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Definable hereditary families
in the projective hierarchy

by

Rana Ba rua and V. V. S r i v a t s a (Calcutta)

Abstract. We show that if F is a hereditary family of subsets of ωω satisfying
certain definable conditions, then the ∆1

1 reals are precisely the reals α such that {β :
α ∈ ∆1

1(β)} 6∈ F . This generalizes the results for measure and category. Appropriate
generalization to the higher levels of the projective hierarchy is obtained under Projective
Determinacy. Application of this result to the Q2n+1-encodable reals is also shown.

0. Introduction. In his seminal paper [1], Kechris obtained a number
of measure-theoretic and category-theoretic results that respectively seem
to depend on the properties of measure and category. In another direction,
he obtained a basis theorem for “large” π1

2n+1 sets (under PD) that works
for both measure and category. This is obtained by formulating the basis
theorem in terms of σ-ideals satisfying certain definable conditions (members
of the σ-ideals are regarded as small sets). In much the same spirit, we
show that some of the results in [1] depend purely on definable conditions.
We work with the more general definable hereditary families, i.e. definable
families of subsets of reals closed under set inclusion. That these results
hold for hereditary families is of great significance as we shall see later. Our
main result is the characterization of D1

1, the set of ∆1
1 reals and, at the

higher levels, of Q2n+1 under PD. We prove:

D1
1 is precisely the set of reals α such that {β : α ∈ ∆1

1(β)} 6∈ J , for any
π1

1 computable hereditary family J (see the definition below).

The proof of this fact is soft and easily generalizable. Elementary uses
of the Q-theory of Kechris–Martin–Solovay [4] yield an analogous charac-
terization of Q2n+1 under PD. The following seems new even for measure:

α ∈ Q2n+1 ↔ {β : α ≤Q
2n+1 β} 6∈ J ,

for any π1
2n+1 computable hereditary family J . The corresponding state-

ment for ∆1
2n+1 is false in this generality.
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The fact that such results hold for hereditary families is of significance.
While we know of no non-trivial π1

1 (resp. π1
2n+1) computable σ-ideals other

than the measure and category ones, interesting examples of π1
1 (resp. π1

2n+1)
computable hereditary families can be obtained by natural dualization of any
Σ1

1 (resp. Σ1
2n+1) computable hereditary families. This yields analogous

results for Σ1
1 (resp. Σ1

2n+1) computable hereditary families.
At the higher levels, a new example emerges in the form of the Ramsey

ideal. While this is not Σ1
1 computable, for n ≥ 1, by a result of Kechris [3],

this is Σ1
2n+1 computable under PD. In view of the remarks made above,

the characterization quoted earlier applies to yield a different proof of the
following result of Kechris [3] on encodable reals:

the Q2n+1-encodable reals are precisely the elements of Q2n+1.

1. The main results. Our basic theory is ZF+DC. Additional axioms
like PD (projective determinacy), Det(∆1

2n) (determinacy of ∆1
2n games)

would be explicitly mentioned. Our notation and terminology are as in
Moschovakis [5]. For our results at the higher levels we assume familiarity
with Kechris–Martin–Solovay memoir on Q-theory [4].

We now make the following formal definition.

1.1. Definition. Let I be a family of subsets of reals and let Γ be a
pointclass. We say that I is Γ computable if for every B ∈ Γ , B ⊆ X × ωω,
X = (ωω)k × ωl, the set

B∆ = {x ∈ X : Bx 6∈ I}
is in Γ , where Bx = {β : (x, β) ∈ B}.

1.2. Definition. A family I is said to be hereditary if

B ∈ I & A ⊆ B → A ∈ I .

We shall need the following folklore type result which we have obtained
by dualizing the effective analogue of a result of Pia̧tkiewicz (cf. [6]).

1.3. Lemma. Let Γ be a Spector pointclass and F a Γ computable, hered-
itary family of subsets of ωω. Then for every Γ set of reals A 6∈ F there is
a ∆ = Γ ∩ ¬Γ set B ⊆ A such that B 6∈ F .

