfrak{A}_{\gamma} \in C(X) : \gamma \text{ is an ordered arc in } C(X) \text{ beginning with a singleton and ending with } X\}$ is a Whitney level which is the $\inf(\mathfrak{A})$ is in $\inf(N(X), \leq)$, of the set \mathfrak{A} .

Conventions. \mathbb{R}^n denotes the Euclidean n-dimensional space. $e: \mathbb{R} \to S^1$ denotes the exponential map defined by $e(t) = (\cos t, \sin t)$. D^2 is the unit disk in \mathbb{R}^2 . If Y is a topological space, a map $f: Y \to S^1$ can be lifted $(f \simeq 1)$ if there exists a map $g: Y \to \mathbb{R}$ such that $e \circ g = f$ (equivalently, if f is null homotopic, see [10, Lemma 5]). If $A \in C(X)$ and $\varepsilon > 0$ then $N(\varepsilon, A)$ denotes the set $\{x \in X : \text{there exists } y \in A \text{ such that } d(x, y) < \varepsilon\}$ and $B(A, \varepsilon)$ denotes the set $\{B \in C(X) : \mathcal{H}(A, B) < \varepsilon\}$. 2^X denotes the hyperspace of all closed nonempty connected subsets of X.

From now on, in this section, we will suppose that if \mathcal{A} is a positive Whitney level in C(X), then every map $f: S^i \to \mathcal{A}$ is null homotopic for i = 1, 2 (we are not supposing yet that \mathcal{A} is pathwise connected).

1.2. Theorem. X is hereditarily unicoherent.

Proof. Suppose, on the contrary, that there exist $A_1, B_1 \in C(X)$ such that $A_1 \cap B_1$ is not connected. Let $H, K \in 2^X$ be such that $H \cap K = \emptyset$ and $A_1 \cap B_1 = H \cup K$. We will construct:

- (a) A Whitney map ω for C(X),
- (b) A number $t_0 \in (0, 1]$,
- (c) Two open subsets V_1 and V_2 in $\omega^{-1}([0,t_0])$,
- (d) A map $\lambda: S^1 \to \mathcal{V}_1 \cap \mathcal{V}_2$ and
- (e) A map $h_1: \mathcal{V}_1 \cap \mathcal{V}_2 \to S^1$

such that $\omega^{-1}([0,t_0]) = \mathcal{V}_1 \cup \mathcal{V}_2$, $h_1 \circ \lambda$ is not homotopic to a constant and, for $i=1,2,\ \lambda:S^1 \to \mathcal{V}_i$ can be extended to the disk D^2 . Then, using Lemma 1.1 and a Mayer–Vietoris type sequence we will obtain a contradiction. The construction of these elements is divided into a sequence of steps.

A. There exists $A_0 \in C(X)$ such that $A_0 \subset A_1, A_0 \cap H \neq \emptyset, A_0 \cap K \neq \emptyset$ and A_0 is minimal with these properties.

To construct A_0 , choose a Whitney map μ for C(X). Let $t_1 = \min\{\mu(A) \in I : A \subset A_1, A \cap H \neq \emptyset \text{ and } A \cap K \neq \emptyset\}$. Take $A_0 \in C(X)$ such that $\mu(A_0) = t_1$.

B. Let $H_1 = A_0 \cap H$ and $K_1 = A_0 \cap K$. Then there exists $B_0 \in C(X)$ such that $B_0 \subset B_1$, $B_0 \cap H_1 \neq \emptyset$, $B_0 \cap K_1 \neq \emptyset$ and B_0 is minimal with these properties. Define $H_0 = H_1 \cap B_0$ and $K_0 = K_1 \cap B_0$. Then $A_0 \cap B_0 = H_0 \cup K_0$, $H_0 \cap K_0 = \emptyset$ and $H_0, K_0 \in 2^X$. Furthermore, if A (resp. B) is a proper subcontinuum of A_0 (resp. B_0), then $A \cap H_0 = \emptyset$ (resp. $B \cap H_0 = \emptyset$) or $A \cap K_0 = \emptyset$ (resp. $B \cap K_0 = \emptyset$).

C. Let $E = A_0 \cup B_0$. Let $S^+ = \{(x,y) \in S^1 : y \geq 0\}$ and $S^- = \{(x,y) \in S^1 : y \leq 0\}$. Since X is metric, Tietze's Theorem implies that there exists a map $f_0 : E \to S^1$ such that $H_0 = f_0^{-1}((-1,0))$, $K_0 = f_0^{-1}((1,0))$, $f_0(A_0) \subset S^+$ and $f_0(B_0) \subset S^-$. Since S^1 is an ANR (metric), there exists

an open subset U in X and a map $f:U\to S^1$ such that $E\subset U$ and $f|E=f_0$. Then the Unique Lifting Theorem implies that f|E cannot be lifted

D. If A is a proper subcontinuum of E, then $f|A \simeq 1$.

To see this, suppose, for example, that A_0 is not contained in A. Let $A_H = \bigcup\{L \in C(X) : L \text{ is a component of } A \cap A_0 \text{ and } L \cap H_0 \neq \emptyset\}$ and let $A_K = \bigcup\{L \in C(X) : L \text{ is a component of } A \cap A_0 \text{ and } L \cap H_0 = \emptyset\}$. Then A_H is closed in X. We will prove that A_K is closed. If $A \subset A_0$, then either $A_K = A$ or $A_K = \emptyset$. Suppose then that A is not contained in A_0 . If L is a component of $A \cap A_0$, then ([12, Thm. 20.2]) L intersects either H_0 or K_0 but not both of them. If $x \in \operatorname{Cl}(A_K)$ then $x = \lim x_n$ where $(x_n)_n$ is a sequence such that, for each n, $x_n \in L_n$ for some component L_n of $A_0 \cap A$ such that $L_n \cap H_0 = \emptyset$ (then $L_n \cap K_0 \neq \emptyset$). Therefore the component L of $A_0 \cap A$ which contains x intersects K_0 . Hence $L \cap H_0 = \emptyset$ and $x \in A_K$. The minimality of A_0 implies that $A_H \cap K_0 = \emptyset$. Notice that $A_H \cap A_K = \emptyset$ and $A_K \cap H_0 = \emptyset$.

Thus $A = A_H \cup A_K \cup (A \cap B_0)$. Since $A_H, A_K \subset A_0 = f^{-1}(S^+)$ and $A \cap B_0 \subset B_0 = f^{-1}(S^-)$, we find that $f|A_H, f|A_K$ and $f|(A \cap B_0)$ can be lifted. Since $A_H \cap A \cap B_0 \subset H_0 = f^{-1}((-1,0))$, $A_K \cap A \cap B_0 \subset K_0 = f^{-1}((1,0))$ and $A_H \cap A_K = \emptyset$, it follows that f|A can be lifted.

E. There exists an open subset \mathcal{V} of C(X) such that $C(E) - \{E\} \subset \mathcal{V}$ and for each $A \in \mathcal{V}$, $A \subset U$ and $f|A \simeq 1$.

Indeed, let $A \in C(E) - \{E\}$, $f|A \simeq 1$. Then ([2]) there exists an open subset U_A of U containing A such that $f|U_A \simeq 1$. Therefore there exists $\varepsilon_A > 0$ such that if $\mathcal{H}(A,B) < \varepsilon_A$, then $f|B \simeq 1$. Define $\mathcal{V} = \{B \in C(X) : \mathcal{H}(A,B) < \varepsilon_A \text{ for some } A \in C(E) - \{E\}\}$.

F. Fix a Whitney map $\nu_0: 2^X \to I$. Let $\nu = \nu_0|C(X)$. Define $t^* = \nu(E) > 0$ and define $h: C(X) \times I \times (0, t^*) \to \mathbb{R}$ by $h(A, t, s) = \min\{\nu(A)t^*/s, \nu_0(A \cup E) + t(\nu(A) - \nu(E))\}$. Then h is continuous and $h(E, t, s) = t^*$ for every $t \in I$ and $s \in (0, t^*)$. Fix $t \in (0, 1]$ and $s \in (0, t^*)$. Then the map $A \to h(A, t, s)/h(X, t, s)$ from C(X) to I is a Whitney map.

G. If $0 < s_1 < s_2 < t^*$, then there exists $r \in (0,1]$ such that if $0 < t \le r$, $A \in \nu^{-1}([s_1, s_2])$ and $h(A, t, s_1) < t^*$, then $A \in \mathcal{V}$.

Indeed, otherwise we can choose sequences $(t_n)_n \subset (0,1]$ and $(D_n)_n \subset \nu^{-1}([s_1,s_2])$ such that $t_n \to 0$ and $h(D_n,t_n,s_1) < t^*$ and $D_n \notin \mathcal{V}$ for all n. We may suppose that $D_n \to A$ for some $A \in \nu^{-1}([s_1,s_2])$. Then $A \notin \mathcal{V}$ and $\nu(A) \leq s_2 < \nu(E)$. Thus A is not contained in E and $\nu_0(A \cup E) > t^*$. Since $t_n(\nu(D_n) - \nu(E)) + \nu_0(D_n \cup E) \to \nu_0(A \cup E)$ and $\nu(D_n)t^*/s_1 \geq t^*$, we conclude that there exists $n \in \mathbb{N}$ such that $h(D_n,t_n,s_1) \geq t^*$. This contradiction completes the proof of G.