P r o o f. Fix a Γ -norm φ on A. Suppose A is not ∆. Let

C = {α : {β <∗
φ α} ∈ F} .

Since F is Γ computable, C is in ¬Γ ; and since A 6∈ F , C ⊆ A. Moreover,

C(α) & φ(β) ≤ φ(α) → C(β) .

Since A is not ¬Γ we have C  A. Hence there is α0 ∈ A such that
C = {α : α <∗

φ α0}. Since α0 6∈ C, it follows that {β : β <∗
φ α0} = C 6∈ F .

Let B be a ∆ set such that C ⊆ B ⊆ A. This B does the job.
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We now prove

1.4. Theorem. Let F 6= ∅ be a hereditary family of subsets of reals not
containing ωω. Then the following hold :

(a) If F is π1
1 computable, then

α ∈ D1
1 ↔ {β : α ∈ ∆1

1(β)} 6∈ F ,

where D1
1 is the set of all ∆1

1 reals.
(b) Assume Det(∆1

2n), n ≥ 1, and F is π1
2n+1 computable. Then

α ∈ Q2n+1 ↔ {β : α ≤Q
2n+1 β} 6∈ F .

P r o o f. We shall prove (b); the proof of (a) is analogous.
If α is Q2n+1 then clearly {β : α ≤Q

2n+1 β} = ωω 6∈ F . For the converse,
first observe that if α is a π1

2n+1(δ) singleton, i.e. {α} is π1
2n+1(δ), then the

set E[α] def= {β : α ≤Q
2n+1 β} is easily seen to be π1

2n+1(δ). If, furthermore,
E[α] 6∈ F , then by Lemma 1.3 (with Γ = π1

2n+1(δ)), since it can be checked
that F is π1

2n+1(δ) computable, there is a ∆1
2n+1(δ) set B ⊆ E[α] such that

B 6∈ F . So α ≤Q
2n+1 β for all β ∈ B. But then

α(n) = m ↔ (∀β) [β ∈ B → (∃γ ≤Q
2n+1 β) (γ ∈ {α}&γ(n) = m)] .

This shows that the graph of α is π1
2n+1(δ) and hence α is ∆1

2n+1(δ).
Hence the set

G = {α : {β : α ≤Q
2n+1 β} 6∈ F}

contains no non-trivial π1
2n+1(δ) singleton for any δ. Also since F is π1

2n+1

computable, G is π1
2n+1. We now claim that G is thin, i.e. contains no

perfect set. If not, there is a recursive-in-δ, one-one function g : 2ω → G for
some δ. But 2ω contains a non-trivial π1

2n+1(δ) singleton and so G contains
a non-trivial π1

2n+1(δ) singleton. But this is not possible. So G is thin and
consequently G ⊆ C2n+1, the largest thin π1

2n+1 set (cf. [2]). Since G is
closed under ≤2n+1 and G ⊇ Q2n+1 contains no non-trivial π1

2n+1 singleton,
G must be the set of Q2n+1 reals (see [4; 6.3]). This completes the proof.

1.5. R e m a r k. If F is the σ-ideal of meagre sets or of Lebesgue null
sets, then the analogue of (b) for ∆1

2n+1 degrees holds (cf. [1]). However, it
cannot hold for all (π1

2n+1 computable) σ-ideals. To see this, let J be the
σ-ideal of all sets disjoint from Q2n+1. Since Q2n+1 is π1

2n+1-bounded, J
is easily seen to be π1

2n+1 computable. Now observe that, trivially, for any
α ∈ Q2n+1, {β : α ∈ ∆1

2n+1(β)} 6∈ J . And so the following is false:

α ∈ D1
2n+1 ↔ {β : α ∈ ∆1

2n+1(β)} 6∈ J ;

since for n ≥ 1, Q2n+1 −D1
2n+1 6= ∅.
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Now suppose F is a Σ1
2n+1 computable hereditary family for any n ∈ ω.