- H. Choose a sequence $(s_n)_n \subset (0,t^*)$ such that $s_n \to t^*$ and $0 < s_1 < s_2 < \dots$ Let $(t_n)_n \subset (0,1]$ be a sequence such that $t_n \to 0$, $t_1 > t_2 > \dots$ and, for each n, if $A \in \nu^{-1}([s_n, s_{n+1}])$ and $h(A, t_n, s_n) < t^*$, then $A \in \mathcal{V}$.
- I. Let $\mathcal{A} = \nu^{-1}(t^*)$. For each n, define $\mathcal{A}_n = \{A \in C(X) : h(A, t_n, s_n) = t^*\}$. Then $E \in \mathcal{A}_n$, \mathcal{A}_n is a positive Whitney level, $\nu^{-1}(s_n) \leq \mathcal{A}_n \leq \mathcal{A}$ and $\mathcal{A}_n \to \mathcal{A}$.

To see this, let $A \in \mathcal{A}_n$; then $t^* \leq \nu(A)t^*/s_n$. Thus $s_n \leq \nu(A)$. Then there exists $B \in \nu^{-1}(s_n)$ such that $B \subset A$. Hence $\nu^{-1}(s_n) \leq \mathcal{A}_n$. Now, let $A \in \mathcal{A}$. Then $h(A, t_n, s_n) = \min\{\nu_0(A \cup E), (t^*)^2/s_n\}$. Therefore $h(A, t_n, s_n) \geq t^*$, so that there exists $B \in C(X)$ such that $B \subset A$ and $h(B, t_n, s_n) = t^*$. Thus $\mathcal{A}_n \leq \mathcal{A}$.

By [7, Lemma 2.2(b)], $\mathcal{H}^*(\mathcal{A}_n, \mathcal{A}) \leq \mathcal{H}^*(\nu^{-1}(s_n), \nu^{-1}(t^*)) \to 0$. Hence $\mathcal{A}_n \to \mathcal{A}$.

- J. Define $\mathcal{B} = \inf(\{\mathcal{A}\} \cup \{\mathcal{A}_n : n \geq 1\})$. Then \mathcal{B} is a Whitney level. Thus there exists $t_0 \in I$ and a Whitney map μ for C(X) such that $\mathcal{B} = \mu^{-1}(t_0)$. Since $E \in \mathcal{A}$ and $E \in \mathcal{A}_n$ for all n, it follows that $E \in \mathcal{B}$ and $t_0 > 0$.
 - K. The set $\mathcal{W} = \nu^{-1}((s_1, t^*)) \cap \mu^{-1}([0, t_0))$ is contained in \mathcal{V} .

Indeed, let $A \in \mathcal{W}$. Then there exists N such that $A \in \nu^{-1}([s_N, s_{N+1}])$. By H, we must show that $h(A, t_N, s_N) < t^*$. Suppose, on the contrary, that $h(A, t_N, s_N) \geq t^*$. Then there exists a subcontinuum A^* of A such that $h(A^*, t_N, s_N) = t^*$. Choose a point $a \in A^*$. Let γ be an ordered arc in C(X) joining $\{a\}$ to X such that $A^*, A \in \gamma$. Let A_2 be the unique element in $\gamma \cap \mathcal{B}$. Since $\mu(A) < t_0 = \mu(A_2)$, we find that $A \subsetneq A_2$. Thus $A \subsetneq A_2 = \bigcap \{B \in C(X) : B \in \gamma \cap (\{A\} \cap \{A_n : n \in \mathbb{N}\})\} \subset A^*$. This contradiction proves that $A \in \mathcal{V}$.

L. Choose a Whitney map $\overline{\mu}: 2^X \to I$ which extends μ (see [14, Cor. 3.3]). Define $\omega: C(X) \to I$ by $\omega(A) = (\overline{\mu}(A \cup E)\overline{\mu}(A))^{1/2}$. Then ω is a Whitney map such that $\omega(E) = \mu(E) = t_0$, $\omega^{-1}(t_0) - \{E\} \subset \mu^{-1}([0, t_0))$ and $\nu^{-1}((s_1, 1]) \cap \omega^{-1}(t_0) \subset \mathcal{V} \cup \{E\}$.

To prove this, let $A \in (\nu^{-1}((s_1,1]) \cap \omega^{-1}(t_0)) - \{E\}$. By K, to show that $A \in \mathcal{V}$, it is enough to prove that $\nu(A) < t^*$. Suppose that $\nu(A) \ge t^*$. Then there exists $A^* \in \nu^{-1}(t^*)$ such that $A^* \subset A$. Since $\mathcal{B} \le \nu^{-1}(t^*)$, there exists $B \in \mathcal{B}$ such that $B \subset A^*$. Since E is not contained in A, we have $t_0 = \omega(A) \ge \omega(B) > \mu(B) = t_0$. This contradiction proves that $A \in \mathcal{V}$.

M. There exists $\varepsilon > 0$ such that $B(E, \varepsilon) \subset \nu^{-1}((s_1, 1])$ and if $\mathcal{H}(A, E) < \varepsilon$, $A \subset B$ and $B \in \omega^{-1}(t_0)$, then $B \in \mathcal{V} \cup \{E\}$.

Indeed, let $\varepsilon_1 > 0$ be such that if $\mathcal{H}(E,A) < \varepsilon_1$ then $A \in \nu^{-1}((s_1,1])$. Let $\delta > 0$ be such that $A \subset B$ and $|\omega(A) - \omega(B)| < \delta$ imply that $\mathcal{H}(A,B) < \varepsilon_1/2$ (see [12, Lemma 1.28]). Choose $r_0 \in [0,t_0)$ such that $t_0 - r_0 < \delta$. Finally, choose $\varepsilon > 0$ such that $\varepsilon < \varepsilon_1/2$ and $\mathcal{H}(A,E) < \varepsilon$ imply that

 $A \in \omega^{-1}((r_0, 1]).$

N. Define $\mathcal{V}_1 = B(E, \varepsilon) \cap \omega^{-1}([0, t_0])$ and $\mathcal{V}_2 = \omega^{-1}([0, t_0]) - \{E\}$. Then \mathcal{V}_1 and \mathcal{V}_2 are open subsets of $\omega^{-1}([0, t_0])$ such that $\omega^{-1}([0, t_0]) = \mathcal{V}_1 \cup \mathcal{V}_2$ and if $A \in \mathcal{V}_1 \cap \mathcal{V}_2$, then $f|A \simeq 1$.

O. Define $h_1: \mathcal{V}_1 \cap \mathcal{V}_2 \to S^1$ in the following way: Given $A \in \mathcal{V}_1 \cap \mathcal{V}_2$, take a map $g_A: A \to \mathbb{R}$ such that $e \circ g_A = f|A$. Define $h_1(A) = e(\min g_A(A))$. Then h_1 is well defined and continuous.

Indeed, it is easy to prove that h_1 is well defined. To prove that h_1 is continuous, take a sequence $(D_n)_n$ in $\mathcal{V}_1 \cap \mathcal{V}_2$ such that $D_n \to A \in \mathcal{V}_1 \cap \mathcal{V}_2$. Let $g_A : A \to \mathbb{R}$ be a map such that $\mathfrak{e} \circ g_A = f | A$. Let U_1 be an open subset of X such that $A \subset U_1 \subset U$ and $f | U_1 \simeq 1$. Let $g : U_1 \to \mathbb{R}$ be a map such that $\mathfrak{e} \circ g = f | U_1$. Since $D_n \to A$, there exists N such that $D_n \subset U_1$ for all $n \geq N$. Then, for all $n \geq N$, $h_1(D_n) = \mathfrak{e}(\min g(D_n)) \to \mathfrak{e}(\min g(A)) = h_1(A)$.

P. Choose $\delta > 0$ such that $A \subset B$ and $|\omega(A) - \omega(B)| < \delta$ imply that $\mathcal{H}(A,B) < \varepsilon$. Choose $s^* \in (0,t_0)$ such that $t_0 - s^* < \delta$ and $\omega(A_0), \omega(B_0) < s^*$. Choose $p_0 \in H_0$ and $q_0 \in K_0$. Finally, choose maps $\alpha_1, \alpha_2, \beta_1$ and β_2 from I to C(X) such that $\alpha_1(0) = \{p_0\} = \beta_1(0), \alpha_2(0) = \{q_0\} = \beta_2(0), \alpha_1(1) = A_0 = \alpha_2(1), \beta_1(1) = B_0 = \beta_2(1)$ and, for i = 1, 2, s < t implies that $\alpha_i(s)$ (resp. $\beta_i(s)$) is properly contained in $\alpha_i(t)$ (resp. $\beta_i(t)$) (see [12, Thm. 1.8]).

Q. Choose $r_1 \in I$ such that $\omega(B_0 \cup \alpha_2(r_1)) = s^*$. Define $\gamma : [0, 4] \to C(X)$ by

$$\gamma = \begin{cases} \alpha_2((1-t)r_1 + t) \cup \beta_2(w(t)) & \text{if } t \in [0,1], \\ \beta_2((2-t)(w(1))) \cup A_0 \cup \beta_1(x(t)) & \text{if } t \in [1,2], \\ \beta_1((3-t)(x(2)) + t - 2) \cup \alpha_1(y(t)) & \text{if } t \in [2,3], \\ \alpha_1((4-t)y(3)) \cup B_0 \cup \alpha_2(z(t)) & \text{if } t \in [3,4]. \end{cases}$$

Here $w(t), x(t), y(t), z(t) \in I$, for t in the respective intervals, are consecutively chosen in such a way that $\omega(\gamma(t)) = s^*$ for all $t \in [0, 4]$. Then γ is well defined, continuous, $\gamma(0) = \gamma(4)$ and $\gamma(t) \in \omega^{-1}(s^*) \cap C(E) \cap \mathcal{V}_1 \cap \mathcal{V}_2$ for every $t \in [0, 4]$.

R. Define $\lambda: S^1 \to \omega^{-1}(s^*) \cap \mathcal{V}_1 \cap \mathcal{V}_2$ by $\lambda(\cos t, \sin t) = \gamma(2(t+\pi)/\pi)$ if $t \in [-\pi, \pi]$. Then λ is well defined, continuous and $h_1 \circ \lambda$ is not homotopic to a constant.