Put F0 = {A ⊆ ωω : Ac 6∈ F}. Then it is easy to see that F0 is a π1
2n+1

computable hereditary family. Applying Theorem 1.4 to F0 and unfolding
the definition of F0 one obtains:

1.6. Theorem. Let F 6= ∅ be a hereditary family of subsets of reals not
containing ωω.

(a) If F is Σ1
1 computable, then

α ∈ D1
1 ↔ {β : α 6∈ ∆1

1(β)} ∈ F .

(b) Assume Det(∆1
2n) and n ≥ 1. If F is Σ1

2n+1 computable, then

α ∈ Q2n+1 ↔ {β : ¬(α ≤Q
2n+1 β)} ∈ F .

As an immediate consequence of Theorem 1.4 we have the following

1.7. Theorem. Let F be as above.

(a) Suppose F is π1
1 computable. Then {α : ωck

1 < ωα
1 } ∈ F .

(b) Assume Det(∆1
2n), n ≥ 1 and suppose F is π1

2n+1 computable. Then

{α : k2n+1 < k2n+1(α)} ∈ F ,

where α → k2n+1(α) is the ordinal assignment for Q2n+1 degrees (as in Sec.
14 of [4]).

P r o o f. We prove (b) since the proof of (a) is similar. First observe that
by 14.8 of [4],

k2n+1 < k2n+1(α) ↔ y0
2n+1 ∈ ∆1

2n+1(α) ,

where y0
2n+1 is the first non-trivial π1

2n+1 singleton. Thus, if {α : k2n+1 <
k2n+1(α)} 6∈ F , then by Theorem 1.4(b), y0

2n+1 ∈ Q2n+1. But Q2n+1 con-
tains no non-trivial π1

2n+1 singleton. This proves the assertion in (b).

Arguing as in 1.6 above we obtain

1.8. Corollary. Let F be as above.

(a) If F is Σ1
1 computable, then {α : ωck

1 = ωα
1 } 6∈ F .

(b) Assume Det(∆1
2n) and n ≥ 1. If F is Σ1

2n+1 computable, then
{α : k2n+1 = k2n+1(α)} 6∈ F .

1.9. R e m a r k . Notice that 1.8 above is a generalization of the Gandy
Basis Theorem (cf. [4; Sec. 14.9]). For if A is Σ1

2n+1 and non-empty, the σ-
ideal consisting of sets disjoint from A is Σ1

2n+1 computable. The statement
(b) above for this ideal asserts that there is α ∈ A with k2n+1 = k2n+1(α).
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2. Application. The above characterization of Q2n+1 for a suitable
F yields simplifications of a result of Kechris on the Q2n+1-encodable reals
(see [3]). The relevant definitions are as follows.

2.1. Definition. Let ≤r be any notion of reducibility among reals (like
for instance Turing reducibility ≤T). Let [ω]ω denote the set of all infinite
subsets of ω. A real α is said to be ≤r-encodable iff

∀X ∈ [ω]ω ∃Y ∈ [ω]ω (Y ⊆ X and α ≤r Y ) .

When ≤r = ≤T, α is said to be recursively encodable; when ≤r = ≤n, α is
said to be ∆1

n-encodable; when ≤r = ≤Q
2n+1, α is said to be Q2n+1-encodable.

From now on infinite subsets of ω will be denoted by X, Y, . . .

2.2. Definition. Let s be a finite set of natural numbers and X an
infinite one. The pair 〈s,X〉 is said to be a condition if max(s) < min(X).
The Ellentuck neighbourhood (s,X) consists of all Y ∈ [ω]ω such that s ⊆
Y ⊆ s ∪ X. A subset A of [ω]ω is said to be Ramsey null if for every X
there exists Y ⊆ X such that A ∩ (∅, Y ) = ∅. It is said to be completely
Ramsey null if for each Ellentuck neighbourhood (s,X) there exists Y ⊆ X
such that A ∩ (s, Y ) = ∅.