To see that $h_1 \circ \lambda$ cannot be lifted, we first show that, for each $z \in S^-$, there exists a map $g_z : \lambda(z) \to [-\pi, 2\pi)$ such that $\mathfrak{e} \circ g_z = f|\lambda(z)$ and $0 \in \operatorname{Im} g_z$. Set $z = (\cos t, \sin t)$ with $t \in [-\pi, 0]$. If $t \in [-\pi, -\pi/2]$, then $s = 2(t+\pi)/\pi \in [0,1]$ and $\lambda(z) = \gamma(s) = \alpha_2((1-s)r_1+s) \cup \beta_2(w(s))$. If $\beta_2(w(s)) = B_0$, then $\alpha_2((1-s)r_1+s)$ is a proper subset of A_0 since $s^* < t_0$. The minimality of A_0 implies that $\alpha_2((1-s)r_1+s) \cap H_0 = \emptyset$. Thus $f(\alpha_2((1-s)r_1+s))$ is a compact subset of $S^+ - \{(-1,0)\}$ and, since

 $f(\beta_2(w(s)))$ is contained in S^- , there exists a map $g_z: \lambda(z) \to [-\pi, \pi)$ such that $f|\lambda(z) = \mathbf{e} \circ g_z$. Since $(1,0) = f(q_0) \in f(\lambda(z))$, we have $0 \in \text{Im } g_z$. If $\beta_2(w(s))$ is a proper subset of B_0 , the minimality of B_0 implies that $\beta_2(w(s)) \cap H_0 = \emptyset$, so that $f(\beta_2(w(s)))$ is a compact subset of $S^- - \{(-1,0)\}$. Thus there exists a map $g_z: \lambda(z) \to (-\pi, \pi]$ such that $\mathbf{e} \circ g_z = f|\lambda(z)$. In the case that $t \in [-\pi/2, 0]$, similar considerations lead to the existence of g_z .

Similarly, for each $z \in S^+$, there exists a map $g_z : \lambda(z) \to [0, 3\pi)$ such that $e \circ g_z = f | \lambda(z)$ and $\pi \in \text{Im } g_z$.

If $z \in S^-$, then $h_1(\lambda(z)) = e(\min g_z(\lambda(z))) \in e([-\pi, 0]) = S^-$, so $h_1(\lambda(z)) \in S^-$ for each $z \in S^-$. Since $\lambda((-1, 0)) = \gamma(0) = \alpha_2(r_1) \cup \beta_2(w(0)) = \alpha_2(r_1) \cup B_0$ and $f(p_0) = (-1, 0)$, it follows that $-\pi$ is in the image of the map $g_{(-1,0)} : \lambda((-1,0)) \to [-\pi,\pi)$. Then $h_1(\lambda((-1,0))) = e(-\pi) = (-1,0)$. Similarly $h_1(\lambda((1,0))) = (1,0)$.

Thus $h_1 \circ \lambda$ is a map from S^1 to S^1 sending S^+ into S^+, S^- into $S^-, (-1,0)$ into (-1,0) and (1,0) into (1,0). This implies that $h_1 \circ \lambda$ cannot be lifted.

S. $\lambda: S^1 \to \mathcal{V}_1$ can be extended to a map $\overline{\lambda}: D^2 \to \mathcal{V}_1$.

To see this, let $F: S^1 \times I \to C(S^1)$ (= D^2) be a map such that, for each $x \in S^1$, $F(x,0) = \{x\}$, $F(x,1) = S^1$ and $s \leq t$ implies that $F(x,s) \subset F(x,t)$. Define $\overline{\lambda}: S^1 \times I \to C(X)$ by $\overline{\lambda}(x,s) = \bigcup \{\lambda(z) \in C(X): z \in F(x,s)\}$. Then $\overline{\lambda}$ is continuous, $\overline{\lambda}(x,0) = \lambda(x)$ and $\overline{\lambda}(x,1) = \bigcup \{\lambda(z) \in C(X): z \in S^1\} = E$ for all $x \in S^1$. Identifying D^2 with $(S^1 \times I)/(S^1 \times \{1\})$, we deduce that $\overline{\lambda}$ is an extension of λ to D^2 . If $x \in S^1$ and $s \in I$, $\lambda(x) = \overline{\lambda}(x,0) \subset \overline{\lambda}(x,s) \subset E$, then $\mathcal{H}(\overline{\lambda}(x,s),E) \leq \mathcal{H}(\lambda(x),E) < \varepsilon$ and so $\overline{\lambda}(x,s) \in \omega^{-1}([0,t_0])$. Thus $\overline{\lambda}(x,s) \in \mathcal{V}_1$ for every $x \in S^1$ and $s \in I$.

T. $\lambda: S^1 \to \mathcal{V}_2$ can be extended to a map $\lambda': D^2 \to \mathcal{V}_2$.

This follows from the fact that $\operatorname{Im} \lambda \subset \omega^{-1}(s^*) \subset \mathcal{V}_2$ and every map from S^1 into $\omega^{-1}(t_1)$ is homotopic to a constant.

This completes the construction of $\omega, t_0, \mathcal{V}_1, \mathcal{V}_2, \lambda$ and h_1 . Now we consider the Mayer–Vietoris sequences for the triads $(V_1 \cup V_2, V_1, V_2)$ and (S^2, S^2_+, S^2_-) where $S^2_+ = \{(x, y, z) \in S^2 : z \geq 0\}$ and $S^2_- = \{(x, y, z) \in S^2 : z \leq 0\}$. Consider the diagram

$$0 = H_2(S_+^2) \oplus H_2(S_-^2) \longrightarrow H_2(S^2) \xrightarrow{\partial_0} H_1(S^1) \longrightarrow 0$$

$$\downarrow^{\Lambda_*} \qquad \qquad \downarrow^{\lambda_*}$$

$$H_2(V_1) \oplus H_2(V_2) \longrightarrow H_2(\mathcal{V}_1 \cup \mathcal{V}_2) \xrightarrow{\partial} H_1(\mathcal{V}_1 \cap \mathcal{V}_2)$$

where $\Lambda: S^2 \to \mathcal{V}_1 \cup \mathcal{V}_2 = \omega^{-1}([0, t_0])$ is defined in such a way that $\Lambda | S^1 = \lambda, \Lambda | S^2_+ = \overline{\lambda}$ and $\Lambda | S^2_- = \lambda'$.

By Lemma 1.1, Λ is homotopic to a map $\Lambda_0: S^2 \to \omega^{-1}([0,t_0])$ such that $\operatorname{Im} \Lambda_0 \subset \omega^{-1}(t_0)$. Since $\omega^{-1}(t_0)$ is a positive Whitney level, Λ_0 is homotopic to a constant. Therefore Λ_* is the zero homomorphism. This implies that so is λ_* , and hence also the composition $h_{1*} \circ \lambda_* = (h_1 \circ \lambda)_*$. This is a contradiction since $h_1 \circ \lambda: S^1 \to S^1$ is not homotopic to a constant. Therefore X is hereditarily unicoherent.

Remark. If Y is a hereditarily indecomposable continuum then every Whitney level \mathcal{A} in C(Y) is hereditarily indecomposable (see [12, Thm. 14.1]); thus every map from S^n into \mathcal{A} is constant for each $n \in \mathbb{N}$. Therefore it is not enough to suppose that the maps from n-spheres $(n \geq 1)$ into positive Whitney levels in C(X) are null homotopic to conclude that X is a dendroid. On the other hand [11, Example 3], it is not enough to suppose that every positive Whitney level \mathcal{A} in C(Z) is pathwise connected to conclude that Z is pathwise connected. However, as shown below, it suffices to add the assumption that Z is hereditarily unicoherent.

1.3. Lemma. Suppose that Z is a hereditarily unicoherent continuum with the following property: If $p, q \in Z$ and $\varepsilon > 0$, then there exist $n \in \mathbb{N}$ and $A_1, \ldots, A_n \in C(Z)$ such that $p \in A_1, q \in A_n, A_1 \cap A_2 \neq \emptyset, \ldots, A_{n-1} \cap A_n \neq \emptyset$ and diam $(A_i) < \varepsilon$ for each i. Then Z is pathwise connected.

Proof. Let p and q be two different points in Z and let $A = \bigcap \{B \in C(Z) : p, q \in B\}$. Since Z is hereditarily unicoherent, we have $A \in C(Z)$. We will prove that A is connected im kleinen at each point. Let $a \in A$ and let $\varepsilon > 0$. Take $A_1, \ldots, A_n \in C(Z)$ such that $p \in A_1, q \in A_n, A_1 \cap A_2 \neq \emptyset, \ldots, A_{n-1} \cap A_n \neq \emptyset$ and diam $(A_i) < \varepsilon$ for each i. Let $D = \bigcup \{A_i : a \in A_i\}$ and let $W = A - \bigcup \{A_i : a \notin A_i\}$. Then $D \in C(Z), A \subset A_1 \cup \ldots \cup A_n, W$ is an open subset of A and $a \in W \subset D \subset B(\{a\}, \varepsilon)$. Hence A is connected A is a locally connected continuum. Thus A is pathwise connected (in fact, this implies that A is an arc). Hence A is pathwise connected.

1.4. Theorem. If Z is hereditarily unicoherent and all its positive Whitney levels are pathwise connected, then Z is pathwise connected.