Let J1,J2 denote the families of Ramsey null and completely Ramsey
null sets respectively. Clearly Ji is hereditary and it is well known that Ji

is a σ-ideal, i = 1, 2.

2.3. Lemma (Assume PD for n ≥ 1). Let ≤r be ≤2n+1 or ≤Q
2n+1. Then

α is ≤r-encodable iff {X : ¬(α ≤r X)} ∈ J1 iff {X : ¬(α ≤r X)} ∈ J2.

P r o o f. Suppose α is ≤r-encodable. Fix Y . Now {X : ¬(α ≤r X)} is
projective, and therefore has the Ramsey property (under PD for n ≥ 1). So,
there is Y ′ ⊆ Y such that either (∅, Y ′) ⊆ {X : α ≤r X} or (∅, Y ′) ⊆ {X :
¬(α ≤r X)}. The second alternative cannot hold since α is ≤r-encodable.
But this shows that {X : ¬(α ≤r X)} ∈ J1. The other implications are
similar or easier.

2.4. R e m a r k (Failure of computations for the Ramsey ideals). For
σ-ideals J , the π1

1 computability condition almost appears to imply the
countable chain condition (c.c.c.) for Borel/J . Be that as it may, the c.c.c.
fails in a very strong form for the Ramsey (and completely Ramsey) ideals.
To see this notice that the canonical family of almost disjoint sets in 2ω

yields a ∆1
1 perfect set P (of codes) of almost disjoint sets. These must

correspond to disjoint Ellentuck neighbourhoods. It is not hard to see from
here that the π1

1 computability condition must fail (this was also observed
independently by B. V. Rao). An identical argument applies to π1

2n+1, for
all n ≥ 1.
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The Σ1
1 computability condition also fails for the families J1 and J2.

This is because by Solovay ([7]), there is a ∆1
1-encodable real which is not

∆1
1. If α is such a real, then by Lemma 2.3, {X : α 6∈ ∆1

1(X)} is completely
Ramsey null. But if the ideal J2 were Σ1

1 computable, then Theorem 1.6
would apply to yield α ∈ ∆1

1. Contradiction! The same argument works
for J1.

In contrast to the above we will now observe that, under PD, J1 is
Σ1

2n+1 computable for n ≥ 1. This follows easily from the following result
of Kechris [3], when relativized. If A is π1

2n+1, then either there is a set Y
such that (∅, Y ) ∩A = ∅ or there is a ∆1

2n+1 set Y such that (∅, Y ) ⊆ A.

Proposition 2.5. Assume n ≥ 1 and PD. Then the Ramsey ideal J1 is
Σ1

2n+1 computable.

P r o o f. For any Σ1
2n+1(α) set P ,

P is Ramsey null ↔ (∀X) (∃Y ⊆ X) [(∅, Y ) ∩ P = ∅]
↔ (∀X)∃Y ∈ ∆1

2n+1(〈α, X〉) [Y ⊆ X&(∅, Y ) ∩ P = ∅] ;
the last equivalence holding by an application of Kechris’ result relativized.
From this it follows easily that J1 is Σ1

2n+1 computable.

The following is now immediate.

2.6. Theorem (Kechris). Assume PD and n ≥ 1. Then the Q2n+1-
encodable reals are precisely the Q2n+1 reals.

P r o o f. If α ∈ Q2n+1, then clearly α is Q2n+1-encodable. Conversely,
if α is Q2n+1-encodable then, by Lemma 2.3, {X : ¬(α ≤Q

2n+1 X)} ∈ J1.
Since by Proposition 2.5, J1 is Σ1

2n+1-encodable, an application of Theorem
1.6 yields α ∈ Q2n+1.

R e m a r k. The above proof is different from the one in Kechris [3]
and while it does not seem to be technically simpler, it is perhaps of some
conceptual significance.
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