Proof. Let $p,q\in Z$ and let $\varepsilon>0$. Fix a Whitney map μ for C(Z). Let $0<\delta<1$ be such that if $A,B\in C(Z)$, $|\mu(A)-\mu(B)|<\delta$ and $A\subset B$, then $\mathcal{H}(A,B)<\varepsilon$. Let $0< t\le \delta/2$. Choose $A,B\in \mu^{-1}(t)$ such that $p\in A$ and $q\in B$. Let $\alpha:I\to \mu^{-1}(t)$ be a map such that $\alpha(0)=A$ and $\alpha(1)=B$. Let $\lambda>0$ be such that $|t-s|<\lambda$ implies that $\mathcal{H}(\alpha(t),\alpha(s))<\varepsilon/3$. Let $0=t_0< t_1<\ldots< t_n=1$ be a partition of I such that $t_i-t_{i-1}<\delta$ for all $i\ge 1$. For $i\ge 1$, define $A_i=\bigcup\{\alpha(t):t_{i-1}\le t\le t_i\}$. Then $A_1,\ldots,A_n\in C(Z)$, $\operatorname{diam}(A_i)<\varepsilon$ for all $i,p\in A_1,q\in A_n$ and $A_1\cap A_2\ne\emptyset,\ldots,A_{n-1}\cap A_n\ne\emptyset$. Therefore Z is pathwise connected.

- 1.5. Theorem. If each positive Whitney level in C(X) is 2-connected, then X is a dendroid.
- 1.6. COROLLARY. If every positive Whitney level in C(X) is contractibile, then X is a dendroid.
- 2. If X is a dendroid then every positive Whitney level in C(X) is ∞ -connected. In [12, Thm. 14.8], it was shown that if X is pathwise connected then every Whitney level for C(X) is also pathwise connected. So we concentrate our attention on the null homotopy of maps from n-spheres $(n \ge 1)$ into positive Whitney levels.

Throughout this section we will suppose that X is a dendroid. Fix a Whitney map μ , a number $t_0 \in (0,1]$ and an integer $N \in \mathbb{N}$. We will show that every map $G: S^N \to \mu^{-1}(t_0)$ is null homotopic. To do this, we will need to define a strong form of convergence in C(X).

2.1. DEFINITION. Given $x \neq y \in X$, the unique arc joining x and y in X will be denoted by \overline{xy} . The set $\{x\}$ will be denoted by \overline{xx} . Define $L: C(X) \times X \to C(X)$ by $L(A,x) = \overline{ax}$ where a is the unique element in A such that $\overline{ax} \cap A = \{a\}$. Given a sequence $(A_n)_n$ in C(X) and an element $A \in C(X)$, we say that $(A_n)_n$ strongly converges to $A(A_n \xrightarrow{s} A)$ if $A_n \to A$ and $L(A_n,a) \to \{a\}$ for each $a \in A$.

The following lemma is easy to prove.

- 2.2. LEMMA. (a) If $A_n \stackrel{\text{s}}{\to} A$, $B_n \stackrel{\text{s}}{\to} B$ and $A_n \cap B_n \neq \emptyset$ for each n, then $A_n \cup B_n \stackrel{\text{s}}{\to} A \cup B$.
- (b) Let $(A_n)_n \subset C(X)$ and $A \in C(X)$ be such that, for each infinite subset S of $\mathbb N$, there exists a subsequence $(A_{n_k})_k$ such that $n_k \in S$ for every k and $A_{n_k} \stackrel{\mathrm{s}}{\to} A$. Then $A_n \stackrel{\mathrm{s}}{\to} A$.

Define $J:C(X)\times C(X)\to C(X)$ by

$$J(A,B) = \begin{cases} A \cap B & \text{if } A \cap B \neq \emptyset, \\ \{b\} & \text{if } A \cap B = \emptyset, \end{cases}$$

where b is the unique point in B such that $\overline{ab} \cap B = \{b\}$ for each $a \in A$.

2.3. LEMMA. If $A_n \stackrel{s}{\to} A$ and $B_n \stackrel{s}{\to} B$, then $J(A_n, B_n) \stackrel{s}{\to} J(A, B)$.

Proof. Case 1: $A \cap B = \emptyset$. Then there exists M such that $A_n \cap B_n = \emptyset$ for all $n \geq M$. Let $\{a\} = J(B,A)$ and $\{b\} = J(A,B)$. For each $n \geq M$, let $\{a_n\} = J(B_n,A_n)$, $\{b_n\} = J(A_n,B_n)$ and let $c_n \in A_n$ and $d_n \in B_n$ be such that $\overline{ac_n} = L(A_n,a)$ and $\overline{bd_n} = L(B_n,b)$. Since the set $\overline{c_na} \cup \overline{ab} \cup \overline{bd_n}$ is connected and intersects A_n and B_n , it contains $\overline{a_nb_n}$. In particular, $b_n \in \overline{c_na} \cup \overline{ab} \cup \overline{bd_n} \to \overline{ab}$. Thus the limit points of the sequence $(b_n)_n$ are in $\overline{ab} \cap B = \{b\}$. Therefore $b_n \to b$. Hence $J(A_n, B_n) \to J(A, B)$.

Since $\overline{c_n a} \to \{a\}$, there exists $M_1 \geq M$ such that $b_n \notin \overline{c_n a}$ for every $n \geq M_1$. Thus $b_n \in \overline{ab} \cup \overline{bd_n}$ for all $n \geq M_1$. It follows that $\overline{b_n b} \to \{b\}$. So $L(J(A_n, B_n), b) \to \{b\}$. Thus $J(A_n, B_n) \xrightarrow{s} J(A, B)$.

Case 2: $A \cap B \neq \emptyset$. First we will prove that $\limsup J(A_n, B_n) \subset J(A, B)$. Let $x \in \limsup J(A_n, B_n)$. Then there exists a subsequence $(n_k)_k$ of $(n)_n$ and, for each k, there exists $x_k \in J(A_{n_k}, B_{n_k})$ such that $x_k \to x$. If $A_{n_k} \cap B_{n_k} \neq \emptyset$ for an infinite number of k's, then $x \in A \cap B = J(A, B)$ (in this case). Thus we may suppose that $A_{n_k} \cap B_{n_k} = \emptyset$ for every k.

If there exist $z,y\in A\cap B$ such that $z\neq y$, choose $p\in \overline{zy}-\{z,y\}$. For each $k\in\mathbb{N}$, let $a_k,c_k\in A_{n_k}$ be such that $L(A_{n_k},z)=\overline{a_kz}$ and $L(A_{n_k},y)=\overline{c_ky}$. Since $\overline{a_kz}\to\{z\}$ and $\overline{c_ky}\to\{y\}$, there exists $K\in\mathbb{N}$ such that, for all $k\geq K$, $\overline{a_kz}\cap\overline{c_ky}=\emptyset$, $\overline{a_kz}\cap\overline{py}=\emptyset$ and $\overline{pz}\cap\overline{c_ky}=\emptyset$. Given $k\geq K$, $\overline{a_kc_k}\subset A_{n_k}\cap(\overline{a_kz}\cup\overline{zp}\cup\overline{py}\cup\overline{yc_k})$ and $(\overline{a_kz}\cup\overline{zp})\cap(\overline{py}\cap\overline{yc_k})=\{p\}$. Therefore $p\in\overline{a_kc_k}$. Hence $p\in A_{n_k}$ for all $k\geq K$. Similarly, there exists K_1 such that $p\in B_{n_k}$ for all $k\geq K_1$. This contradicts our assumption. Therefore $A\cap B$ consists of a single point a_0 .

For each $k \in \mathbb{N}$, let $a_k \in A_{n_k}$ and $b_k \in B_{n_k}$ be such that $\overline{a_k b_k} \cap A_{n_k} = \{a_k\}$ and $\overline{a_k b_k} \cap B_{n_k} = \{b_k\}$. Then $\{b_k\} = J(A_{n_k}, B_{n_k})$. So $x_k = b_k$. Suppose that $L(A_{n_k}, a_0) = \overline{c_k a_0}$ and $L(B_{n_k}, a_0) = \overline{d_k a_0}$ with $c_k \in A_{n_k}$ and $d_k \in B_{n_k}$. Then $x_k \in \overline{a_k b_k} \subset \overline{c_k a_0} \cup a_0 d_k \to \{a_0\}$. Therefore $x = a_0 \in A \cap B = J(A, B)$. Hence $\limsup J(A_n, B_n) \subset J(A, B)$.

Now take a point $x \in J(A,B) = A \cap B$. For each \underline{n} , let $a_n \in A_n$ and $b_n \in \underline{B_n}$ be such that $L(A_n,\underline{x}) = \overline{a_nx}$ and $L(B_n,x) = \overline{b_nx}$. If $A_n \cap B_n \neq \emptyset$, then $\overline{a_nb_n} \subset A_n \cup B_n$. Thus $\overline{a_nb_n} \cap A_n \cap B_n \neq \emptyset$. Hence $(\overline{a_nx} \cup x\overline{b_n}) \cap A_n \cap B_n \neq \emptyset$. This implies that $L(A_n \cap B_n,\underline{x}) \subset \overline{a_nx} \cup x\overline{b_n}$. If $A_n \cap B_n = \emptyset$, let $\{d_n\} = J(A_n,B_n)$. Then $d_n \in \overline{a_nx} \cup x\overline{b_n}$ and $L(J(A_n,B_n),x) \subset \overline{a_nx} \cup x\overline{b_n}$. Therefore $L(J(A_n,B_n),x) \subset \overline{a_nx} \cup x\overline{b_n}$ for all n. Since $\overline{a_nx} \cup x\overline{b_n} \to \{x\}$, we have $L(J(A_n,B_n),x) \to \{x\}$. Thus $x \in \liminf J(A_n,B_n)$ and we conclude that $J(A_n,B_n) \stackrel{s}{\to} J(A,B)$.

In order to give a "uniform" parametrization of the arcs in X, we define, for $a,b\in X$, the function $\gamma(a,b):I\to \overline{ab}$ by $\gamma(a,b)(t)=x$ if $\mu(\overline{ax})=t\mu(\overline{ab})$ and $x\in \overline{ab}$. Then we have:

- 2.4. Lemma. For each $a, b \in X$, $\gamma(a, b)$ is a map, $\gamma(a, b)(0) = a$, $\gamma(a, b)(1) = b$ and, if $a \neq b$, then $\gamma(a, b)$ is injective.
- $\frac{2.5. \text{ LEMMA. } \textit{If } \{a_n\}}{\gamma(a_n,b_n)(r_n)\gamma(a_n,b_n)(t_n)} \xrightarrow{s} \{a\}, \ \{b_n\} \xrightarrow{s} \{b\}, \ r_n \rightarrow r \ \textit{and} \ t_n \rightarrow t, \ \textit{then} \\ \frac{\gamma(a_n,b_n)(r_n)\gamma(a_n,b_n)(t_n)}{\gamma(a,b)(r)\gamma(a,b)(t)} \ \textit{and} \ \{\gamma(a_n,b_n)(r_n)\} \xrightarrow{s} \{\gamma(a,b)(r)\}.$

Proof. Let $\gamma_n = \gamma(\underline{a_n}, b_n)$ and $\gamma = \gamma(\underline{a}, b)$. Since $\overline{a_n b_n} \subset \overline{a_n a} \cup \overline{ab} \cup \overline{bb_n}$ and $\overline{ab} \subset \overline{aa_n} \cup \overline{a_n b_n} \cup \overline{b_n b}$, we have $\overline{a_n b_n} \to \overline{ab}$. First, we will show that $\{\gamma_n(r_n)\} \stackrel{s}{\to} \{\gamma(r)\}$.

If r = 0 or a = b, then $\overline{a_n \gamma_n(r_n)} \to a$, since $\mu(\overline{a_n \gamma_n(r_n)}) = r_n \mu(\overline{a_n b_n}) \to 0$ and $a_n \to a$. Since $L(\{\gamma_n(r_n)\}, \gamma(r)) = \overline{a\gamma_n(r_n)} \subset \overline{aa_n} \cup \overline{a_n\gamma_n(r_n)} \to \{a\}$, we have $\{\gamma_n(r_n)\} \stackrel{\text{s}}{\to} \{\gamma(r)\}$.

If r = 1 and $a \neq b$, then for $p \in \overline{ab} - \{a, b\}$, $\overline{a_n \gamma_n(r_n)} \subset \overline{a_n a} \cup \overline{ap} \cup \overline{pb} \cup \overline{bb_n}$. Since $\mu(\overline{a_n a} \cup \overline{ap}) \to \mu(\overline{ap}) < \mu(\overline{ab})$ and $\mu(\overline{a_n \gamma_n(r_n)}) = r_n \mu(\overline{a_n b_n}) \to \mu(\overline{ab})$, there exists M such that $\gamma_n(r_n) \notin \overline{a_n a} \cup \overline{ap}$ for all $n \geq M$. Thus $\gamma_n(r_n) \in \overline{pb} \cup \overline{pb_n}$ for all $n \geq M$. This implies that $\{\gamma_n(r_n)\} \xrightarrow{s} \{\gamma(r)\}$.

If 0 < r < 1 and $a \ne b$, then for $p \in \overline{a\gamma(r)} - \{\gamma(r)\}$ and $q \in \overline{\gamma(r)b} - \{\gamma(r)\}$, $\overline{a_n\gamma_n(r_n)} \subset \overline{a_na} \cup \overline{ap} \cup \overline{pq} \cup \overline{qb} \cup \overline{bb_n}$. Proceeding as above, there exists M such that $\gamma_n(r_n) \not\in \overline{a_na} \cup \overline{ap}$ for all $n \ge M$. If there exists a subsequence $(\gamma_{n_k}(r_{n_k}))_k$ of $(\gamma_n(r_n))_n$ such that $\gamma_{n_k}(r_{n_k}) \in \overline{qb} \cup \overline{bb_{n_k}}$, we may suppose that $\gamma_{n_k}(r_{n_k}) \to x$ for some $x \in \overline{qb}$ and $\overline{a_{n_k}\gamma_{n_k}(r_{n_k})} \to A$ for some $A \in C(X)$. Then $a, x \in A$, $\mu(\overline{a_{n_k}\gamma_{n_k}(r_{n_k})}) \to r\mu(\overline{ab}) = \mu(\overline{a\gamma(r)}) < \mu(\overline{aq}) \le \mu(\overline{ax}) \le \mu(A) = \lim \mu(\overline{a_{n_k}\gamma_{n_k}(r_{n_k})})$. This contradiction proves that there exists $M \in \mathbb{N}$ such that $\gamma_n(r_n) \in \overline{pq}$ for all $n \ge M$. It follows that $\{\gamma_n(r_n)\} \xrightarrow{s} \{\gamma(r)\}$.

Now we will prove that $\overline{\gamma_n(r_n)\gamma_n(t_n)} \stackrel{\text{s}}{\to} \overline{\gamma(r)\gamma(t)}$. Notice that $\overline{\gamma_n(r_n)\gamma_n(t_n)} \to \overline{\gamma(r)\gamma(t)}$. Since $p = \gamma(s) \in \overline{\gamma(r)\gamma(t)}$, there exists a sequence $(s_n)_n \subset I$ such that $s_n \to s$ and s_n is between r_n and t_n . Then $\gamma(s_n) \stackrel{\text{s}}{\to} \gamma(s)$. Since $L(\gamma_n(r_n)\gamma_n(t_n), \gamma(s)) \subset \overline{\gamma_n(s_n)\gamma_n(s)} \to {\gamma(s)}$, we obtain $\overline{\gamma_n(r_n)\gamma_n(t_n)} \stackrel{\text{s}}{\to} \overline{\gamma(r)\gamma(t)}$.

Define $\mathfrak{A} = \{(A,B) \in C(X) \times C(X) : A \subset B\}$ and $F : \mathfrak{A} \times I \to C(X)$ by $F(A,B,t) = \bigcup \{\overline{ax} \in C(X) : a \in A, x \in B \text{ and } \mu(\overline{ax}) \leq t\}.$

- 2.6. Lemma. (a) F is well defined.
- (b) $F|\{(A,B)\} \times I$ is continuous for every $(A,B) \in \mathfrak{A}$.
- (c) F(A, B, 0) = A and F(A, B, 1) = B.
- (d) If $s \leq t$, then $F(A, B, s) \subset F(A, B, t)$.

Proof. We only prove (b). Let $(A, B) \in \mathfrak{A}$ and let $\varepsilon > 0$. Let $\delta > 0$ be such that if $A_1 \subset B_1$ and $|\mu(A_1) - \mu(B_1)| < \delta$, then $\mathcal{H}(A_1, B_1) < \varepsilon$. It is easy to check that if $|s - t| < \delta$, then $\mathcal{H}(F(A, B, t), F(A, B, s)) < \varepsilon$. Thus $F|\{(A, B)\} \times I$ is continuous.

2.7. LEMMA. If $A_n \xrightarrow{s} A$, $B_n \xrightarrow{s} B$ and $t_n \to t$ with $(A_n, B_n) \in \mathfrak{A}$ for each n, then $F(A_n, B_n, t_n) \xrightarrow{s} F(A, B, t)$.

Proof. Take $x \in \limsup F(A_n, B_n, t_n)$. Then $x = \lim x_k$ where $x_k \in F(A_{n_k}, B_{n_k}, t_{n_k})$ and $(n_k)_k$ is a subsequence of $(n)_n$. For each k, there exists $a_k \in A_{n_k}$ and $b_k \in B_{n_k}$ such that $x_k \in \overline{a_k b_k}$ and $\mu(\overline{a_k b_k}) \leq t_{n_k}$. We may suppose that $a_k \to a$ for some $a \in A$ and $\overline{a_k b_k} \to C$ for some $C \in C(X)$. Then $\overline{ax} \subset C \subset B$ and $\mu(\overline{ax}) \leq \mu(C) \leq t$. Hence $x \in F(A, B, t)$. Therefore $\limsup F(A_n, B_n, t_n) \subset F(A, B, t)$.

Now take $x \in F(A, B, t)$. Then $x \in B$ and there exists $a \in A$ such that $\mu(\overline{ax}) \leq t$. Let $s = \mu(\overline{ax})$. Then there exists a sequence $(s_n)_n$ with $0 \leq s_n \leq t_n$ for all n and $s_n \to s$. For each $n \in \mathbb{N}$, let $a_n \in A_n$ and $x_n \in B_n$ be such that $L(A_n, a) = \overline{a_n a}$ and $L(B_n, x) = \overline{x_n x}$. Let $y_n \in F(A_n, B_n, t_n)$ be such that $L(F(A_n, B_n, t_n), x) = \overline{y_n x}$. If $\mu(\overline{a_n x_n}) \leq s_n$, define $z_n = x_n$. If $\mu(\overline{a_n x_n}) \geq s_n$, let z_n be the unique element in $\overline{a_n x_n}$ such that $\mu(\overline{a_n z_n}) = s_n$. Then $z_n \in F(A_n, B_n, t_n)$.

If x=a, then $L(F(A_n,B_n,t_n),x)=\overline{y_na}\subset \overline{a_na}\to \{a\}$. Therefore $L(F(A_n,B_n,t_n),x)\to \{x\}$. Now suppose that $x\neq a$. Given $p\in \overline{ax}-\{a,x\}$, $z_n\in \overline{a_nx_n}\subset \overline{a_na}\cup \overline{ap}\cup \overline{px}\cup \overline{xx_n}$. Since $\mu(\overline{a_na}\cup \overline{ap})\to \mu(\overline{ap})< s$, there exists M such that $z_n\in \overline{px}\cup \overline{xx_n}$ for all $n\geq M$. This implies that $\overline{z_nx}\to \{x\}$. Since $\overline{y_nx}\subset \overline{z_nx}$, we have $L(F(A_n,B_n,t_n),x)\to \{z\}$. It follows that $F(A_n,B_n,t_n)\overset{\mathrm{s}}{\to} F(A,B,t)$.

Now we "uniformize" the map F. Define $G: \mathfrak{A} \times I \to C(X)$ by G(A,B,t)=F(A,B,s) where s is chosen in such a way that $\mu(G(A,B,t))=\mu(A)+t(\mu(B)-\mu(A))$.

- 2.8. Lemma. (a) G(A, B, 0) = A and G(A, B, 1) = B.
- (b) If $s \leq t$, then $G(A, B, s) \subset G(A, B, t)$.
- (c) If $A_n \xrightarrow{s} A$, $B_n \xrightarrow{s} B$ and $t_n \to t$ with $(A_n, B_n) \in \mathfrak{A}$ for each n, then $G(A_n, B_n, t_n) \xrightarrow{s} G(A, B, t)$.
 - (d) $G|\{(A,B)\} \times I$ is continuous for every $(A,B) \in \mathfrak{A}$.

Proof. We only prove (c). We will use Lemma 2.2(b). Let S be an infinite subset of \mathbb{N} . For each $n \in S$, let $G(A_n, B_n, t_n) = F(A_n, B_n, s_n)$ with $s_n \in I$. Let G(A, B, t) = F(A, B, s). Take a subsequence $(n_k)_k$ of $(n)_n$ such that $n_k \in S$ for all k and $s_{n_k} \to s^*$ for some $s^* \in I$. Then $G(A_{n_k}, B_{n_k}, t_{n_k}) \stackrel{\text{s}}{\to} F(A, B, s^*)$. This yields $\mu(F(A, B, s^*)) = \lim(\mu(A_{n_k}) + t_{n_k}(\mu(B_{n_k}) - \mu(A_{n_k}))) = \mu(G(A, B, t)) = \mu(F(A, B, s))$. It follows that $F(A, B, s^*) = F(A, B, s)$. Hence $G(A_{n_k}, B_{n_k}, t_{n_k}) \stackrel{\text{s}}{\to} G(A, B, t)$. Therefore $G(A_n, B_n, t_n) \stackrel{\text{s}}{\to} G(A, B, t)$.

Now we define "standard" arcs joining elements in $\mu^{-1}(t_0)$. Define α : $\mu^{-1}(t_0) \times \mu^{-1}(t_0) \times I \to \mu^{-1}(t_0)$ in the following way:

A. If $A \cap B = \emptyset$, let $\{a\} = J(B, A)$, $\{b\} = J(A, B)$ and $\gamma = \gamma(a, b)$.

A.1. If $\mu(\overline{ab}) \leq t_0$, let s_0 be the unique number in I such that $\mu(\overline{ab} \cup G(\{a\}, A, s_0)) = t_0$ then define

$$\alpha(A,B,t) = \begin{cases} \overline{a\gamma(3t)} \cup G(\{a\},A,s) & \text{if } 0 \le t \le 1/3, \\ \underline{G(\{a\},A,(2-3t)s_0) \cup \overline{ab}} \cup G(\{b\},B,s) & \text{if } 1/3 \le t \le 2/3, \\ \overline{\gamma(3t-2)b} \cup G(\{b\},B,s) & \text{if } 2/3 \le t \le 1. \end{cases}$$

In the three cases the element $s \in I$ is chosen in such a way that $\mu(\alpha(A, B, t)) = t_0$.

A.2. If $\mu(\overline{ab}) \geq t_0$, let s_0 and r_0 be the unique elements in I such that $\mu(\overline{a\gamma(s_0)}) = t_0 = \mu(\overline{\gamma(r_0)b})$. Then define

$$\alpha(A,B,t) = \begin{cases} \overline{a\gamma(3ts_0)} \cup G(\{a\},A,s) & \text{if } 0 \le t \le 1/3, \\ \overline{\gamma(s)\gamma((2-3t)s_0+3t-1)} & \text{where } s \in [0,(2-3t)s_0+3t-1] & \text{if } 1/3 \le t \le 2/3, \\ \overline{\gamma(3t-2+(3-3t)r_0)b} \cup G(\{b\},B,s) & \text{if } 2/3 \le t \le 1, \end{cases}$$

with s chosen as above.

B. If $A \cap B \neq \emptyset$, define

$$\alpha(A,B,t) = \begin{cases} A & \text{if } 0 \leq t \leq 1/3, \\ G(A\cap B,A,2-3t) \cup G(A\cap B,B,s) & \text{if } 1/3 \leq t \leq 2/3, \\ B & \text{if } 2/3 \leq t \leq 1, \end{cases}$$

with s chosen in the same way.

It is easy to check that α is well defined, $\alpha(A, B, 0) = A$ and $\alpha(A, B, 1) = B$ for all $(A, B) \in \mu^{-1}(t_0) \times \mu^{-1}(t_0)$ and if $A, B \subset A_0 \in C(X)$, then $\alpha(A, B, t) \subset A_0$ for each $t \in I$.

2.9. LEMMA. If $A_n \stackrel{s}{\to} A$, $B_n \stackrel{s}{\to} B$ and $t_n \to t$, then $\alpha(A_n, B_n, t_n) \stackrel{s}{\to} \alpha(A, B, t)$ $(A_n, B_n, A \text{ and } B \text{ in } \mu^{-1}(t_0))$.

Proof. We will use Lemma 2.2(b). Let S be an infinite subset of \mathbb{N} . We need to analyze several cases.

- 1. $A \cap B \neq \emptyset$.
- 1.1. $A_{n_k} \cap B_{n_k} = \emptyset$ for infinitely many elements $n_1 < n_2 < \dots$ in S. For each k, let $\{a_{n_k}\} = J(B_{n_k}, A_{n_k})$ and $\{b_{n_k}\} = J(A_{n_k}, B_{n_k})$. Since $\{b_{n_k}\} = J(A_{n_k}, B_{n_k}) \xrightarrow{s} J(A, B) = A \cap B$, $A \cap B$ consists of a single point a_0 . Then $\{a_{n_k}\} = J(B_{n_k}, A_{n_k}) \xrightarrow{s} \{a_0\}$. For each k, let $\gamma_k = \gamma(a_{n_k}, b_{n_k})$. It follows that, for all sequences $(r_k)_k$ and $(m_k)_k$ in I, $\overline{\gamma_k(r_k)\gamma_k(m_k)} \xrightarrow{s} \{a_0\}$.
- 1.1.1. $t_0 = 0$. Then $\mu(\overline{a_{n_k}b_{n_k}}) \ge t_0$, so $\alpha(A_{n_k}, B_{n_k}, t_{n_k})$ is equal to either $\{a_{n_k}\}$, a point in $\overline{\gamma_k(0)\gamma_k(1)} = \overline{a_{n_k}b_{n_k}}$ or $\{b_{n_k}\}$. Thus $\alpha(A_{n_k}, B_{n_k}, t_{n_k}) \xrightarrow{s} \{a_0\} = A = B = \alpha(A, B, t)$.
- 1.1.2. $t_0 > 0$. We may suppose that $\mu(\overline{a_{n_k}b_{n_k}}) < t_0$ for every k. For each k, let $s_0^k \in I$ be such that $\mu(\overline{a_{n_k}b_{n_k}} \cup G(\{a_{n_k}\}, A_{n_k}, s_0^k)) = t_0$ and let s_k be the number chosen so that $\mu(\alpha(A_{n_k}, B_{n_k}, t_{n_k})) = t_0$. We may suppose that $s_k \to s^*$ for some $s^* \in I$ and $s_0^k \to s'$ for some $s' \in I$. Then $\overline{a_0a_0} \cup G(\{a_0\}, A, s^*)$ is an element of $\mu^{-1}(t_0)$ which is contained in A. This implies that $G(\{a_0\}, A, s^*) = A$. But $\mu(G(\{a_0\}, A, s^*)) = \mu(\{a_0\}) + s^*(\mu(A) \mu(\{a_0\}))$, and so $s^* = 1$. We may suppose that one of the following three cases holds:

- 1.1.2.1. $t_{n_k} \in [0, 1/3]$ for every k. Then $t \in [0, 1/3]$ and $\alpha(A_{n_k}, B_{n_k}, t_{n_k}) \xrightarrow{s} G(\{a_0\}, A, s') = A = \alpha(A, B, t)$.
- 1.1.2.2. $t_{n_k} \in [1/3, 2/3]$ for every k. Then $t \in [1/3, 2/3]$ and we have $\alpha(A_{n_k}, B_{n_k}, t_{n_k}) \stackrel{\text{s}}{\to} G(\{a_0\}, A, (2-3t)s^*) \cup \overline{a_0a_0} \cup G(\{a_0\}, B, s') = \alpha(A, B, t)$.
- 1.1.2.3. $t_{n_k} \in [2/3, 1]$ for every k. Then $t \in [2/3, 1]$ and $\alpha(A_{n_k}, B_{n_k}, t_{n_k}) \xrightarrow{s} G(\{a_0\}, B, s') = B = \alpha(A, B, t)$.

This completes Subcase 1.1.

- 1.2. $A_{n_k} \cap B_{n_k} \neq \emptyset$ for infinitely many elements $n_1 < n_2 < \dots$ in S. Then we may suppose that one of the following three cases holds:
- 1.2.1. $t_{n_k} \in [0, 1/3]$ for all k. Then $\alpha(A_{n_k}, B_{n_k}, t_{n_k}) = A_{n_k} \xrightarrow{s} A = \alpha(A, B, t)$.
- 1.2.2. $t_{n_k} \in [1/3, 2/3]$ for all k. So $\alpha(A_{n_k}, B_{n_k}, t_{n_k}) = B_{n_k} \xrightarrow{s} B = \alpha(A, B, t)$.
- 1.2.3. $t_{n_k} \in [2/3,1]$ for every k. Then $\alpha(A_{n_k}, B_{n_k}, t_{n_k}) = G(A_{n_k} \cap B_{n_k}, A_{n_k}, 2 3t_{n_k}) \cup G(A_{n_k} \cap B_{n_k}, B_{n_k}, s_k)$, where $s_k \in I$, and we may suppose that $s_k \to s'$ for some $s' \in I$. Then $\alpha(A_{n_k}, B_{n_k}, t_{n_k}) \xrightarrow{s} G(J(A, B), A, 2 3t) \cup G(J(A, B), B, s') = \alpha(A, B, t)$.

This completes the proof of Case 1.

- 2. $A \cap B = \emptyset$. Then we may suppose that $A_n \cap B_n = \emptyset$ for every $n \in S$. Here it is necessary to consider the following cases:
 - 2.1. $\mu(\overline{a_{n_k}b_{n_k}}) \geq t_0$ for infinitely many elements $n_1 < n_2 < \dots$ in S.
 - 2.1.1. $t_{n_k} \in [0, 1/3]$ for every k.
 - 2.1.2. $t_{n_k} \in [1/3, 2/3]$ for every k.
 - 2.1.3. $t_{n_k} \in [2/3, 1]$ for every k.
 - 2.2. $\mu(\overline{a_{n_k}b_{n_k}}) \leq t_0$ for infinitely many elements $n_1 < n_2 < \dots$ in S.
 - 2.2.1. $t_{n_k} \in [0, 1/3]$ for every k.
 - 2.2.2. $t_{n_k} \in [1/3, 2/3]$ for every k.
 - 2.2.3. $t_{n_k} \in [2/3, 1]$ for every k.

All of them can be treated similarly to Case 1.

Hence, in each one of the cases, infinitely many elements $n_1 < n_2 < \dots$ of S can be obtained such that $\alpha(A_{n_k}, B_{n_k}, t_{n_k}) \xrightarrow{s} \alpha(A, B, t)$.

Therefore $\alpha(A_n, B_n, t_n) \stackrel{s}{\to} \alpha(A, B, t)$.

2.10. CONSTRUCTION. For each $r \in \mathbb{N}$, let $S_r = (\{0,1\})^r$. For each set $E = \{A_{\sigma} \in \mu^{-1}(t_0) : \sigma \in S_N\}$ define $f_E : I^N \to \mu^{-1}(t_0)$ through the following steps:

 $f_E(a_1, \sigma_1) = \alpha(A_{(0,\sigma_1)}, A_{(1,\sigma_1)}, a_1)$ if $a_1 \in I$ and $\sigma_1 \in S_{N-1}$.

 $f_E(a_1, a_2, \sigma_2) = \alpha(f_E(a_1, 0, \sigma_2), f_E(a_1, 1, \sigma_2), a_2)$ if $a_1, a_2 \in I$ and $\sigma_2 \in S_{N-2}$.

If $2 \leq r < N$, then $f_E(a_1, \ldots, a_r, \sigma_r) = \alpha(f_E(a_1, \ldots, a_{r-1}, 0, \sigma_r), f_E(a_1, \ldots, a_{r-1}, 1, \sigma_r), a_r)$ for $a_1, \ldots, a_r \in I$ and $\sigma_r \in S_{N-r}$.

If r = N, then we set $f_E(a_1, ..., a_N) = \alpha(f_E(a_1, ..., a_{N-1}, 0), f_E(a_1, ..., a_{N-1}, 1), a_N)$ for $a_1, ..., a_N \in I$.

The following lemma is easy to prove.

- 2.11. Lemma. (a) f_E is well defined.
- (b) If $(a_n)_n \subset I^N$ and $a \in I^N$ are such that $a_n \to a$ then $f_E(a_n) \xrightarrow{s} f_E(a)$.
- (c) If $A_{\sigma} \subset A \in C(X)$ for each $\sigma \in S_N$, then $f_E(a) \subset A$ for every $a \in I^N$.
- 2.12. Lemma. Let $p, q \in \{0, 1\}$. Let $E = \{A_{\sigma} : \sigma \in S_N\}$ and $D = \{B_{\sigma} : \sigma \in S_N\}$ and let $r \in \{1, \dots, N\}$ be such that $A_{(\sigma_1, p, \sigma_2)} = B_{(\sigma_1, q, \sigma_2)}$ for each $\sigma_1 \in S_{r-1}$ and $\sigma_2 \in S_{N-r}$. Then $f_E(a_1, p, a_2) = f_D(a_1, q, a_2)$ for every $a_1 \in I^{r-1}$ and $a_2 \in I^{N-r}$.

Proof. Let $x=(x_1,\ldots,x_N),\ y=(y_1,\ldots,y_N)\in I^N$ be such that $x_r=p,\ y_r=q$ and $x_i=y_i$ for all $i\neq r$. We will show, by induction on k, that if $x_{k+1},\ldots,x_N,y_{k+1},\ldots,y_N\in\{0,1\}$ then $f_E(x)=f_D(y)$.

Suppose that k = 1. Let $\sigma = (x_2, ..., x_N)$ and $\varrho = (y_2, ..., y_N) \in S_{N-1}$. If r > 1, then $A_{(0,\sigma)} = B_{(0,\varrho)}$, $A_{(1,\sigma)} = B_{(1,\varrho)}$ and $x_1 = y_1$. Then $f_E(x) = \alpha(A_{(0,\sigma)}, A_{(1,\sigma)}, x_1) = \alpha(B_{(0,\varrho)}, B_{(1,\varrho)}, y_1) = f_D(y)$. If r = 1, then $\sigma = \varrho$. Notice that $f_E(x) = A_{(p,\sigma)}$ and $f_D(y) = B_{(q,\sigma)}$. Thus $f_E(x) = f_D(y)$.

Suppose that the assertion holds for k < n. Suppose that x_{k+2}, \ldots, x_N , $y_{k+2}, \ldots, y_N \in \{0, 1\}$. Then $f_E(x) = \alpha(f_E(x_1, \ldots, x_k, 0, x_{k+2}, \ldots, x_N), f_E(x_1, \ldots, x_k, 1, x_{k+2}, \ldots, x_N), x_{k+1}) = (*)$. If $k+1 \neq r$, the induction hypothesis implies that $(*) = f_D(y)$, and if k+1 = r, then $f_E(x) = f_E(x_1, \ldots, x_k, p, x_{k+2}, \ldots, x_N)$, which, by the induction hypothesis, is equal to $f_D(y_1, \ldots, y_k, q, y_{k+2}, \ldots, y_N) = f_D(y)$.

This completes the induction. Then the theorem follows by taking k=N.

2.13. Construction. Let $g: I^N \to \mu^{-1}(t_0)$ be a map. Given $m \in \mathbb{N} \cup \{0\}$ and $x = (x_1, \dots, x_N) \in (\{0, 1, \dots, 10^m - 1\})^N$, define $Q(x) = [x_1/10^m, (x_1 + 1)/10^m] \times \dots \times [x_N/10^m, (x_N + 1)/10^m]$ and $E(x) = \{A_\sigma : \sigma \in S_N\}$ where $A_\sigma = g((x + \sigma)/10^m)$ for every $\sigma \in S_N$. Next, define $h_x : Q(x) \to \mu^{-1}(t_0)$ by $h_x(a) = f_{E(x)}(10^m(a - x/10^m))$. Then h_x is well defined. Now define $h_m : I^N \to \mu^{-1}(t_0)$ by $h_m(a) = h_x(a)$ if $a \in Q(x)$. Finally, define $h : I^{N+1} \to \mu^{-1}(t_0)$ by

$$h(a,t) = \begin{cases} g(a) & \text{if } t = 0, \\ \alpha(h_{m+1}(a), h_m(a), 2^{m+1}(t - 1/2^{m+1})) & \text{if } t \in [1/2^{m+1}, 1/2^m]. \end{cases}$$

2.14. Lemma. For each m, h_m is well defined and, if $a_n \to a$, then $h_m(a_n) \stackrel{\mathrm{s}}{\to} h_m(a)$.

Proof. To see that h_m is well defined take a point $a \in Q(x) \cap Q(y)$. First suppose that x and y differ just in one coordinate r. Suppose that $x_r < y_r$. Then $a_r 10^m = y_r = x_r + 1$. Then $h_m(a)$ can be defined as $f_{E(x)}(10^m(a-x/10^m))$ and $f_{E(y)}(10^m(a-y/10^m))$ where $E(x) = \{g((x+\sigma)/10^m) : \sigma \in S_N\}$ and $E(y) = \{g((y+\sigma)/10^m) : \sigma \in S_N\}$.

We will apply Lemma 2.12. Let $c = 10^m (a - x/10^m)$ and $d = 10^m (a - y/10^m)$. Then $c_r = 1$ and $d_r = 0$. Let p = 1 and q = 0. For $\sigma_1 \in S_{r-1}$ and $\sigma_2 \in S_{N-r}$ we have $g((x + (\sigma_1, p, \sigma_2))/10^m) = g((y + (\sigma_1, q, \sigma_2))/10^m)$. Hence, by Lemma 2.12, $f_{E(x)}(c) = f_{F(y)}(d)$. Thus $f_{E(x)}(10^m (a - x/10^m)) = f_{E(y)}(10^m (a - y/10^m))$.

If x and y differ in more that one coordinate, considering the vectors (x_1, y_2, \ldots, y_N) , $(x_1, x_2, y_3, \ldots, y_N)$, \ldots , $(x_1, \ldots, x_{N-1}, y_N)$, we conclude that h_m is well defined.

The second part of the lemma follows from Lemma 2.11(b).

2.15. Lemma. h is well defined and continuous.

Proof. It is easy to check that h is well defined. From Lemma 2.13 it follows that if $(a_n, t_n) \to (a, t)$ and t > 0 then $h(a_n, t_n) \stackrel{\text{s}}{\to} h(a, t)$. Thus h is continuous at (a, t) if t > 0.

Now take a point $(a,0) \in I^{N+1}$; we will check that h is continuous at this point. Let $\varepsilon > 0$. Consider the metric d_0 in I^N defined by $d_0(b,c) = \max\{|b_i - c_i| : 1 \le i \le N\}$. Let $\delta > 0$ be such that $d_0(a,b) \le \delta$ implies that $\mathcal{H}(g(a),g(b)) < \varepsilon$. Let $A_0 = [a_1 - \delta,a_1 + \delta] \times \ldots \times [a_N - \delta,a_N + \delta]$ and let $A = \bigcup\{g(b) : b \in A_0 \cap I^N\}$. Then A is a subcontinuum of X and $A \subset N(\varepsilon,g(a))$. Fix $M \in \mathbb{N}$ such that $3/10^M < \delta$.

We will prove that $h(b,t) \subset N(\varepsilon,h(a,0))$ for $(b,t) \in I^{N+1}$ such that $d_0(a,b) \leq 1/10^M$ and $t < 1/2^M$.

Given $m \geq M$, let $x \in (\{0,1,\ldots,10^m-1\})^N$ be such that $b \in Q(x)$. If $\sigma \in S_N$, then $\mathbf{d}_0(a,(x+\sigma)/10^m) = \max\{|a_i-(x_i+\sigma_i)/10^m|: 1 \leq i \leq N\} \leq \delta$. Thus $g((x+\sigma)/10^m) \subset A$ for each $\sigma \in S_N$. By Lemma 2.11(c), $f_{E(x)}(10^m(b-x/10^m)) \subset A$. Therefore $h_m(b) \subset A$ for each $m \geq M$. It follows that $h(b,t) \subset A \subset N(\varepsilon,h(a,0))$.

Now suppose that h is not continuous at (a,0). Then there exists $B \in \mu^{-1}(t_0) - \{h(a,0)\}$ and a sequence $((a_n,t_n))_n$ such that $(a_n,t_n) \to (a,0)$ and $h(a_n,t_n) \to B$. By the paragraph above, for each $\varepsilon > 0$, there exists $K \in \mathbb{N}$ such that $h(a_n,t_n) \subset N(\varepsilon,h(a,0))$ for every $n \geq K$. This implies that $B \subset h(a,0)$, so B = h(a,0). This contradiction completes the proof of the continuity of h.

2.16. Lemma. Let $g, g^*: I^N \to \mu^{-1}(t_0)$ be maps such that $g|\operatorname{Fr}(I^N) = g^*|\operatorname{Fr}(I^N)$. Let $h, h^*: I^{N+1} \to \mu^{-1}(t_0)$ be the maps constructed as in 2.13 for the maps g and g^* respectively. Then $h|\operatorname{Fr}(I^N) \times I = h^*|\operatorname{Fr}(I^N) \times I$ and $h|I^N \times \{1\} = h^*|I^N \times \{1\}$.

Proof. Consider h_m^* , $E^*(x)$ and A_σ^* constructed as in 2.13 for the map g^* . Let $(a,t) \in \operatorname{Fr}(I^N) \times I$. If t=0, then $h(a,t)=g(a)=g^*(a)=h^*(a,t)$. Now suppose that t>0. To prove that $h(a,t)=h^*(a,t)$, it is enough to prove that $h_m(a)=h_m^*(a)$ for every $m\geq 0$. Let $x=(x_1,\ldots,x_N)\in (\{0,1,\ldots,10^m-1\})^N$ be such that $a\in Q(x)$. We have to prove that $f_{E(x)}(10^m(a-x/10^m))=f_{E^*(x)}(10^m(a-x/10^m))$. Since $a\in\operatorname{Fr}(I^N)$, there exists $r\in\{1,\ldots,N\}$ such that $a_r=0$ or 1.

If $a_r = 0$, then $x_r = 0$. We will apply Lemma 2.13 to p = q = 0. Given $\sigma_1 \in S_{r-1}$ and $\sigma_2 \in S_{N-r}$, $A_{(\sigma_1,0,\sigma_2)} = g((x + (\sigma_1,0,\sigma_2))/10^m) = g^*((x + (\sigma_1,0,\sigma_2))/10^m) = A^*_{(\sigma_1,0,\sigma_2)}$. Thus Lemma 2.13 implies that $f_{E(x)}(10^m(a - x/10^m)) = f_{E^*(x)}(10^m(a - x/10^m))$.

If $a_r=1$, then $x_r+1=10^m$ and $a_r-x_r/10^m=1/10^m$. Set p=q=1. Given $\sigma_1\in S_{r-1}$ and $\sigma_2\in S_{N-r},\ A_{(\sigma_1,1,\sigma_2)}=g((x+(\sigma_1,1,\sigma_2))/10^m)=g^*((x+(\sigma_1,1,\sigma_2))/10^m)=A^*_{(\sigma_1,1,\sigma_2)}$. Thus Lemma 2.13 implies that $f_{E(x)}(10^m(a-x/10^m))=f_{E^*(x)}(10^m(a-x/10^m))$. Hence $h(a,t)=h^*(a,t)$.

Now take $a \in I^N$. We will prove that $h(a,1) = h^*(a,1)$. Notice that $h(a,1) = h_0(a) = f_{E(0)}(a)$ and $h^*(a,1) = f_{E^*(0)}(a)$. Given $\sigma \in S_N \subset \operatorname{Fr}(I^N)$, we have $A_{\sigma} = g(\sigma) = g^*(\sigma) = A_{\sigma}^*$. Thus $f_{E(0)} = f_{E^*(0)}$. Therefore $h(a,1) = h^*(a,1)$.

2.17. Theorem. Every map $G: S^N \to \mu^{-1}(t_0)$ is null homotopic.

Proof. Let $G: S^N \to \mu^{-1}(t_0)$ be a map. Let $(S^N)^+$ and $(S^N)^-$ be the north and south hemispheres of S^N respectively. Let $g = G|(S^N)^+$ and $g^* = G|(S^N)^-$. Then $g|\operatorname{Fr}((S^N)^+) = g^*|\operatorname{Fr}((S^N)^-)$. Identifying $(S^N)^+$ and $(S^N)^-$ with I^N , we consider h and h^* as in Lemma 2.16. Then $h|(\operatorname{Fr}((S^N)^+) \times I) \cup ((S^N)^+ \times \{1\}) = h^*|(\operatorname{Fr}((S^N)^-) \times I) \cup ((S^N)^- \times \{1\})$. We consider the (N+1)-ball B^{N+1} as the space obtained by identifying, in the disjoint union $((S^N)^+ \times I) \overset{\circ}{\cup} ((S^N)^- \times I)$, the points of the set $(\operatorname{Fr}((S^N)^+) \times I) \cup ((S^N)^+ \times \{1\})$ with the points of the set $h^*|(\operatorname{Fr}((S^N)^-) \times I) \cup ((S^N)^- \times \{1\})$ in the natural way. Then there exists a map $\overline{h}: B^{N+1} \to \mu^{-1}(t_0)$ which extends both h and h^* . Thus \overline{h} is an extension of G. Hence G is null homotopic.

Remark. Related with this topic, the following question by A. Petrus ([13]) remains open: If X is a contractible dendroid, is then every Whitney level for C(X) contractible?

References

- [1] C. Eberhart and S. B. Nadler, Jr., *The dimension of certain hyperspaces*, Bull. Acad. Polon. Sci. 19 (1971), 1027–1034.
- [2] S. Eilenberg, Transformations continues en circonférence et la topologie du plan, Fund. Math. 26 (1936), 61–112.
- [3] A. Illanes, Arc-smoothness and contractibility in Whitney levels, Proc. Amer. Math. Soc. 110 (1990), 1069–1074.
- [4] —, Spaces of Whitney maps, Pacific J. Math. 139 (1989), 67–77.
- [5] —, The space of Whitney levels, Topology Appl., to appear.
- [6] —, Spaces of Whitney decompositions, An. Inst. Mat. Univ. Nac. Autónoma México 28 (1988), 47–61.
- [7] —, The space of Whitney levels is homeomorphic to l_2 , Colloq. Math., to appear.
- [8] —, Arc smoothness is not a Whitney reversible property, Aportaciones Mat.: Comun. 8 (1990), 65–80.
- [9] J. Krasinkiewicz and S. B. Nadler, Jr., Whitney properties, Fund. Math. 98 (1978), 165–180.
- [10] S. Mardešić, Equivalence of singular and Čech homology for ANR-s. Application to unicoherence, ibid. 46 (1958), 29–45.
- [11] S. B. Nadler, Jr., Some basic connectivity properties of Whitney maps inverses in C(X), in: Studies in Topology, Proc. Charlotte Topology Conference (University of North Carolina at Charlotte, 1974), Academic Press, New York 1975, 393–410.
- [12] —, Hyperspaces of Sets, Dekker, New York 1978.
- [13] A. Petrus, Contractibility of Whitney continua in C(X), Gen. Topology Appl. 9 (1978), 275–288.
- [14] L. E. Ward, Jr., Extending Whitney maps, Pacific J. Math. 93 (1981), 465-469.

INSTITUTO DE MATEMÁTICAS
AREA DE LA INVESTIGACIÓN CIENTÍFICA
CIRCUITO EXTERIOR
CIUDAD UNIVERSITARIA
C.P. 04510
MÉXICO, D.F., MÉXICO

Received 18 September 1990; in revised form 28 June 1991